
Handling Exceptions in Multi Agent Systems using Learning Agents 

Mounira Bouzahzah1and Ramdane Maamri2 
1LIRE Laboratory, Science and Technologie Institute, University Center of Mila, Mila, Algeria 
2LIRE Laboratory, Computer Science departement, Mentouri University, Constantine, Algeria 

Keywords: Exception Handling, Learning Agents, Q Learning Algorithm, Reinforcement Learning, Hierarchical Plans. 

Abstract: In this paper we address the problem of exception handling in multi agent systems and we propose an 
approach based learning agents to provide fault tolerance in multi agent systems. In reality, agents systems 
are used as a perfect solution to design recent applications that are characterized by being decentralized and 
dispersed. These systems are subject of errors that occur during execution and that may cause system’s 
failure; Exceptions are the main cause of the system’s errors. Researchers in fault tolerance field use 
handling exceptions technique to provide error-prone systems. Through this work, we propose an approach 
for handling exception using learning agents; this approach assures the most efficient handler for each 
exception mainly in case of the existence of many handlers and allows the adaptation of decision according 
to the environment changes. The learning agent is given the capacity to learn about new exceptions from the 
extern. 

1 INTRODUCTION 

A critical challenge for fault tolerance researcher is 
to provide robust multi agent systems in terms of 
effectiveness and errors-prone. 

Several approaches are proposed to deal with 
exceptions in multi agent systems, some solutions 
are based on the use of additional agents such as 
(Hagg, 1996), (Anand and Robert, 2000) and 
(Bouzahzah and Maamri, 2012). 

(Platon, 2007) proposes the idea to give the 
system’s agents the ability to handle the exception 
by themselves. Other solutions use frameworks to 
handle exceptions in multi agent systems such as 
(Souchon and Christophe, 2002) and (Klein and 
Dellarocas, 1999). 

Our Approach assures exceptions handling in 
multi agent systems using a learning agent that 
applies a reinforcement learning algorithm (Rejeb, 
2005) called the Q learning algorithm (Hoet and 
Sabouret, 2009). this algorithm joins each 
undesirable state of the agent (error detected) with 
its efficient handler that is decided using agent 
previous experiences.  

This paper is organized as follows: the second 
section reviews the limitation of some existing 
approaches proposed to deal with the problem of 
exceptions in multi agent systems. The next section 

gives a detailed idea concerning agent’s 
representation, error detection and the 
communication protocol. The forth section defines 
the learning’s concepts and describes how learning 
agent is used to handle exceptions. The last section 
concludes this paper and gives indications 
concerning our future works. 

2 EXISTING APPROACHES 
AND THEIR LIMITATIONS 

Several approaches are proposed to solve the 
problem of errors in multi agent systems. Some 
approaches are based on decentralized solutions, 
which use of controlling agents to monitor the 
system’s agents and to handle exceptions such as: 

(Hagg, 1996) That describes an approach based 
sentinels. Sentinels are guardian agents introduced in 
the multi agent system application in order to 
provide a fault tolerance layer for the system. These 
guardian agents protect the system from failing in 
undesirable states. They have the authority to react 
to faults. (Anand and Robert, 2000) Introduce the 
concept of the supervisor which has the role of a 
handler for a group of system’s agents. He defines 
two types of exceptions: the internal exceptions that 

423Bouzahzah M. and Maamri R..
Handling Exceptions in Multi Agent Systems using Learning Agents.
DOI: 10.5220/0004263304230426
In Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART-2013), pages 423-426
ISBN: 978-989-8565-38-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



 

are treated by the agent itself and the external ones 
handled by the supervisor which has a global access 
to the agents that it supervises. 

These approaches are costly in terms of 
computation and communication and they cause 
point of failure since controlling agents, also, are 
subjects of fault. There are other approaches that 
treat the exception using a centralized solution. In 
this case, a framework is created to handle the 
different exceptions that occur in the system: 

The SaGE system described in (Souchon and 
Christophe, 2002) and (Kchir, 2010) gives more 
important to agents’ communications in terms in 
request/ response. An exception is treated by 
handlers that try to solve the problem locally, but if 
it is not the case the request will be returned toward 
the agent asking for it. Complex services that 
invocate other agents to solve a request use a 
concertation function. The approach proposed in 
(Klein and Dellarocas, 1999) uses a separate system 
called the exception handling service; this service is 
viewed as a coordination doctor that knows about 
the different cases to handle exception; exceptions, 
In this case, are considered as illness. 

These two approaches are effective in term of 
decreasing the charges; but they are not able to 
recognize if an exception has being handle in 
previous times or not which cause a great waste of 
time, and they cannot deal with new exceptions that 
are not existing in their knowledge bases. 

The next sections describe our new approach that 
tries to use learning agents to have the opportunity to 
handle exception according to thier experiences. 

3 AGENT EXECUTION MODEL 
AND ERROR DETECTION 

This section allows the definition of the agent’s 
model used by the approach proposed. 

3.1 Agent’s Model and Plans 

Representation. We use hierarchical plans 
(Bradley and Edmund, 1999) to model the agent’s 
activities. The hierarchical plans representation 
allows specifying different combinations of 
alternatives to accomplish a given goal with a 
particular context. A hierarchical plan identifies 
promising classes of long-term activities, and 
incrementally refines these classes to eventually 
converge in specific actions. 

The aim of our work is to develop a simple and a 

formal model that represents the agent’s activities 
and allows error detection in order to solve the 
problem of failure in multi-agent systems. 

Definition: 
A hierarchical plan P is defined in our model by a 
tuple (Pre (P), In (P), Post (p), type (P), sub plans 
(P), Order (P)): 
 Pre (p): set of conditions and data needed for the 
execution. 
 In (p): set of conditions that must be verified 
during the execution. 
 Post (P): denote the set of conditions verified and 
the data provided at the end of the execution. 
 The type of plan P type (P) can be: a simple plan 
(action), OR plan which is a hierarchical plan that is 
accomplished by carrying out one of its sub plans, 
AND plan is also a hierarchical plan that is 
accomplished by carrying out its entire sub plans. 
 Sub plans: is a set of plans. In case of simple 
plans the set of sub plans is empty. 
 Order (P) represents the order of execution of 
plan P. 

3.2 The Error Detection 

To determine that an error occurs at one point of 
time, we have to define to a new concept that is the 
execution. 

Definition: 
An execution of a plan P is an instance of 
decomposition and ordering of its sub plans' 
executions. The set E (P) represents the possible 
executions of a plan P. 

An execution e of P is recursively defined as a 
tuple <D (e), ts, tf, V (Pre (e), In (e), Post (e))>: 
 ts, tf are positive, non zero real numbers 
representing the start and finish times of execution e, 
and ts < tf. 
 D (e) is the set of sub plans executions 
representing the decomposition of plan P under this 
execution e. 
 V (Pre (e), In (e), Post (e)): a Boolean function 
that verify the previous conditions. It returns true if 
the execution succeeds and returns false if an error 
occurs. 
 

The agent has to compare the expected conditions 
that appear in his hierarchical plan with the real 
conditions that occur at the moment of execution; if 
all the conditions are verified then the action is 
executed with success otherwise an exception is 
detected. 

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

424



 

3.3 The Communication Protocol 

The agent has to communicate the learning agent 
and the other system’s agents using messages. The 
general model of messages in our approach has the 
following structure: 

M=<Send, Recept, C> 

 M represents the message or the communication 
protocol. 
 Send represents the code that identifies the agent 
who sends the message and who is searching for a 
handler for the detected exception. 
 Recept identifies the learning agent. 
 C represents the content of the message that may 
design an exception. 

 

The content of the message, in our work, represents 
the current state of the agent that may be the 
expected value of conditions and the resulting 
conditions. 
 

C=< (Pre (P), In (P), Post (p)), (Pre (e), In (e), Post 
(e))> 

4 LEARNING AGENT AND 
EXCEPTION HANDLING 

In reality, two types of learning can be used in multi- 
agent systems: 
 Individual learning occurs independently of other 
agents. It is taken into consideration only when all 
the elements of the learning process are executed by 
the same agent and requires no interaction with other 
agents.  
 Multi-agent learning requires the presence of 
other agents and their interaction (Watkins,1989). 

 

We consider the first type of learning in our model 
since we choose to have a centralized solution in 
order to decrease the charges. So, the learning agent 
is the one concerned by solving the exception 
signaled. 

4.1 The Learning Models 

The learning models are classified into two main 
categories: 
 Unconscious learning or reinforcement learning 
that occurs when the agent does not know what he is 
learning. It is a mechanism that operates 
automatically and continuously. 
 The conscious learning takes place when the 

agents are able to reflect on their actions and their 
consequences (Brenner, 2005). 

 

We are interesting to have a learning agent that can 
learn automatically and continuously, thus, we 
choose reinforcement learning model and we apply 
the Q learning algorithm known by being simple and 
gives clear results. 

4.2 Q Learning Algorithm 
and Exception 

Handling. Q-learning is a reinforcement learning 
technique that works by learning an action-value 
function that gives the expected utility of taking a 
given action in a given state and following a fixed 
policy thereafter. One of the strengths of Q-learning 
is that it is able to compare the expected utility of 
the available actions without requiring a model of 
the environment (Qlearning, Wikipedia). 

Concerning our approach the learning agent uses 
the Q learning algorithm in order to join the couple 
(exception, handler) and a value Q (exception, 
handler) that represents the reward or the 
effectiveness of the handler to solve this exception. 
So, this algorithm is based on the use of a function 
whose value is: 

Q: S x A         R 

 S is the set of the agent s states in other words it 
represents the set of errors or exception detected. 
When the learning agent receives the message 
concerning the exception it chooses the handlers that 
can be associated within this exception. 
 A represents the set of actions or handlers 
proposed to solve errors. 
 Q(s, a) this value represents the reward when 
using the handler a to solve the exception s. 
 

The agent can move from exception state to a 
normal one. Each state provides the agent a reward 
(a real or natural number). The goal of the agent is to 
maximize the reward. It does this by learning which 
action is optimal for each state. So, the best handler 
for an exception is the one whose reward is the 
maximum. 

Before learning has started, the learning agent 
is initialized by some handlers and the function Q 
returns a fixed value, chosen by the designer. Then, 
each time the agent is given a reward (the error is 
solved) new values are calculated for each 
combination of a state s from S, and action a from A. 

The core of the algorithm is a simple value 
iteration update. It assumes the old value and makes 
a correction based on the new information. The 

Handling�Exceptions�in�Multi�Agent�Systems�using�Learning�Agents

425



 

update of t h e  reward value is done according to the 
following formula: 

 

Qሺs, aሻ 	← ሺ1െ∝ tሺs, aሻሻQሺs, aሻ
∝ tሺs, aሻሾr  γmaxQሺsᇱ, aᇱሻሿ 

 

The goal of the Q learning algorithm is to build the 
reward function Q for each couple (s,a) according to 
the result given after the use of the handler a. αt has 
a value in [0,1] it refers to the learning rate.	
 is the actuel lisation factor, it allows the learning ߛ
agent to determinr the best reward. If the agent 
needs immediate rewards so the actual lisation factor 
must be near 0. 

4.3 The Learning Agent’s Memory 

The learning agent has to remember the historical 
value of rewards for each handler in order to choose 
the best handler in case where an exception appears 
for the second time. 

As we show in the previous paragraphs the Q 
learning algorithm builds its decisions depending on 
its perception of the system. But in our approach we 
need a decision that depends also on the agent’s 
historical experiences. As a solution we propose to 
use the learning agent memory that includes the past 
decisions about handlers. According to this idea the 
agent will be able to recognize an action that has 
appears in the past and choose its best handler. 
In case where the exception has reward =0 using all 
the available handlers. We give the learning agent 
the authority to ask for new solutions from the 
extern designer. The knowledge base will be 
extended and the new added solution will be treated 
as the initial ones. 

5 CONCLUSIONS AND FUTURE 
WORK 

Throughout this paper, we have proposed an 
effective approach for fault tolerance in multi-agent 
systems based on learning agent. We use a formal 
model for agent activities representation called 
hierarchical plans. It allows the detection of errors in 
a simple and automatic way. We choose Q learning 
algorithm to handle exceptions. Learning agent has 
the opportunity to handle exceptions according to his 
experiences; to choose the most effective handler in 
case where may handlers exist, and we give the 
agent the ability to learn from the extern in case of 
new exceptions. 

Finally, we are interested in validating this work 

through a simulation that can provide real results on 
the effectiveness of this approach and compare it 
with other approaches.  

REFERENCES 

Anand T. and Robert M., 2000. Exception Handling in 
Agent Oriented Systems, Springer-Verlag,  

Bouzahzah M. And Maamri R., 2012. A Proposed 
Architecture for a Fault Tolerant Multi Agents System 
Using Extern Agents, 6th International Conference, 
K.E.S.-A.M.S.T.A, proceedings Springer LNAI 7327pp 
282-289,  

Bradley J. C., Edmund H. D., 1999. Identifying and 
Resolving Conflicts among Agents with Hierarchical 
Plans, American Association for Artificial Intelligence. 

Brenner T., 2005. Handbook of Computational Economics 
Vol: 2. Agent-Based Computational Economics, 
(Handbooks in Economics Series),  

Hagg S., 1996. A Sentinel Approach to Fault Handling in 
Multi-Agent Systems. In: Proceedings of the Second 
Australian Workshop on Distributed AI, Cairns, 
Australia. 

Hoet S., and Sabouret N., 2009. Apprentissage par 
Reforcement d’acte de Communication Dans un 
Contexte Multi agents”, RJCIA.  

Kchir S., 2010. Gestion des Exceptions dans un Système 
Multi Agents avec Replication, Master2, Laboratoire 
d’Informatique, de Robotique et de Micro-
electronique, Montpellier. 

Klein M., Dellarocas C., 1999. Exception Handling in 
Agent Systems, Antonymous agents, USA. 

REJEB L., 2005. Simulation Multi agents des Modèles 
Economiques Vers des Systèmes Multi Agent 
Adaptatif’’, Reims Champagne-Ardennes University. 

Platon E., 2007. Modeling Exception Management in 
Multi Agent Systems, Doctorate thesis, department of 
informatics, the graduate university for advanced 
studies.  

Souchon F., Christophe D., Christelle U., Sylvain V.,and 
Jacques F., 2002. SaGE: une proposition pour la 
gestion des exceptions dans les system multi agents, 
Internal repport-LIRMM-02205,  

Q-learning –Wikipedia, the free encyclopaedia: 
http://en.wikipedia.org/wiki/Q-learning 

Watkins C. J. C. H., 1989. Learning from delayed 
rewards, PhD thesis, Cambridge University, 
Cambridge, United Kingdom. 

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

426


