
An Interface Agent for the Management of COTS-based User Interfaces

Jose F. Sobrino, Javier Criado, Jesus Vallecillos, Nicolas Padilla and Luis Iribarne
Applied Computer Group, University of Almeria, Almeria, Spain

Keywords: Interface Agents, Component, User Interfaces, Widgets, Interaction.

Abstract: The great development of the knowledge society on the Internet requires that Web information systems are
adapted at runtime to user groups with common interests. Interface agents help us to observe and learn from
user preferences making interfaces adaptable to user working habits. We propose an interface agent which
works on Web interface based on COTS components, adapting the interface to the user needs or preferences.
Our agent runs two main behaviors: observation behavior which analyses the user interaction on the interface
and a second behavior which runs the adaptation actions to adapt the user interface at runtime.

1 INTRODUCTION

Due to the rapid expansion of the information and
knowledge society on the Internet, Web-based Infor-
mation Systems (WIS) must be prepared to be easily
adaptable, extensible, accessible and manageable at
runtime by different people with common interests.
In this type of system is important to have interfaces
that facilitate human-computer interaction, promoting
the dynamism design of components adapted to the
users habits and the development of their work. In-
terface agents have become a technology widely used
in the development of interfaces adapted to the user
needs. Such agents have the ability to observe and
learn from the preferences and work habits to provide
an UI adaptation. Our interface agent works on Web-
UI based onCommercial Off-The Shelf(COTS) in-
terface components ofwidgets-type. These interfaces
offer a great versatility and adaptability making the
adaptation an easy process for the interface agent.

Our research proposes an interface agent that
looking over the shoulderof the user (Maes, 1994),
collecting each event or action that user performs on
the components and executing changes in the inter-
face model. Each action performed on a compo-
nent by user is interpreted and classified by the inter-
face agent, deciding whether the action changes the
model. These changes involve an adaptation process.
The adaptation process is not performed by interface
agent, but this is done within aadaptation enginede-
scribed in (Rodriguez-Gracia et al., 2012a) and (Cri-
ado et al., 2012). This article does not detail this en-
gine, limiting us to use its input/output. After obtain-

ing the adaptation actions that provides the adapta-
tion engine, our interface agent makes the changes on
the interface. This type of interface agent that helps
to adapt and evolve interfaces is very useful, since it
shows to user a friendlier interface when performs his
tasks. The use ofwidgetscomponents gives us a lot
of dynamism in interface design due to encapsulation
of functionalities and properties.

The rest of the paper is structured as follows. Sec-
tion 2 describes the type of user interface where our
interface agent works. Section 3 details the two main
behavior of user interface. Section 4 gives some re-
lated work. Finally, in Section 5 describes some con-
clusions and future works.

2 PREVIOUS SCENARIO

In a world more and more interconnected, the Web
interfaces should be flexible and are prepared for an
easy adaptation to the new type of users that work on
the Internet. However today, Web interfaces are be-
ing built statically based on traditional Web develop-
ment paradigms. We propose to build a Web interface
with self-contained visual components, interchange-
able and modifiable, varying its appearance or prop-
erties at runtime, depending of the user interaction
on the components. We assume that there is an UI
components market (Heineman and Councill, 2001)
(Lau, 2004) that we use as source of our compo-
nents. These components are stored in public repos-
itories, being prepared to be assembled and put into

397Sobrino J., Criado J., Vallecillos J., Padilla N. and Iribarne L..
An Interface Agent for the Management of COTS-based User Interfaces.
DOI: 10.5220/0004257903970402
In Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART-2013), pages 397-402
ISBN: 978-989-8565-38-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



operation. These interfaces are increasingly prolifer-
ating in interface typessmartsfor phones and smart
TV, which are other particular interface where our ap-
proach can also be applied.

Our Web interface bases on the composition at
runtime ofwidgets-type interface components, offer-
ing the possibility of reorganize the composition of
the interface at runtime without losing functionality.
The components are organized at the interface with
a predetermined pattern that will be adapted with the
user interaction. Figure 1(a) shows a interface model
that represents this concept. Each component of the
model can change its visual appearance or disposition
within the interface, or even to be replaced by another
component with different characteristics.

In Figure 1(b), we show a example of Web
interface for the environmental management about
a project of the regional government of Andalusia
(Spain) in order to get a Web intelligent agent, be-
ing our interface agent a first step forward. In this
Web interface prototype we can see six components.
The first that we can see is theHeader that is respon-
sible for controlling the access to the system. The
Geography Map visualizes the maps and the other
four components correspond to different checkboxs
to show data onGeography Map. Once detailed the
scenario where the interface agent works, we detail
the necessary behaviors to perform the interface adap-
tation.

(a) Model User Interface

(b) Real Prototipe User Interface

Figure 1: User Interface.

3 COTS-BASED INTERFACE
AGENT MODEL

In our system, the interface agent is responsible for
observing the user interactions with the interface and
implementing the necessary changes to adapt the in-
terface to the user needs. In Figure 2, we can see the
user interaction with the interface components per-
forming the tasks assigned. Our interface agentob-
servesthe actions sequences that executes the user on
the components (Section 3.1) and transforms them in
an observer model(Section 3.2). This model is the
input of theadaptation module, which makes the ap-
propriate adjustments depending on the user actions.
The result is a set ofadaptation actions(Section 3.3)
that the interface agent executes on the interface.

Figure 2: Interface Agent.

We will explain with more detail the UI adap-
tation at runtime in the Figure 3. The inter-
face agent observes the user interaction with the
Observe Interaction. In the next step,Manage
Interaction compiles all the user actions creat-
ing sequences of actions. These two steps are per-
formed continuously, storing these action sequences
in the Functional History (FH). TheIdentify
Plans module classifies the user actions stored in FH,
deleting the actions which do not represent changes
in the model.Create Observer Model is responsi-
ble for transforming the actions sequences performed
by the user in an observer model for the adapta-
tion module. When the adaptation module ends,

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

398



Figure 3: Interface Agent Behavior.

Get Adaptation Actions stores the adaptation ac-
tions and theManage Adaptation Actions com-
pletes the required fields in order to execute the
actions in the interface. TheApply Adaptation
Actions executes the actions and adapts the interface
components to the user actions. In the following sec-
tions we will explain each step with more detail.

3.1 User Interaction

Our interface agent operates as show in Figure 4, col-
lects each user interaction. We define ainput as a tu-
ple 〈e,ob j,comp〉 wheree is the observed event,obj
is the object on which was made the event andcomp
is the component. These inputs are analyzed inob-
servation moduleand are sent tointention detection
module. This module creates the user intention based
on the input information considering the component
and the event made. Anintention is represented by
a tuple〈e,ob j,comp, int〉, wheree, obj, compare el-
ements inherited to observation module andint is the
intention may be created of inputs. Each intention is
sent tocreate action modulewhich determines the ac-
tion based on the user intention and stores this action
in theFunctional History (FH). This module defines
anaction as a pair〈n,comp〉 wheren is the name of
the action andcompis the component which performs
the action. The process returns cyclically to observa-
tion module completing a cycle.

A possible example would be to execute the nec-
essary actions to display the information in an area of
theGeography Mapcomponent (sequence (1)).

Observation

IntentionDetection

CreateAction

Inputs

Intention

Plan
FH

Actions

ObservationLoop

StoreActions

Figure 4: Interaction Basic Process.

input = 〈Click, Layer, Map〉
input = 〈Move, Layer, Map〉
input = 〈DblClick, Layer, Map〉

(1)

We suppose that the user moves the mouse to the
position where wants to consult, makingclick at an
upper point of sector andmovingto the other point
selecting an area. Then the user makesdobleclickin
the center of the selected area showing the necessary
information for the user. Then the intention detection
module examines each input and builds the following
intentions:

intention = 〈Click, Layer, Map, Click〉
intention = 〈Move, Layer, Map, Select〉
intention = 〈DblClick, Layer, Map, Action〉

(2)
These intentions are studied and turned in actions:

action = 〈ClickLayer, Map〉
action = 〈SelectLayer, Map〉
action = 〈ShowIn f o, Map〉

(3)

These actions are orderly stored in the FH. Aplan
is represented by a tuple〈p,comp,Ap〉 wherep is the
name of the plan,compis the name of the associated
component andAp is an ordered set of necessary ac-
tions to carry out the plan. Each component has as-
sociated a set of plans which are defined during the
development of the components in period of software
engineering. The sequence (3) belongs to a plan asso-
ciated to theGeography Mapcomponent. A sequence
of actions is determined by one of the following cases:
the collection of actions appears in the plan, the col-
lection of actions corresponds to the entire plan or an
action does not appear any time within the plan.

The system must allow to segment and classify all
actions included in FH. The partition algorithm is de-
scribed in the Table 1.

An�Interface�Agent�for�the�Management�of�COTS-based�User�Interfaces

399



Table 1: Partition Algorithm Pseudocode.

process PartitionActions

1: for all a in FH do
2: if a.comp is contained in COTSGUIthen
3: for all Pj in COTS.PL do
4: if a = Pj [1] then
5: ADD a in Pt

6: if Pj = Pt then
7: return Pt

8: else
9: REMOVE a to Pj
10: PartitionActionIn(FH ,Pj ,Pt )

11: if Pj = Pt then
12: return Pt

13: else
14: return Pt = /0
15: end if
16: end if
17: end if
18: end for
19: end if
20: end for

process PartitionActionIn

1: for all ai in FH do
2: for all aj in Pj do
3: if ai = aj then
4: ADD ai in Pt

5: else
6: return Pt = /0
7: end if
8: end for
9: if Pj = Pt then
10: return Pt

11: else
12: return Pt = /0
13: end if
14: end for

If we examine our algorithm, each actiona is ob-
tained from theFH queue and is never considered any
more. Then it checks the component where the action
has been executed in the set of components (COTS-
GUI) from GUI. This component (COTS) returns all
associated plans (COTS.PL) and it checks if it corre-
sponds to the first actions sequence that forms a plan
of actions (Pj ). If the actiona corresponds to the first
action of a plan, this action is added to a temporal plan
Pt . If the plan has an action of sequence, the algorithm
finishes returning the executed plan. If the plan has
two actions or more, the algorithm uses thePartition-
ActionInalgorithm. This algorithm tries to complete
the actions sequence included in the selected plan.
That is, the algorithm goes straight on checking the
actions obtained fromFH until completing the plan.
If at any time, the action obtained fromFH does not
match with the action to be executed, then the algo-
rithm finishes returning an empty plan. If the actions
sequence obtained fromFH matches perfectly with
the sequence of the plan, the algorithm returns the ex-
ecuted plan.

For example, we display the information in a
sector of Geography Mapcomponent. We de-
fine an actionai j where i is the number asso-
ciated with the component plan andj is the se-
quence of actions of each plan. We suppose that
in FH stores the following collection of actions
{a11, a21, a71, a22, a23, a72, a31, a32, a33}, where
{a31, a32, a33} are the actions of example:

a31 = 〈ClickLayer, Map〉
a32 = 〈SelectLayer, Map〉
a33 = 〈ShowIn f o, Map〉

(4)

We suppose that all actions have been carried out
on a component which only has three associated plans
(PL1, PL2, PL3) wherePL3 is the corresponding to
the previous example. When the algorithm is per-
formed, the action{a11} is associated toPL1. The
sequence{a21, a71} does not match thePL2 since
{a71} is not an action of the selected component.
{a22, a23} does not correspond with the beginning
of a plan component.{a31, a32, a33} corresponds
to PL3. PL1, PL3 are plans component.{a72} is an
action that does not belong to any plans. Using the
partition algorithm, we get an effective segmentation.
The sequence{a72} would be checked if it belongs to
some other plans, being discarded at the end. Once
the interface agent has identified a plan, it generates
a model that is sent to theadaptation engine. This
process is described below.

3.2 Observer Model

In order to develop a right adaptation, it is also neces-
sary to get other elements of the UI proposed by (Cri-
ado et al., 2012) and observing system requirements
that are described in (Troya et al., 2010). All these
variables make up our observer meta-models showed
in Figure 5, which shows the meta-model of the re-
lationship between observed actions and monitored
context variables. This meta-model is required by the
adaptation module. This defines three types of ob-
servers:ComponentObserver, ObserverObserver
andContextObserver. The first type monitors vari-
ables of the components on the system. The second
type provides information about other observers, and
the third is responsible for observing the context vari-
ables. We add a newComponentObservercompleting
the observation of the user interaction (inputs), which
is represented byPlanObserver. The observation of
these types ofobservergives a complete view of ev-
erything that happens in the graphic user interface.

This article will not detail the adaptation opera-
tion. For a more detailed we suggest the reading of
(Criado et al., 2012) and (Rodriguez-Gracia et al.,

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

400



Figure 5: Observer Meta-model.

2012b). We will send created observer model toadap-
tation moduleand will return a set of adaptation ac-
tions that the interface agent interprets and executes in
the Web interface. In the next section we will detail
these adaptation actions.

3.3 Adaptation Actions

When theadaptationmodule finishes, the interface
agent receives the adaptation actions that uses to carry
out the adaptation of the UI. The Figure 6 shows the
adaptation actions meta-model.

Figure 6: Adaptation Actions Meta-model.

As we can see there are four types of adaptation
actions, Insert, Delete, Replaceand Modify. The
adaptation action element has as main attribute the
component ID which executes the action. Each of
one of these adaptation actions are performed under
a certain order. It also checks that all adaptation ac-
tions complete each adaptation action with specific at-
tributes of Web environment. Each of one of the adap-
tation actions are converted by the interface agent to
Web specific language in order to be executed directly
on the interface.

In the table 2 we can see an adaptation action in
XML that modifies theGeography Mapcomponent.
Each component is identified by its ID. This operation
changes the frame size of the component executing
the new conditions of the user action. It is executed
directly by the interface agent at runtime, modifying

Table 2: Adaptation Actions.

Action Modi f yAction

< widget id= ”map01258”operation= ”modi f y” >
< closePosition value= ” relative”/>
< closeTop value= ” −22px”/ >
< closeLe f t value= ”208px”/ >
< height value= ”100px”/ >
< i f rameHeight value= ”100px”/ >
< i f rameWidth value= ”100px”/ >
< width value= ”230px”/ >

< /widget>

the visual appearance of the UI without the interven-
tion of the user.

4 RELATED WORK

Some approaches take into account variables associ-
ated with the actions as (Maes, 1994) (Brown et al.,
1998). The main problem with this approach is that it
ignores the user tasks and that the values of variables
are pre-fixed. There are studies that attempt to predict
the user intentions with non-probabilistic methods us-
ing logical methods as (Kautz et al., 1991) (Goulti-
aeva, 2006). This approach can not decide what mea-
sure the evidence supports the hypothesis particular
user intention. Other works like (Mott et al., 2006)
(Charniak and Goldman, 1991) use n-gram models
and Bayesian networks to probabilistically improve
the prediction of user intentions.

Another approach to interface agents to consider
is to control the design and creation of UI. SurfAgent
(Somlo and Howe, 2003) is an information agent that
builds a user profile by using examples provided by
the user documentation. (Li, 2009) is a method of
constructing UI based on a model agent typeModel-
View-Controllershowing the pattern design and de-
velopment method of UI based on agents an infor-
mation retrieval system. (da Silva et al., 2000) de-
scribes the solutions offered by a mobile agent sys-
tem (AgentSpace) showing two complementary ways
to create UI with the mobile agent. (Arias and Dal-
trini, 1996) shows a framework for the conceptual and
detailed design of the UI that helps people involved in
the task of designing the UI, helping to create a cus-
tom interface. All these papers are focused on the
design and control of interfaces, but do not take into
account the user interaction.

5 CONCLUSIONS AND FUTURE
WORK

Our paper presents an interface agent that observes to

An�Interface�Agent�for�the�Management�of�COTS-based�User�Interfaces

401



the user, collecting all events and actions performed
on the widget-type interface component, and pro-
motes changes in the interface model, making that
the interface evolves and adapts to the characteristics
and needs of the user work. We have shown the pro-
cess to obtain the user actions in form of plans and
how the interface agent creates an observer model.
This observer model is sent to the adaptation engine
that generates a set of adaptation actions to change
the interface. Our interface agent completes and ex-
ecutes these adaptation actions transparently, making
that the interface is adapted to the actions performed
by the user. Our interface agent combines capabil-
ities and other features of interface agents, allowing
to obtain the user intention based on the interaction
among components, and at the same time is capable
of changing the visual appearance of the interface as
a result of the user interaction.

Finally, we are working to provide the system with
social features through user groups, adding to the sys-
tem abilities to work with multiple users in a cooper-
ative manner, showing different interfaces to different
users who are doing work cooperatively.

ACKNOWLEDGEMENTS

This work has been supported by the project JUNTA
ANDALUCIA (proyecto de excelencia) TIC-6114,
and the EU (FEDER) and the Spanish Ministry
MINECO under grant of the projects TIN2010-15588
and TRA2009-0309 and Ingenieros Alborada IDi.

REFERENCES

Arias, C. and Daltrini, B. (1996). A multi-agent environ-
ment for user interface design. InEUROMICRO 96.
’Beyond 2000: Hardware and Software Design Strate-
gies’., Proceedings of the 22nd EUROMICRO Confer-
ence, pages 242 –247.

Brown, S. M., Santos, Jr., E., Banks, S. B., and Oxley,
M. E. (1998). Using explicit requirements and met-
rics for interface agent user model correction. InPro-
ceedings of the second international conference on
Autonomous agents, AGENTS ’98, pages 1–7, New
York, NY, USA. ACM.

Charniak, E. and Goldman, R. (1991). A probabilistic
model of plan recognition. InProceedings of the ninth
National conference on Artificial intelligence - Volume
1, AAAI’91, pages 160–165. AAAI Press.

Criado, J., Iribarne, L., Padilla, N., Troya, J., and Valle-
cillo, A. (2012). An mde approach for runtime mon-
itoring and adapting component-based systems: Ap-
plication to wimp user interface architectures. In38th

Euromicro Conference on Software Engineering and
Advanced Applications.

da Silva, A., da Silva, M., and Romao, A. (2000). Web-
based agent applications: User interfaces and mobile
agents. volume 1774 ofLecture Notes In Computer
Science, pages 135–153. Springer-verlag Berlin. 7th
International Conference On Intelligence In Services
And Networks (is&n 2000), Athens, Greece, Feb 23-
25, 2000.

Goultiaeva, A. (2006). Incremental plan recognition in
an agent programming framework. InIn Cognitive
Robotics Workshop, pages 83–90.

Heineman, G. T. and Councill, W. T. (2001).Component-
based software engineering: putting the pieces to-
gether. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Kautz, H. A., Kautz, H. A., Pelavin, R. N., Tenenberg,
J. D., and Kaufmann, M. (1991). A formal theory of
plan recognition and its implementation. InReasoning
about Plans, pages 69–125. Morgan Kaufmann.

Lau, K.-K. (2004). Component-Based Software Develop-
ment: Case Studies. World Scientific Press.

Li, Y. (2009). Intelligent user interface design based on
agent technology. In Tran, D. and Zhou, S., editors,
2009 WRI World Congress on Software Engineering,
Vol 1, Proceedings, pages 226–229. World Res Inst,
IEEE Computer Soc. World Congress on Software
Engineering, Xiamen, China, May 19-21, 2009.

Maes, P. (1994). Agents that reduce work and information
overload.Commun. ACM, 37(7):30–40.

Mott, B., Lee, S., and Lester, J. (2006). Probabilistic goal
recognition in interactive narrative environments. In
Proceedings of the 21st national conference on Arti-
ficial intelligence - Volume 1, AAAI’06, pages 187–
192. AAAI Press.

Rodriguez-Gracia, D., Criado, J., Iribarne, L., Padilla, N.,
and Vicente-Chicote, C. (2012a). Composing model
transformations at runtime: an approach for adapting
component-based user interfaces. InICSOFT 2012,
pages 261 – 226.

Rodriguez-Gracia, D., Criado, J., Iribarne, L., Padilla, N.,
and Vicente-Chicote, C. (2012b). Runtime adaptation
of architectural models: an approach for adapting user
interfaces. InLNCS 7602, pages 16 – 30.

Somlo, G. L. and Howe, A. E. (2003). Using web helper
agent profiles in query generation. InProceedings
of the second international joint conference on Au-
tonomous agents and multiagent systems, AAMAS
’03, pages 812–818, New York, NY, USA. ACM.

Troya, J., Rivera, J. E., and Vallecillo, A. (2010). On
the specification of non-functional properties of sys-
tems by observation. InProceedings of the 2009 in-
ternational conference on Models in Software Engi-
neering, MODELS’09, pages 296–309, Berlin, Hei-
delberg. Springer-Verlag.

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

402


