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Abstract: Motivated by high oil prices, several large fleet companies initiated future plans to hybridize their fleets to 
establish immunity for their optimized business models against severe oil price fluctuations, and adhere to 
increasing awareness of environmentally-friendly solutions. The hybridization projects increased 
maintenance costs especially for highly costly and degradable components such as Li-ion batteries. This 
paper introduces a degradation-based resource allocation policy to optimally utilize batteries on fleet level. 
The policy, denoted as Degradation-based Optimal Swapping Policy, incorporates optimal implementation 
of swapping and substitution actions throughout a plan of finite time horizon to minimize projected 
maintenance costs. The swapping action refers to the inter-change in the placement of two batteries within a 
fleet. The substitution action refers to the replacement of degraded batteries with new ones. The policy takes 
advantage of the different degradation rates in the batteries health states; due to different loading conditions; 
achieving optimal placement at different time intervals throughout the plan horizon. A mathematical model 
for the policy is provided. The optimization of the generated model is studied through several algorithms. 
Numerical results for sample problems are shown to illustrate the capability of the proposed policy in 
establishing substantial savings in the projected maintenance costs compared to other policies. 

1 INTRODUCTION 

While Oil prices throughout the last decades have 
undergone significant increases, transportation still 
in general relies on it for 97% of its energy. It 
becomes significantly harder for companies and 
corporations with large fleets to maintain their 
preferred higher profit margins. Therefore, many of 
these fleet companies were highly motivated to 
reduce their annual fuel consumption which reflects 
on millions of dollars in savings. Additionally, 
environmentally friendly technologies have attracted 
large companies and corporations who benefit from 
both commercial advertisement of endorsing such 
technologies and established savings. For example, 
Wal-Mart has set a goal of doubling the fleet 
efficiency by 2015 from a 2005 baseline. One aspect 
of these plans has included the consideration of 
hybridizing fleets to enhance the fuel economy. Both 
FedEx and UPS have as well endorsed hybridizing 
parts of their fleets. Environmentally conscious 
cities, schools and universities (e.g. University of 
Michigan) have as well introduced hybrid-electric

buses into their fleets. 
In a hybrid system, batteries have the most 

significant share of the total cost of the hybrid 
system. These components degrade to a point where 
substitution with new ones becomes inevitable. The 
substitution action here is defined as the replacement 
of the degraded battery with a new one. The limited 
battery useful life motivates the consideration of 
maintenance plans which can incorporate a 
predictive scheme of batteries health states. This 
plan will reduce the projected battery maintenance 
costs and ensure less abruptly interrupted daily task 
assignment to these hybrid vehicles. Fair prediction 
of the battery degradation within commercial fleets 
is attainable due to the consistency in the expected 
work load. For example, in a fleet of delivery trucks, 
the batteries in hybrid vehicles assigned to 
Downtown area routes are most likely subjected to 
larger frequencies of micro charging and discharging 
cycles in comparison to those within vehicles 
assigned to the suburbs. This reflects significantly 
on the degradation rate of these batteries. This 
consistency can help a predictive maintenance 
policy to optimally utilize all the batteries on fleet 
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level. To achieve this, a uniquely formulated policy, 
designated as Degradation-based Optimal Swapping 
(DBOS) policy, is proposed in this paper. 

In most current companies which run hybrid 
vehicles in their fleets, batteries are used until they 
reach retirement. However, swapping batteries 
within their fleet can achieve a reduction in the 
projected cost of the maintenance plans. The 
swapping action here is defined as the inter-change 
in the placement of two batteries from two different 
loading (degradation) profiles. This swapping policy 
relies on the prediction of the different degradation 
rates which is attributed mainly to the loading and 
usage conditions. The prediction of such degradation 
level introduces a potential to conduct swapping 
actions among batteries and to control the timing of 
the end of life for these batteries, where substitution 
becomes inevitable. One direct impact of this is 
providing substantial savings in projected 
maintenance costs as a result of the application of 
such policy. Additionally, this policy has the 
potential to provide an integration between 
maintenance actions and the company's daily 
operations (integration of maintenance and 
logistics). This enables a sustainable management of 
the costly hybrid fleet asset. Additionally, the 
information obtained throughout the policy can be 
invested to build up a database of retired batteries in 
terms of their conditions and predicted date of 
retirement. This database can significantly improve 
the success of the retired batteries remanufacturing 
schemes, already implemented in several OEMs. 
The remanufacturing helps both reduce the 
environmental impact resulting from the disposal of 
such batteries and promotes the use of cheap second-
hand hybrid technologies. 

The research in this paper includes the 
development of the model to describe the policy in 
its general form and the investigation of suitable 
approaches to achieve the optimum solution. The 
remainder of this paper is organized as follows. 
Section 2 will review relevant research work. 
Section 3 will focus on modeling the policy in a 
comprehensive mathematical model which accounts 
for all the decision variables necessary to apply the 
policy. The solution to the generated model 
including the development of a policy-specific 
optimization algorithm will be the focus of Section 
4. 

2 LITERATURE REVIEW 

This problem can be categorized under the planning 

and scheduling optimization, as the generated output 
could be in the form of a schedule of different 
placements for the batteries within the fleet. Both 
planning and scheduling deal with the allocation of 
available resources over time to perform a collection 
of tasks. The difference between planning and 
scheduling is not always clear cut (Grossmann et al., 
2002). However, in general planning deals with 
longer time horizons (e.g. weeks, few months) and it 
deals with high level decisions such as investment in 
new facilities and production levels. Scheduling on 
the other hand is concerned with shorter time 
horizons (e.g. days, few weeks) with the emphasis 
often being on the lower level decisions such as 
sequencing of operations. Although the expected 
outcome decisions from the DBOS policy are low 
level decisions such as the change of the placement 
of a battery, DBOS is intended to be part of a long 
maintenance plan horizon. Therefore the policy can 
be classified under either scheduling or planning.  

DBOS model is expected to partially share the 
form of one of the most famous scheduling problems 
which is globally known as the fleet assignment 
problem in transportation science. Given a flight 
schedule and a set of aircraft of different types, the 
fleet assignment problem faced by an airline is to 
determine which type of aircraft should fly each 
flight segment on the airline’s daily (or weekly) 
schedule (Bertsimas and Tsitsiklis, 1997). The 
similarity between these two problems mainly arises 
in the placement decision variable; chosen to be 
binary in many cases; this variable holds the key to 
optimize the objective function. In the fleet 
assignment problem, there are several factors 
considered in assigning a fleet to a flight leg. These 
factors include passenger demand, revenue, seating 
capacity, fuel costs, crew size, availability of 
maintenance at arrival and departure stations, gate 
availability, and aircraft noise. Many of these factors 
are captured in the objective coefficient of the 
decision variable; others are captured by constraints 
(Hane et al., 1995). On a similar basis, modelling the 
problem for the DBOS policy is intended to take into 
account several factors, such as degradation profiles, 
demand, health states tracking, maintenance 
capabilities and costs associated with the swapping 
and substitution actions. However, there are several 
important differences between the two problems 
such as the substitution variables (reset variables) 
needed for DBOS to function properly. The 
substitution variables interaction with the placement 
variables and their major contribution in the 
objective function uniquely characterizes DBOS. 

The fleet assignment problem has been studied 
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by numerous researchers. The daily scheduling of 
the fleet assignment problem formulation impose 
large number of integer variables and severely 
degenerate model which leads to poor performance 
of standard linear programming techniques. Methods 
to address this problem include an interior-point 
algorithm, dual steepest edge simplex, cost 
perturbation, model aggregation, branching on set-
partitioning constraints, and prioritizing the order of 
branching (Hane et al., 1995). In (Talluri, 1996), a 
model and an algorithm for swapping applications in 
a daily airline fleet assignment have been developed. 
Given a daily fleet assignment, the problem of 
changing the assignment of a specified flight leg to a 
different equipment type while still satisfying all the 
constraints have been considered. As airline 
planning process evolves through several decision 
making phases including schedule construction and 
fleet planning that are succeeded by aircraft 
maintenance routing and crew scheduling, the need 
for integrated planning and robust planning were 
realized. Integrated planning is intended to integrate 
the functional phases at the planning stage, and 
robust planning is intended to make decisions at the 
planning stage that are beneficial to the operations 
(Gao et al., 2009). Integrating schedule design and 
fleet assignment was implemented in (Rexing et al., 
2000); (Lohatepanont and Barnhart, 2004). 
Examples of research on robust planning include 
robust fleet assignment as in (Rosenberger et al., 
2004); (Smith and Johnson, 2006). 

Planning and scheduling problems generally 
incorporate discrete/continuous optimization 
problems. The mixed integer nonlinear program 
(MINLP), inherently require special treatment as 
complexities arise due to nonlinearity and integer 
choices. The most common MINLPs encountered in 
planning are 0-1 integer nonlinear programming 
(ZOINLP) problems where none of the continuous 
variables exist and all the decision variables are 
binary. As section 3 of this paper details the 
modelling of the DBOS policy, it will become 
apparent that the generated model falls under 
(ZOINLP) problems category. 

The basis of tackling integer programming 
problems (whether linear or nonlinear) in many 
algorithms rely on relaxing the problem into 
continuous sub-problems. The algorithm in this case 
works on a higher level establishing control on the 
sub-solvers and using the information from the sub-
problems solutions to arrive to the integer solution. 
The sub-problems are solved by some well-
performing continuous variable programming 
problem solver (such as Simplex for linear 

programming (LP) problems (Chvátal, 1983) and 
Sequential Quadratic Programming (SQP) with 
reduced gradient method (Schittkowski, 1982) for 
nonlinear programming (NLP) problems). Branch 
and Bound (B&B) algorithm (Gupta and Ravindran, 
1985) falls under this category of integer 
programming problem solvers. B&B consists of a 
tree enumeration in which LP or NLP sub-problems 
are solved at each node, and eliminated based on 
bounding properties. B&B’s success and speed in 
finding the solution inherently depends on the 
relaxed problem sub-solver.   

Other algorithms for solving MINLP include 
Generalized Benders Decomposition (GBD) 
(Benders, 1962); (Geoffrion, 1972), Outer-
Approximation (OA) (Duran and Grossmann, 1987); 
(Fletcher and Leyffer, 1994), and Extended Cutting 
Plane Method (ECP) (Westerlund and Pettersson, 
1995). The literature also provides some non-
rigorous methods for handling non-convexities such 
as the equality relaxation algorithm (Kocis and 
Grossmann, 1987) and the augmented penalty 
version of it by (Viswanathan and Grossmann, 
1990). Modifications on standard Stochastic 
methods such as Genetic Algorithm (GA) originally 
developed by (Holland, 1975) and Simulated 
Annealing (SA) originally developed by (Metropolis 
et al., 1953) have promoted their use to solve 
MINLPs. These algorithms impose no limitation 
(such as continuity and differentiability) on the 
search space of the optimization problem. 
Additionally, some of these algorithms could benefit 
from parallel processing which in turn accelerates 
convergence. Hybrid algorithms as in (Adler, 1993); 
(Robinson et al., 2002); (Xia and Wu, 2005) are as 
well widely found in Literature. Such algorithms 
intend to take advantage of the merits of two or 
more of the standard algorithms to achieve better 
solutions (in terms of convergence, global optima, 
etc.). 

3 MATHEMATICAL 
MODELLING OF DBOS 
POLICY 

The key to apply the DBOS policy is a concise and 
representative model which accounts for swapping 
and substitution actions. The objective of the policy 
aims towards optimal battery utilization over a finite 
plan horizon in a way that minimizes total 
maintenance plan projected costs. 

Typical constraints are formulated for demand 
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(number of vehicles operating in each degradation 
profile), batteries health state degradation tracking 
(swapping and substitution effects, threshold, etc.) 
(See Figure 1). Other constraints are relevant to the 
company’s logistics such as maintenance crew 
availability, business requirements, etc. The model 
includes two types of decision variables: placement 
variables and substitution variables (or reset 
variables). 

 

Figure 1: Health State Changes with Swapping and 
Substitution Actions. 

3.1 Placement Decision Variables 

The model is formulated to follow the placement of 
batteries in terms of location and time. The location 
here refers to the loading profile in which the battery 
is placed, and for which predicted degradation rate 
of the health state is assumed to be known. The 
variable is studied at predefined constant discrete 
intervals of time (Δ), which are chosen upon the 
company’s preference and capability to achieve 
regular workflow. This interval should be inspired 
by the company’s prescheduled checkups cycles. For 
example if the company’s vehicles are usually 
maintained or checked up monthly, then choosing Δ 
to be equal to 1 month is reasonable. Δ relates the 
frequency of the discrete time points at which the 
scheduler has the option to perform a swapping 
action. Theoretically as ∆ gets smaller, more 
swapping options are present and we expect the total 
maintenance cost to decrease to a certain limit. This 
limit is where introducing further swapping actions 
will not improve the cost function and the optimizer 
opts for no additional swapping actions upon correct 
implementation of the policy (accurate 
optimization). The validation of such behaviour is 
shown in Section 4.3.  

In this formulation, the placement decision 
variable,  ( ) 0,1ijX k   in the model is chosen to be 

binary, where its indices stand for  

1,2, ,       battery index in the fleet

1,2, ,     degradation/loading profile

1,2, ,    discrete time, where:
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i n

j m
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For example, if Δ = 1 month, and X31(7) = 1 means 
that the 3rd battery is placed in the first degradation 
profile at the 7th month. 

There are several constraints which are related 
directly to the placement decision variable. Some of 
these constraints arise from physical sense, others 
from demands and capabilities. The first constraint 
relates to the physical sense that a specific battery 
can be only assigned to one degradation profile for a 
specific interval. Additionally, the demand jd  

drives the number of batteries assigned to the jth 
degradation profile per interval. In formulation, 
these two constraints; respectively; translate to: 
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The placement variable is the indirect indicator for 
whether a swapping action has taken place or not. 
This can be formulated through: 

if the th battery is

1 swapped at time to/from

( ) ( 1) the th degradation profile

0 otherwise                         

ij ij

i
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X k X k j



   




 
(3)

The total number of swapping actions which take 
place at time k can be given by: 

1 1

1
( ) ( 1)

2

n m

ij ij
i j
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Equation (4) enables us to formulate the constraints 
related to the company’s preferential rules for 
swapping. Examples of these rules include an 
enforced minimum span between subsequent 
swapping actions for the same battery, and 
maximum number of allowable swapping actions 
within the fleet per interval. For the first one, if Δ is 
assumed to be equal to 1 month (for example), and a 
minimum of 3 months of enforced span between 
subsequent swapping actions for the same battery, 
then it translates to: 
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Or it can be abbreviated as: 
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In the general form, the constraint can be 
represented as (for a minimum span of H   
between swapping actions for the same battery): 

1
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Maximum number (  ) of swapping actions per 
interval can be easily modelled as: 

1 1

1
( ) ( 1) , 2, ,

2

n m

ij ij
i j

X k X k k K
 

      (8)

3.2 Substitution Decision Variables 

A substitution decision variable, ( )iZ k  to represent 

any substitution action is included in the modelling. 

if the th battery is substituted
1

at the begining of epoch 

( )

no substitution at the
0

begining of epoch 

i

i
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Z k
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The substitution variable has only two indices as it 
relates only to battery i being substituted and time k 
at which substitution takes place. 

The decision whether to initiate a substitution 
action or not, is merely dependent on the state of the 
battery health. This indicates the need to track the 
battery’s health state degradation throughout its 
deployment in the field. In modelling DPSO with 
deterministic states, it is assumed that the degradable 
health states are predictable. The prediction is 
dependent on both the battery state at the beginning 
of the current interval and the degradation profile at 
which the battery is placed.  

To track the degradation of the batteries health 
states, an accumulative degradation dependent 
quantity ( )iy k  is defined. The accumulative 

degradation is a monotonically increasing dependent 
variable which is calculated in the model based on 
the decision variables (placement and substitution 
variables). In this formulation, when a new battery is 
brought in, the accumulative degradation is set to 
zero. Based on the assumption of linear degradation 

the accumulative degradation can be found by: 
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where jr  is the degradation rate when the battery is 

assigned to jth degradation profile. 
Additional constraints arise from the bounds on 

the accumulative degradation variable: 

0 ( ) ,

1, , ; 1, ,
iy k

k K i n

 

    
 (11)

where   is the threshold at which substitution 

becomes inevitable. 

3.3 Objective Function 

There are several objectives that could be used 
towards an optimum policy. The policy can aim for 
minimized maintenance costs, maximized utilization, 
or a combination of both. One direct and simplified 
objective that can be chosen is to minimize the 
projected maintenance costs over a finite plan 
horizon. With the satisfaction of the constraints 
described above, the minimization of the projected 
costs which are attributed to the batteries 
substitution and swapping actions can achieve an 
optimum scheduling policy. Based on the discussion 
previously, the cost can be found by: 

 

1
2 1 1

2
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where c1(k) is time dependent swapping cost 
coefficient, which includes penalties and potential of 
loss due to swapping, and c2(k) is time dependent 
substitution cost coefficient. The choice to make 
both cost coefficients as time dependent increases 
the flexibility of the model. 
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4 OPTIMIZATION IN DBOS 
POLICY 

The mathematical model of DBOS policy with 
deterministic states has been introduced in Section 3. 
This section is dedicated to the solution of the 
DBOS policy model. 

4.1 DBOS-Policy-specific 
Branch-and-Bound-based 
Algorithm 

Although the generated model successfully captures 
the intended functionality of the policy, the DBOS 
policy model is a Zero-One Integer Nonlinear 
programming (ZOINLP) problem. In similar work 
(Almuhtady et al., 2012), typical stochastic 
algorithms such as Genetic Algorithm (GA) and 
Simulated Annealing (SA) Algorithm have been 
shown to be capable of solving small size problems 
of this type. However, repeatability in results and 
robustness for large scale problems were absent in 
the implementation. Additionally, the 
implementation of a direct Branch and Bound (B&B) 
scheme with variant NLP sub-solvers has not been 
successful due to the growing nonlinearity in health 
state updates in Equation (10). 

In this paper, we introduce a DBOS-policy-
specific Branch-and-Bound-based algorithm that 
successfully generates repeatable answers as well as 
provide robustness over all problem sizes. The 
algorithm is illustrated in Figure (2). 

The algorithm reduces the complexity of the 
model by providing incremented estimates of the 
total number of required substitutions (Zi(k)). The 
estimates are generated from expected loads and 
logic-based rules. Total demand over horizon (when 
averaged per battery) dictates whether this estimate 
is started at zero or not. For example, if the average 
demand per battery exceeds threshold value (), 
starting with estimate (Zi(k)=0) becomes trivial. 
For each estimate, all satisfying (non-repeated) 
configurations are investigated. The reconfiguration 
is done systematically that it will generate each time 
a new configuration until all possible unrepeated 
configurations for that estimate have been tested. 
We note here that repeated configurations include 
any new Zi(k) array that is generated from swapping 
rows in an old Zi(k) array as this action provides no 
new configurations. The first estimates are chosen to 
be very conservative (low number of substitutions).  
This probably leads to infeasibility for all or most 
reconfigurations of Zi(k) for the first iteration. 

Nevertheless, the conservativeness provides 
assurance for minimum objective value function as 
the major part of the cost is attributed to the 
substitution. We note here that the infeasibility is 
identified quickly and therefore the performance of 
the algorithm in general is not hindered by the 
conservativeness. 

 

 

Figure 2: DBOS-Policy-Specific Branch-and-Bound-based 
Algorithm. 

With this implementation, at each instant the 
nonlinearity in the model (Equation 10) ceases to 
exist and the problem is reduced to a Zero-One 
Integer Linear Programming (ZOILP) problem. This 
promotes the utilization of a Branch and Bound 
(B&B) scheme with a (LP) sub-solver. The later 
only applies if the absolute value in the objective 
function is formatted in the standard LP form as well. 
This is easily implemented through a number of 
well-known mathematical tricks. It should be noted 
that the formatting of the absolute value into the 
standard LP form incorporates an increase in the 
decision variables which may adversely affect the 
algorithm’s performance for significantly large 
problems. 
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4.2 Case Study I 

In this section, we report numerical results of a 5-
vehicle fleet case study. The problem parameters are 
available in Table (1). 

Table 1: Case Study I Parameters. 

Parameter symbol value 
Number of vehicles N 5 
Number of loading profiles M 4 
Plan Horizon (months) K 4 

vehicles allocated per loading profile JN  [1, 1, 1, 2] 

Degradation rates (per month) jr  
[0.11, 0.08, 0.04, 

0.02] 

Swapping Cost Coefficient 1 ( )c k  400 

Substitution Cost Coefficient 2 ( )c k  11600 

Threshold β 0.2 
Discretization Interval (month) ∆ 1 

The cost coefficients are inspired by real 
applications. The degradation coefficients have been 
modified to reflect shorter chosen plan horizon for 
the numerical case study as a sample problem. The 
modification in the coefficients is intended to 
simulate the real scenario where longer horizons are 
chosen, and thus substitutions are inevitable. 

The solutions generated by GA and SA are 
shown in Figures (3) and (4). The horizontal line 
indicates the cost upon the application of no 
swapping policy for the case study. Though SA 
outperforms GA in this case, repeatability in results 
and lack of runs achieving the global minima are 
shortcomings of both algorithms. The runtimes for 
GA and SA algorithms were 19 minutes and 45 
seconds; respectively. 

The solutions generated by DBOS-policy-
specific B&B-based algorithm are shown in Figure 
(5). It is clear that the repeatability has been attained 
only in the DBOS-policy-specific B&B-based 
algorithm where global optima have been achieved 
at every single run. The runtime was found to be 41 
minutes. 

Though repeatability might not represent great 
significance in this small size problem as SA can be 
run cheaply several times, there are two main 
advantages of using DBOS-policy-specific B&B-
based algorithm. The first is that the total cost 
associated by the swapping and substitution actions 
is $14000 with the DBOS-policy-specific algorithm 
in comparison to the best run of SA with cost equal 
to $14800. That means SA best run has generated a 
suboptimal solution with 5.4% difference. The 
guarantee of achieving the global minima with the 
proposed algorithm is a key for its outperformance. 

That is, for this small problem, the difference in cost 
between SA best run and the proposed algorithm 
solutions are 5.4%. This can be higher for a different 
problem. The second advantage will be present in 
the scalability as Case Study II will show. 
Specifically, the case study will demonstrate what 
the outcomes are when larger numbers of decision 
variables are involved. 

 

 

Figure 3: GA Different Runs. 

 

Figure 4: SA Different Runs. 

 

Figure 5: DBOS-Policy-specific B&B-based Algorithm 
Different Runs. 
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The optimum schedule per DBOS policy for Case 
Study I is shown in Table (2).  

Table 2: Schedule of Batteries Placement from the DBOS-
Policy-specific B&B-based Algorithm. 

Battery 1st month 2nd month 3rd month 4th month 

A 4 4 4 1 
B 2 1 1* 2 

C 4 2 2 4 

D 3 3 3 3 
E 1 4 4 4 

(*) means a substitution action has taken place 

Finally for case study I, we benchmark the 
performance of the DBOS policy, several 
management policies have been applied (see Figure 
6). 

The maintenance plan cost has been evaluated 
for each of the four shown policies. In the “No-
swapping” policy, the batteries in the fleet are 
dedicated to one degradation profile throughout the 
plan horizon, where no swapping is allowed. The 
rotational fixed swapping policy refers to the policy 
where swapping actions are conducted on a timely, 
fixed and cyclic manner. An example of that is the 
rotational swapping of tires in automobiles to even 
out the degradation (front wheel driving or rear 
wheel driving). The third policy (Intelligent fixed 
swapping) refers to the case when swapping actions 
are conducted between the most and the least 
degraded batteries at each cycle (The intelligence 
refers to basing decision on being informed about 
the health state of the battery). Though the later 
performs better than the No-swapping and 
Rotational Fixed Swapping policies, the DBOS 
policy clearly outperforms all of them. 

 

Figure 6: Benchmarking DBOS policy. 

4.3 Case Study Ii (∆ Variation) 

In this section, we verify the claim we made in 
Section 3.1 about the role of ∆. The DBOS-policy-

specific branch-and-bound-based algorithm is 
implemented on a second case study (see Table 3) 
where ∆ is varied from 1 week to 1 month. The case 
study will serve as well to illustrate the scalability of 
the proposed algorithm when larger numbers of 
decision variables are involved. That is, decreasing 
∆ increases the size of the problem significantly due 
to the increase in the placement and substitution 
variables under investigation. The outcome of this 
increase on the performance of SA and the proposed 
policy is investigated. 

Table 3: Case Study II Parameters. 

Parameter symbol value 
Number of vehicles N 3 
Number of loading profiles M 2 
Plan Horizon (months) K 4 
vehicles allocated per loading 
profile JN  [1, 2] 

Degradation rates (per month) jr  [0.11, 0.04] 

Swapping Cost Coefficient 1 ( )c k  400 

Substitution Cost Coefficient 2 ( )c k  11600 

Threshold β 0.2 

Figure (7) shows the results when SA was used. 
It can be seen that SA algorithm is unable to capture 
the intended behaviour of the DBOS policy. The 
policy aims to opt for swapping when swapping 
achieves decreased objective values. In this case, as 
the problem size grows the optimizer fails to 
recognize the unnecessary swapping actions and 
therefore the total cost increases. On the other hand, 
Figure (8) shows the results of the DBOS-policy-
specific B&B-based algorithm when ∆ is varied. The 
anticipated behaviour appears clearly. The cost 
decreases when ∆ is varied from 1 month, to 20 days 
and finally to half month. After that, there is no 
improvement in the objective value when ∆ is 
shortened from 15 days to 1 week. The optimizer in 
this case opts for no more swapping actions than 
what has been chosen for the 15 days discretization 
interval, and therefore the policy is correctly 
captured. 

 

Figure 7: SA algorithm best run result when ∆ is varied. 
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Figure 8: DBOS-policy-specific B&B-based algorithm 
result when ∆ is varied. 

5 CONCLUSIONS 

Plans for electrification and hybridization of fleets 
are already in progress to minimize the overall cost 
of operation and fuel consumption and adhere to 
environmentally friendly awareness. The 
hybridization projects increased maintenance costs 
especially for highly costly and degradable 
components such as Li-ion batteries. This paper 
presented a uniquely formulated resource allocation 
policy based on the degradation of the health states 
of the batteries, to be part of the maintenance 
planning for the fleet. The policy, denoted as 
Degradation-based Optimal Swapping (DBOS), 
utilizes batteries on fleet level through a series of 
optimally chosen swapping and substitution actions. 
The policy takes advantage of the different 
degradation rates of the batteries within the fleet, 
based on loading conditions, to choose optimal 
placements of these batteries. A representative 
mathematical model with deterministic health states 
have been presented in this paper as well. The 
optimization of the generated model of DBOS policy 
has been investigated as well.  A DBOS-policy-
specific algorithm has been developed and 
successfully implemented. Numerical results showed 
the outperformance of the algorithm in comparison 
to standard optimization techniques. Numerical 
results as well validated the role of the discretization 
interval in the DBOS policy, allowing but not 
necessary choosing the option to perform additional 
swapping actions minimizing the costly substitution 
ones.  
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