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Abstract: Usually, incremental algorithms for data streams clustering not only suffer from sensitive initialization pa-
rameters, but also incorrectly represent large classes by many cluster representatives, which leads to decrease
the computational efficiency over time. We propose in this paper an incremental clustering algorithm based
on ”growing neural gas” (GNG), which addresses this issue by using a parameter-free adaptive threshold to
produce representatives and a distance-based probabilistic criterion to eventually condense them. Experiments
show that the proposed algorithm is competitive with existing algorithms of the same family, while maintaining
fewer representatives and being independent of sensitive parameters.

1 INTRODUCTION

Recently, research focused on designing efficient al-
gorithms for clustering continuous data streams in
an incremental way, where each data can be visited
only once and processed dynamically as soon as it is
available. Particularly, unsupervised incremental neu-
ral clustering methods take into account relations of
neighbourhood between representatives, and show a
good clustering performance. Among these methods,
GNG algorithm (Fritzke, 1995) has attracted consid-
erable attention. It allows dynamic creation and re-
moval of neurons (representatives) and edges between
them during learning by maintaining a graph topol-
ogy using a competitive Hebbian Learning strategy
(Martinetz, 1993). Each edge has an associated age
which is used in order to remove old edges and keeps
the topology dynamically updated. After adapting the
graph topology using a fixed number of data-points
from the input space (i.e. a time period), a new neu-
ron is inserted between the two neighbouring neurons
that cumulated the most important error. Unlike usual
clustering methods (e.g. Kmeans), it does not require
initial conditions such as a predefined number of clus-
ters and their initialization. This represents an impor-
tant feature in the context of data stream clustering
where we have no prior knowledge about the whole
dataset. However, in GNG, the creation of a new neu-
ron is made periodically, and a major disadvantage
concerns the choice of this period. For this purpose,
some adaptations that relaxes this periodical evolu-

tion have been proposed. The main incremental vari-
ants are IGNG (Prudent and Ennaji, 2005), I2GNG
(Hamza et al., 2008) and SOINN (Shen et al., 2007).
Unfortunately, the fact that these methods depend on
some sensitive parameters that must be specified prior
to the learning, reduces the importance of their incre-
mental nature. Moreover, large classes are unneces-
sarily modelled by many neurons representing many
small cluster fragments, leading to a significant drop
of computational efficiency over time.

In this paper we propose a GNG based incremen-
tal clustering algorithm (AING) where the decision
of producing a new neuron from a new coming data-
point is based on an adaptive parameter-free distance
threshold. The algorithm overcomes the shortcoming
of excessive number of neurons by condensing them
based on a probabilistic criterion, and building a new
topology with a fewer number of neurons, thus pre-
serving time and memory resources. The algorithm
depends only on a parameter generated by the system
requirements (e.g. allowed memory budget), and un-
like the other algorithms, no parameter related to a
specific characteristics dataset needs to be specified.
Indeed, it can be really difficult for a user to esti-
mate all the parameters that are required by a learn-
ing algorithm. According to (Keogh et al., 2004),
”A parameter-free algorithm would limit our ability
to impose our prejudices, expectations, and presump-
tions on the problem at hand, and would let the data
itself speak to us”. An algorithm which uses as few
parameters as possible without requiring prior knowl-
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edge is strongly preferred, especially when the whole
dataset is not available beforehand (i.e. a data-stream
configuration).

This paper is organized as follows. In section
2, we describe a brief review of some incremental
clustering methods (including the GNG based ones),
and analyse their problems. Then the algorithm we
propose is presented in section 3. In section 4, we
present our experimental evaluation on synthetic and
real datasets. In section 5, we give the conclusion and
we present some perspectives of this work.

2 RELATED WORK

Before describing some incremental methods and
discussing their related problems, we firstly give
some notations to be used in the rest of this paper:
x refers to a data-point, y to a neuron (cluster repre-
sentative), Xy is the set of data-points that are already
assigned to neuron y, Vy is the set of current neurons
that are neighbours of y (neurons linked to y by an
edge), wy is the reference vector of neuron y, and ny
= jXyj is the number of data-points currently assigned
to y.

Figure 1: Threshold based methods.

The basic idea of the Incremental Growing Neural

Gas algorithm (IGNG) (Prudent and Ennaji, 2005) is
that the decision of whether a new coming data-point
x is close enough to its nearest neurons is made ac-
cording to a fixed distance threshold value T (Figure
1(a)). Nevertheless, the main drawback of this ap-
proach is that the threshold T is globally the same for
all neurons and must be provided as a parameter prior
to the learning. There is no way to know beforehand
which value is convenient for T , especially in a con-
figuration where the whole dataset is not available.

I2GNG (Hamza et al., 2008) is an improved ver-
sion of IGNG where each neuron y has its own lo-
cal threshold value (Figure 1(b)) which is continu-
ously adapted during learning. If there is currently
no data-point assigned to a neuron y, then its associ-
ated threshold is a default value T which is an input
parameter given manually as in IGNG; otherwise, the
threshold is defined as d̄ +as, where d̄ is the mean
distance of y to its currently assigned data-points, s is
the corresponding standard deviation, and a a param-
eter. Choosing ”good” values for parameters T and a

is important since the evolution of the threshold will
strongly depends on them. This clearly makes sys-
tems using such an algorithm dependent on an expert
user and gives less emphasis to its incremental nature.

In the Self-Organizing Incremental Neural Net-
work (SOINN) (Shen et al., 2007), the threshold of a
given neuron y is defined as the maximum distance of
neuron y to its current neighbours if they exist, other-
wise it is the distance of y to its nearest neuron among
the existing ones (Figure 1(c)). SOINN’s threshold
is often more sensitive to the creation order of neu-
rons (induced by the arrival order of data-points), es-
pecially in first steps. Furthermore, SOINN deletes
isolated neurons and neurons having only one neigh-
bour when the number of input data-points is a multi-
ple of a parameter l (a period).

Many other parameter-driven methods have been
designed especially for data stream clustering, among
this methods we can cite: Stream (O’Callaghan
et al., 2002), CluStream (Aggarwal et al., 2003) and
Density-Based clustering for data stream (Chen and
Tu, 2007).

There are several variants of Kmeans that are said
”incremental”. The one proposed in (Shindler et al.,
2011) is based on a cost of creation of cluster centers;
the higher it is, the fewer is the number of created
clusters. The cost is eventually incremented and the
cluster centers are re-evaluated. However, the algo-
rithm assumes that the size of the processed dataset is
known and finite.
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3 PROPOSED ALGORITHM
(AING)

In this section, we propose a scalable incremen-
tal clustering algorithm that is independent of sen-
sitive parameters, and dynamically creates neurons
and edges between them as data come. It is called
”AING” for Adaptive Incremental Neural Gas.

3.1 General Behaviour

The general schema of AING can be expressed ac-
cording to the following 3 cases. Let y1 and y2 re-
spectively be the nearest and the second nearest neu-
rons from a new data-point x, such that dist(y1;x) <
dist(y2;x).

1. if x is far enough from y1: a new neuron ynew is
created at x (Figure 2, 1st case).

2. if x is close enough to y1 but far enough from y2:
a new neuron ynew is created at x, and linked to y1
by a new edge (Figure 2, 2nd case).

3. if x is close enough to y1 and close enough to y2
(Figure 2, 3rd case):

� move y1 and its neighbouring neurons towards
x, i.e. modify their reference vectors to be less
distant from x.
� increase the age of y1’s edges
� link y1 to y2 by a new edge (reset its age to 0 if

it already exists)
� activate the neighbouring neurons of y1

� delete the old edges if any

An age in this context is simply a value associ-
ated to each existing edge. Each time a data-point x is
assigned to the winning neuron y1 (the 3rd case), the
age of edges emanating from this neuron is increased.
Each time a data-point x is close enough to neurons y1
and y2, the age of the edge linking this two neurons is
reset to 0. If the age of an edge continues to increase
without being reset, it will reaches a maximum age
value and the edge will be considered ”old” and thus
removed.

A data-point x is considered far (respectively
close) enough from a neuron y, if the distance be-
tween x and y is higher (respectively smaller) than a
threshold Ty. The following subsection shows how
this threshold is defined.

3.2 AING Distance Threshold

Since the input data distribution is unknown, we de-
fine a parameter-free adaptive threshold Ty which is

Figure 2: AING general cases.

local to each neuron. The idea is to make the thresh-
old Ty of a neuron y, dependent on the distances to
data in its neighbourhood. The neighbourhood of y
consists of data-points previously assigned to y (for
which y is the nearest neuron), and data-points as-
signed to the neighbouring neurons of y (neurons that
are linked to y by an edge).

According to formula 1, the threshold Ty of a neu-
ron y is defined as the sum of distances from y to its
data-points, plus the sum of weighted distances from
y to its neighbouring neurons1, averaged on the total
number of the considered distances. In the case where
the neuron y has no data-points that were already as-
signed to it (Xy is empty) and has no neighbour (Vy is
empty), then we consider the threshold Ty as the half
distance from y to its nearest neuron.

Ty =

8>><>>:
å

e2Xy
dist(y;e)+ å

e2Vy
jXej�dist(y;e)

jXyj+ å
e2Vy
jXej if Xy 6= /0_Vy 6= /0

dist(y;ỹ)
2 ; ỹ = argmin

ỹ6=y
dist(y; ỹ) otherwise

(1)

Figure 3: AING threshold definition.

Note that we do not need to save data-points that
are already seen in order to compute this threshold.

1The distance is weighted by the number of data-points
associated to the neighbouring neuron
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It is incrementally computed each time a new data-
point comes, by updating some information associ-
ated to each neuron (e.g. number of data-points as-
sociated to a neuron, the sum of their distances to
this neuron, etc.). If we consider the example of Fig-
ure 3, there are 3 data-points assigned to y1 (namely
x1, x2 and x3), and two neurons that are neighbours
of y1 (namely y2 with 4 assigned data-points, and
y3 with 5 data-points). In this case, the threshold
associated to the neuron y1 is computed as Ty1 =
dist(y1;x1)+dist(y1;x2)+dist(y1;x3)+4dist(y1;y2)+5dist(y1;y3)

3+4+5 .
As we can see, the proposed threshold is indepen-

dent of parameters and evolves dynamically accord-
ing to the data and the topology of neurons.

3.3 AING Merging Process

Since data is processed online, it is usually common
that algorithms for data stream clustering generate
many cluster representatives. However, this may sig-
nificantly compromise the computational efficiency
over time. Instead of introducing parameters in the
threshold computation to control the number of cre-
ated neurons, AING can eventually reduce the num-
ber of neurons through the merging process. Indeed,
when the number of current neurons reaches an up-
per bound (up bound), some close neurons can be
merged.

The merging process globally follows the same
scheme as previously, but instead of relying on a hard
rule based on a threshold, it uses a more relaxed rule
based on a probabilistic criterion. Saying that ”a neu-
ron y is far enough from its nearest neuron ỹ” is ex-
pressed as the probability that y will not be assigned
to ỹ, according to the formula Py;ỹ =

jXyj�dist(y;ỹ)
k

. This
probability is proportional to the distance between the
two neurons (dist(y; ỹ)) and to the number of data-
points assigned to y (jXyj), that is, the more y is large
and far from ỹ, the more likely it is to remain not
merged. The probability is in contrast inversely pro-
portional to a variable k, which means that by incre-
menting k, any given neuron y will have more chance
to be merged with its nearest neuron. Let d̄ be the
mean distance of all existing neurons to the center-of-
mass of the observed data-points. k is incremented by
k = k+ d̄ each time the neurons need to be more con-
densed, i.e. until the merging process takes effect and
the number of neurons becomes less than the specified
limit up bound. Note that Py;ỹ as specified may be
higher than 1 when k is not yet sufficiently big; a bet-
ter formulation would be Py;ỹ = min( jXyj�dist(y;ỹ)

k
;1),

to guarantee it to be always a true probability.
The merging process is optional. Indeed,

up bound can be set to +¥ if desired. Alterna-

tively, the merging process can be triggered at any
time chosen by the user, or by choosing the parame-
ter up bound according to some system requirements
such as the memory budget that we want to allocate
for the clustering task, or the maximum latency time
tolerated by the system due to a high number of neu-
rons.

Finally, the code is explicitly presented in Algo-
rithms 1 and 2, which provide an overall insight on
the AING’s method of operation. They both follow
the same scheme described in section 3.1. Algorithm
1 starts from scratch and incrementally processes each
data-point from the stream using the adaptive distance
threshold described in section 3.2. When the num-
ber of current neurons reaches a limit, Algorithm 2 is
called and some neurons are grouped together using
the probabilistic criterion described in section 3.3. We
just need to point out two additional details appearing
in our algorithms:

� If a data-point x is close enough to its two near-
est neurons y1 and y2, it is assigned to y1 and
the reference vector of this later and its neigh-
bours are updated (i.e. they move towards x) by
a learning rate: eb for y1 and en for its neighbours
(lines 15-17 of Algorithm 1). Generally, a too big
learning rate implies instability of neurons, while
a too small learning rate implies that neurons do
not learn enough from their assigned data. Typ-
ical values are 0 < eb � 1 and 0 < en � eb. In
AING, eb =

1
jXy1 j

is slowly decreasing proportion-
ally to the number of data-points associated to y1,
i.e. the more y1 learns, the more it becomes sta-
ble, and en is simply heuristically set to 100 times
smaller than the actual value of eb (i.e. en� eb)

� Each time a data-point is assigned to a winning
neuron y1, the age of edges emanating from this
neuron is increased (line 14 of Algorithm 1).
Let nmax the maximum number of data-points as-
signed to a neuron. A given edge is then consid-
ered ”old” and thus removed (line 19 of Algorithm
1) if its age becomes higher than nmax. Note that
this is not an externally-set parameter, it is the cur-
rent maximum number of data-points assigned to
a neuron among the existing ones.

4 EXPERIMENTAL EVALUATION

4.1 Experiments on Synthetic Data

In order to test AING’s behaviour, we perform an ex-
periment on artificial 2D data of 5 classes (Figure
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Algorithm 1: AING Algorithm (up bound).

1: init graph G with the two first coming data-points
2: k = 0
3: while some data-points remain unread do
4: get next data-point x, update d̄ accordingly
5: let y1, y2 the two nearest neurons from x in G
6: get Ty1 and Ty2 according to formula 1
7: if dist(x;wy1)> Ty1 then
8: G G[fynew=wynew = xg
9: else

10: if dist(x;wy2)> Ty2 then
11: G G[fynew=wynew = xg
12: connect ynew to y1 by an edge of age 0
13: else
14: increase the age of edges emanating

from y1
15: let eb =

1
jXy1 j

;en =
1

100�jXy1 j
16: wy1+= eb� (x�wy1)
17: wyn+= en� (x�wyn);8yn 2Vy1
18: connect y1 to y2 by an edge of age 0
19: remove old edges from G if any
20: end if
21: end if
22: while number of neurons in G > up bound do
23: k = k+ d̄
24: G Merging(k, G) . call Algorithm 2
25: end while
26: end while

4(a)) composed of a Gaussian cloud, a uniform dis-
tribution following different shapes, and some uni-
formly distributed random noise. Figure 4(b) and 4(c)
show the topology of neurons obtained without using
the merging process (up bound = +¥), whereas for
Figure 4(d) and 4(e), the merging process was also
considered. However, for Figure 4(b) and 4(d), the
data were given to AING class by class in order to
test the incremental behaviour of AING. The results
show that AING perfectly learns the topology of data
and confirms that it has good memory properties. On
the other hand, for Figure 4(c) and 4(e) the arrival or-
der of data was random. The results show that AING
performs well, even if the arrival order of data is ran-
dom.

4.2 Experiments on Real Datasets

We consider in our experimental evaluation, AING
with and without the merging process2, some main
incremental neural clustering algorithms, and an ac-

2We will refer to AING without the merging process by
AING1, and to AING with the merging process by AING2

Algorithm 2: Merging (k, G).

1: init G̃ with two neurons chosen randomly from G
2: for all y 2 G do
3: let ỹ1, ỹ2 the two nearest neurons from y in G̃
4: let d1 = dist(wy;wỹ1);d2 = dist(wy;wỹ2)

5: if random
uni f orm

([0;1])< min( ny�d1
k

;1) then

6: G̃ G̃[fỹnew=wỹnew = wyg
7: else
8: if random

uni f orm
([0;1])< min( ny�d2

k
;1) then

9: G̃ G̃[fỹnew=wỹnew = wyg
10: connect ỹnew to ỹ1 by an edge of age 0
11: else
12: increase age’s edges emanating from

ỹ1
13: Let eb =

1
jXỹ1 j

;en =
1

100�jXỹ1 j
14: wỹ1+= eb� (wy�wỹ1)
15: wỹn+= en� (wy�wỹn);8ỹn 2Vỹ1
16: connect ỹ1 to ỹ2 by an edge of age 0
17: remove old edges from G̃ if any
18: end if
19: end if
20: end for
21: return G̃

curate incremental Kmeans (Shindler et al., 2011) as
a reference in comparing the results.

We consider a total of six datasets of different
size and dimensions. Three standard public hand-
written digit datasets (i.e. Pendigit and Optdigit from
the UCI repository (Frank and Asuncion, 2010), and
Mnist dataset (LeCun Yann, 2010)), and three dif-
ferent datasets of documents represented as bag of
words, taken from a real administrative documents
processing chain:

� Pendigit: 7494 data for learning, 3498 data for testing,
17 dimensions, 10 classes.

� Optdigit: 3823 data for learning, 1797 for testing, 65
dimensions, 10 classes.

� Mnist: 60000 data for learning, 10000 for testing, 784
dimensions, 10 classes.

� 1st documentary dataset: 1554 data for learning, 777
for testing, 272 dimensions, 143 classes.

� 2nd documentary dataset. 2630 data for learning, 1315
for testing, 278 dimensions, 24 classes.

� 3rd documentary dataset. 3564 data for learning, 1780
for testing, 293 dimensions, 25 classes.

In addition to the number of produced representa-
tives and the number of required parameters, we con-
sider as evaluation measures the recognition rate (R)
and the v-measure (V) (Rosenberg and Hirschberg,
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Figure 4: The built topology of activated neurons, with and
without the merging process.

2007). Basically, v-measure is an entropy-based mea-
sure which expresses the compromise between ho-
mogeneity and completeness of the produced clus-
ters and gives an idea about the ability to generalize
to future data. Indeed, according to (Rosenberg and
Hirschberg, 2007), it is important that clusters contain
only data-points which are members of a single class
(perfect homogeneity), but it is also important that all
the data-points that are members of a given class are
elements of the same cluster (perfect completeness).

For each algorithm, we repeat many experiments
by slightly varying the parameter values needed by
each of them. We finally keep the parameter values
matching the best clustering results according to the
considered evaluation measures.

The results obtained on the 3 first datasets
are shown in Table 1, where AING1 (respectively
AING2) refers to AING without (respectively with)
the merging process. From table 1 we see that con-
cerning the 1st dataset, Kmeans achieves a better
v-measure, and maintains fewer representatives, but
does not reach a recognition rate which is compara-
ble to the other algorithms. Although AING1 (with-
out the merging process) is independent of external
parameters, it realises almost the same recognition
rate and v-measure as SOINN and I2GNG. AING2
(with the merging process) produces fewer neurons
and the recognition rate as well as the v-measure
are improved further. Concerning the 2nd dataset
(Optdigit), AING1 realises the greatest performances.

Table 1: Validation on public standard datasets (R = Recog-
nition rate, V = V-Measure, Params = Number of parame-
ters).

Method Neurons R % V % Params
Pendigit dataset

AING1 1943 97.427 52.538 0
AING2 1403 97.827 53.624 1
Kmeans 1172 97.055 54.907 3
SOINN 1496 97.341 52.222 3
I2GNG 2215 97.541 52.445 4

Optdigit dataset
Method Neurons R % V % Params
AING1 1371 97.718 54.991 0
AING2 825 97.440 55.852 1
Kmeans 1396 97.495 52.899 3
SOINN 1182 96.82 53.152 3
I2GNG 1595 97.161 53.555 4

Mnist dataset
Method Neurons R % V % Params
AING1 3606 94.06 45.258 0
AING2 2027 94.21 46.959 1
Kmeans 2829 94.04 45.352 3
SOINN 2354 93.95 44.293 3
I2GNG 5525 94.10 43.391 4

Table 2: Validation on datasets of administrative documents
(R = Recognition rate, V = V-Measure, Params = Number
of parameters).

1st documentary dataset
Method Neurons R % V % Params
AING1 1030 91.505 87.751 0
Kmeans 1013 90.862 86.565 3
SOINN 1045 88.545 87.375 3
I2GNG 1367 91.119 86.273 4

2nd documentary dataset
Method Neurons R % V % Params
AING1 1215 98.251 57.173 0
Kmeans 1720 98.098 53.966 3
SOINN 1650 97.338 55.124 3
I2GNG 1846 98.403 54.782 4

3rd documentary dataset
Method Neurons R % V % Params
AING1 2279 91.685 60.922 0
Kmeans 2027 91.179 60.192 3
SOINN 2437 88.707 61.048 3
I2GNG 2618 90.393 60.954 4

With AING2, the number of neurons is consider-
ably reduced and a better compromise between ho-
mogeneity and completeness is achieved. The recog-
nition rate is a little worse than the AING1, but still
very close to the highest rate obtained by the other
algorithms. Concerning the Mnist dataset, AING2
achieved the best performances.

Table 2 shows the results obtained on the docu-
mentary datasets. AING is used without the merging
process (AING1) because the datasets are not very
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large (up bound is just omitted by setting its value
to +¥). Roughly, we can make the same conclusions
as with the previous datasets. AING1 performs well,
although it does not require other pre-defined param-
eters.

Figure 5: The recognition rate achieved by AING according
to the parameter up bound (for the Pendigit dataset).

Figure 5 shows how the recognition rate changes
with changing values of the upper bound parameter
(up bound) for the first dataset. We can observe that
for all values greater than or equal to 600 (i.e. most
reasonable values that up bound can take), the recog-
nition rate is in [97;98] (i.e. around the same value).
Note that for two experiments with a fixed value of
up bound, the result may slightly be different since
the merging process is probabilistic. Furthermore,
the maximum number of neurons that can be gen-
erated for this example is 1943, thus, for values of
up bound in [1943;+¥[, the merging process does not
take place and AING2 performs exactly like AING1
(i.e. for AING on the Pendigit dataset 8up bound 2
[1943;+¥[: R = 97:4271%).

Furthermore, the time required to incrementally
integrate one data-point is strongly related to the cur-
rent number of neurons because the search for the
nearest neurons from a new data-point is the most
consuming operation. Figure 6 shows that AING is
more convenient for a long-life learning task since it
maintains a better processing time than the other al-
gorithms over long periods of time learning, thanks
to the merging process. The overall running time for
the Mnist dataset (i.e. required for all the 60000 data-
points) is 1:83 hours for AING, 2:57 hours for SOINN
and 4:49 hours for I2GNG.

5 CONCLUSIONS AND FUTURE
WORK

This paper presents an incremental clustering method
which incrementally processes data from the data

Figure 6: The average time (in milliseconds) required to in-
crementally integrate one data-point (for the Mnist dataset).

stream, without being sensitive to initialization pa-
rameters. It initially decides whether a new data-
point should produce a new cluster representative by
means of a parameter-free adaptive threshold asso-
ciated to each existing representative, and evolving
dynamically according to the data and the topology
of neurons. Some representatives may eventually
be assigned to others by means of a distance-based
probabilistic criterion each time their number exceed
a specified limit; thus, maintaining a better clusters
completeness, and preserving time and memory re-
sources.

Nonetheless, further work still needs to be done.
One of our directions for future work is to provide
some theoretical worst-case bounds on memory and
time requirement, and allow the algorithm to auto-
matically determine an appropriate upper bound for
the number of representatives; this will allow AING
to perform a long-life learning. Then, we want to inte-
grate the algorithm in a case-based reasoning system
for document analysis, whose case-base will be con-
tinuously maintained by the AING algorithm.
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