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Abstract: A color quantization algorithm is presented, which is based on the reduction of the spatial resolution of the 
input image. The maximum number of colors nf desired for the output image is used to fix the proper spatial 
resolution reduction factor. This is used to build a lower resolution version of the input image with size nf. 
Colors found in the lower resolution image constitute the palette for the output image. The three 
components of each color of the palette are interpreted as the coordinates of a voxel in the 3D discrete 
space. The Voronoi Diagram of the set of voxels corresponding to the colors of the palette is computed and 
is used for color mapping of the input image. 

1 INTRODUCTION 

Color quantization is a process that reduces the 
number of distinct colors present in an input image 
in such a way to originate a transformed image with 
a noticeably smaller number of colors and at the 
same time still visually similar to the input image. 
One of the main applications of color quantization is 
for image compression, especially when dealing 
with the transmission of multimedia data files. These 
files may have rather large size, so that their 
transmission may result difficult due to the 
bandwidth restrictions of computer networks. Other 
applications of color quantization are for image 
display, and for color based indexing and retrieval 
from image databases. 

Color quantization methods can be roughly 
divided in image independent and image dependent 
methods, see (Brun and Trémeau, 2002), (Celebi, 
2011). The former methods, e. g., (Paeth, 1990), 
(Mojsilovic and Soljanin, 2001), are generally 
efficient, but produce poor results since the 
distribution of colors in the input image is not taken 
into account. Image dependent methods generally 
provide good results, but are a bit more expensive. 
Image dependent methods can be divided in pre-
clustering methods, e.g., (Heckbert, 1982), 
(Gervautz and Purgathofer, 1990), (Wu, 1992), 
(Kanjanawanishkul and Uyyanonvara, 2005), and 
post-clustering methods, e.g., (Ozdemir and Akarun, 
2002), (Bing et al., 2004), (Kim and Kehtarnavaz, 
2005), (Atsalakis and Papamarkos, 2006), (Chen et 

al., 2008), (Ramella and Sanniti di Baja, 2010), 
(Rasti et al., 2011), (Celebi 2011). Pre-clustering 
methods determine only once the color palette by 
using features derived from the image at hand. Post-
clustering methods define an initial palette and then 
improve it by resorting to an iterative process.  

Color quantization can be interpreted as a 
clustering problem in the 3D space, where the three 
axes are the three color channels and the points are 
the colors of the input image. To perform 
quantization, points are suitably grouped into 
clusters. Then, for each cluster a representative color 
is selected, which is obtained e.g., as the average of 
the points in the cluster. The number of clusters, i.e., 
the number of quantized colors, is generally fixed a 
priori.  

In principle, for a 24-bit true color image I the 
number of possible colors may reach 16 millions. 
However, the maximum number of colors actually 
present in an image consisting of r rows and c 
columns is rc. For example, consider an image I 
with size 10241024. For such an image, at most 
1.048.576 different colors are possible. In general, a 
considerably smaller number of colors exists, since 
the same color is likely to appear more than just 
once in the image. On the other hand, if the spatial 
resolution of I is reduced, say to 256256, a 
maximum of 65.536 colors will be possible for its 
pixels. 

By taking into account the above considerations, 
we here present a new image dependent technique 
for color quantization that can be framed among the 
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pre-clustering methods. The method consists of two 
processes, respectively dealing with the detection the 
representative colors and with color mapping. 

To find the representative colors, we resort to 
spatial resolution reduction. This can be achieved by 
any scaling down method. We use a classical 
interpolation method (Pratt, 2001) and compute the 
proper reduction factor that will allow us to build the 
lower resolution image having the desired size. The 
reduction of the spatial resolution of the input image 
automatically implies an upper limit to the number 
of colors in the palette.  

During the second process, the Voronoi Diagram 
is computed and is then used for color mapping. 

2 NOTIONS 

Let I be an RGB color image. We interpret colors as 
three-dimensional vectors, with each vector element 
having an 8-bit dynamic range. We represent the 
RGB color space as a 3D cube, where the three 
coordinates of each point are the red, green and blue 
components of that point in the color space, see 
Figure 1. The edges of the cube have length 256, 
since the values for the color components are in the 
range [0, 255]. 
 

 

Figure 1: The 3D cube representing the RGB color space. 

The color histogram of I can be built by reporting in 
position (x, y, z) of the 3D cube the number of pixels 
of I whose three color components have values x, y, 
and z, respectively. The 3D histogram of colors 
generally consists of a large and sparse set of points. 
Since x, y, and z, as well as the value stored in 
position (x, y, z) are integer numbers, the cube is a 
discrete cube and we can refer to its points as to 
voxels. Actually, we use a binary version of the 3D 

histogram, where each voxel corresponding to an 
existing color is set to 1, while all other voxels are 
set to 0. 

To evaluate the performance of our color 
quantization algorithm, we use the Peak Signal to 
Noise Ratio PSNR, the Structural SIMilarity SSIM, 
the Colorloss CL, and the Compression Ratio CR. 

For gray-level images, PSNR is computed as: 
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and vi,j and wi,j respectively belong to the input 
image and to the output image of size H×K. 

For RGB images, the definition of PSNR is still 
the same, but MSE is the sum over all squared value 
differences divided by image size and by three. 

The SSIM index for two gray-level images v and 
w is computed as: 
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where μv is the average of v; μw is the average of w; 
2
v  is the variance of v; 2

w  is the variance of w; 

covvw is the covariance of v and w; c1=(k1L)2 and 
c2=(k2L)2 are two variables to stabilize the division 
with weak denominator; L is the dynamic range of 
the pixel values (255 for 8-bit image); and k1=0,01 
and k2=0,03 are default values. 

The SSIM index is computed within an 8×8 
sliding window, which moves pixel-by-pixel from 
top-left to bottom-right. As a result, an SSIM index 
map of the image is obtained, and the overall quality 
value is defined as the average of the SSIM index 
map, i.e., the mean SSIM index. The value of SSIM 
is in the range [0,1], where higher values denote 
better structural similarity. For RGB images, the 
SSIM index is computed for the three channel 
components independently and the quality value is 
obtained by the average of the three indexes. 

The Colorloss CL is used to measure the loss of 
color information caused by quantization. CL is 
computed as the Euclidean color distance between a 
pixel in the original image and the corresponding 
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pixel in the quantized image. The loss in color 
information increases with the colorloss. Let I 
consist of N pixels, and let the RGB values of a pixel 
p be (rp, gp, bp). Let I’ be the quantized image, where 
q is the pixel corresponding to p with RGB values 
(rq, gq, bq). Then, the average colorloss of a pixel 
between these two images is defined as follows: 
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The compression ratio CR measures the percentage 
of the original size of the image resulting after 
compression. CR is computed as the ratio between 
the size of the output stream and the input stream 
expressed in bit per pixel (Salomon and Motta, 
2010). 

3 QUANTIZATION METHOD 

Let I be the input color image with ri rows, ci 
columns and ni colors. Let nf be the maximum 
number of colors desired for the quantized image. 
To identify at most nf colors constituting the palette, 
we reduce the spatial resolution of I so that the lower 
resolution image is characterized by size equal to nf. 
To this aim, we need to compute the proper value for 
the reduction factor f. 

The reduction factor is the ratio between the 
number of rows rf (columns cf) that will characterize 
the quantized image and the number of rows ri 
(columns ci) in the input image. Since it is: 
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from which it results: 
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we compute the reduction factor f that will originate 
a lower resolution version of I including at most nf 
pixels and, hence, characterized by at most nf 
different colors. 

Once the lower resolution image is available, it 
includes at most nf different colors that constitute the 
palette. The three components of the colors of the 
palette are interpreted as coordinates of the only 

voxels in a 256256256 cube, BH, that are set to 1. 
Then, we perform connected component labeling, so 
as to assign a different identity label to each 
connected component of non zero voxels in BH. 

Since some colors of the lower resolution image 
may be very similar to each other, their 
corresponding voxels in BH may be connected to 
each other. Thus, the number of connected 
components (and, hence, the number of final colors) 
is likely to be smaller than the number of colors 
existing in the lower resolution image. If connected 
components including more than one voxel exist, for 
any such a component the centroid is computed and 
is used as representative color for the component. 

The 3D Voronoi Diagram, where seeds consist of 
connected components of voxels instead of 
consisting of single voxels, is computed to divide 
BH into as many Voronoi cells as many seeds have 
been detected. To this aim, distance transformation 
with identity label propagation is accomplished from 
the seeds on the zero voxels of BH, by extending to 
3D the algorithm suggested in (Fischler and Barrett, 
1980) for the 2D case. In this way, the zero voxels of 
BH are assigned the identity label of the seed to 
which they are closer. All voxels in the same 
Voronoi cell are associated the color of the 
corresponding seed. 

The quantized version of I is built during an 
inspection of I. Each pixel p of I, whose color 
components have values x, y, and z respectively, 
receives the color associated to the Voronoi cell 
including the voxel in position (x, y, z). 

4 EXPERIMENTAL RESULTS 

We have tested the quantization method on about 
100 color images with different size and color 
distribution, taken from available repositories (e. g., 
http://www.hlevkin.com/,http://sipi.usc.edu/database
/,http://r0k.us/graphics/kodak,http://www.eecs.berke
ley.edu/Research/Projects/CS/vision/bsds/). A small 
set of six test images is shown in Figure 2. 

 

The performance of our method can be 
appreciated quantitatively by referring to Table 1, 
where the results for the six test images are 
summarized. For each test image, PSNR, SSIM, CL 
and CR are computed for the quantized images 
obtained in correspondence with different values of 
nf, namely nf= 512, nf = 256, nf = 128, and nf = 64. 
The value rfcf is also indicated, as well as the 
number of final colors Nd. 
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Table 1: Results for the six test images. 

image  nf =512 nf =256 nf =128 nf =64 

1) 

rfcf 2222 1515 1111 88 

Nd 418 210 117 63 

SSIM 0.97 0.96 0.95 0.93 

PSNR 37.53 35.33 33.88 32.05 

CL 4.07 5.44 6.47 8.08 

CR 0.57 0.50 0.45 0.39 

2) 

rfcf 2222 1515 1111 88 

Nd 406 204 116 63 

SSIM 0.95 0.93 0.90 0.87 

PSNR 36.84 34.15 31.98 29.44 

CL 4.76 6.41 8.27 11.10 

CR 0.54 0.47 0.42 0.37 

3) 

rfcf 1827 1319 913 69 

Nd 438 235 114 53 

SSIM 0.96 0.95 0.93 0.89 

PSNR 36.89 34.96 33.35 30.45 

CL 4.18 5.44 7.00 10.15 

CR 0.57 0.51 0.44 0.37 

4) 

rfcf 2223 1516 1111 78 

Nd 478 235 120 56 

SSIM 0.96 0.94 0.92 0.88 

PSNR 37.78 36.11 13.83 31.34 

CL 4.41 5.49 7.18 9.74 

CR 0.53 0.47 0.41 0.35 

5) 

rfcf 2025 1417 912 79 

Nd 458 230 105 63 

SSIM 0.96 0.94 0.92 0.90 

PSNR 36.53 34.50 31.87 30.46 

CL 5.20 6.60 8.97 10.61 

CR 0.53 0.47 0.40 0.36 

6) 

rfcf 1827 1319 913 69 

Nd 260 154 91 47 

SSIM 0.98 0.97 0.96 0.94 

PSNR 37.07 35.11 31.86 30.14 

CL 2.98 3.78 5.40 7.70 

CR 0.55 0.50 0.45 0.38 

 
 

 
 
 
 
 
1) 512512, 42707  2) 512512, 73580       3) 512768, 44576 

4) 480512, 111841     5) 384480, 111565     6) 312481, 31863 

Figure 2: The six test images. For each image, the size and 
the number of colors are given. 
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Figure 3: From top to bottom, the input image and 
quantization results obtained by using different lower 
resolution images. 
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To show qualitatively the performance of our 
method, refer to Figure 3, where the results obtained 
by using different lower resolution images to detect 
the palette are shown for the test image 3).  

Figure 4 shows the three lower resolution images 
with nf = 256, nf = 128, and nf =64 respectively used 
to obtain the three results given in Figure 3. 
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Figure 4: From left to right, the lower resolution images 
used to obtain the results shown in Figure 3. Pixel size has 
been increased for visualization purposes. 

The quantization method is easy to implement and 
computationally advantageous. The results are 
generally satisfactory. Of course, we are aware of 
the limits of our approach. One drawback is that if nf 
is set to a small value (less than 64), the quality of 
the resulting quantized image decreases 
significantly. This is due to the fact that the value of 
nf conditions the size of the lower resolution image. 
If such a size is very small, the lower resolution 
image is not adequate to represent the input image in 
a satisfactory way. 

Another drawback that can affect the method is 
that colors characterized by large occurrence in the 
input image, but forming regions with small size 
(say, smaller than the size of the cells of the 
decimation grid used by scaling down), are likely to 
be not considered as colors of the palette. 

We are working on possible solutions to alleviate 

the above problems.  
As for the first drawback, if the desired nf is very 

small, the following process can be done. Instead of 
computing a lower resolution image with size nf, we 
build a lower resolution image with a larger size, 
regarded as adequate for a satisfactory 
representation of the input image and use it to fix the 
palette. If the number of colors of the palette is 
larger than nf, then colors that are sufficiently close 
are clustered before computing the Voronoi 
Diagram.  

As for the second drawback, once the lower 
resolution image has been generated, the palette is 
enriched by adding colors that, though characterized 
in the original image by large occurrence, do not 
exist in the lower resolution image. 

5 CONCLUDING REMARKS 

A new color quantization algorithm has been 
presented, which is based on the detection of the 
representative colors in a lower resolution version of 
the input color image. The maximum number of 
desired colors is used to fix the reduction factor and 
build the lower resolution image. Colors found in the 
lower resolution image are taken as seeds for the 
computation of the Voronoi Diagram. Colors of the 
input image in the same Voronoi cell are associated 
the color of the corresponding seed. 
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