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Abstract: Presently, the large-scale collection process of selective waste is typically expensive, with low efficiency 
and moderate effectiveness. Despite the abundance of commercially available software for fleet 
management, real life managers are only minimally helped by it when dealing with resource and budgetary 
requirements, scheduling activities, and acquiring resources for their accomplishment within the constraints 
imposed on them. To overcome these issues, we intend to develop a solution that optimizes the waste 
collection process by modelling this problem as a vehicle routing problem, in particular as a Team 
Orienteering Problem (TOP). In the TOP, a vehicle fleet is assigned to visit a set customers, while executing 
optimized routes that maximize total profit and minimize resources needed. In this work, we propose to 
solve the TOP using a genetic algorithm, in order to achieve challenging results in comparison to previous 
work around this subject of study. Our objective is to develop and evaluate a software application that 
implements a genetic algorithm to solve the TOP. We were able to accomplish the proposed task and 
achieved interesting results with the computational tests by attaining the best known results in half of the 
tested instances. 

1 INTRODUCTION 

In the last few decades, waste separation and 
recycling have become critically important. They are 
performed via an easy to accomplish daily routine 
due to the existence of collection points, which are 
usually placed near residential areas, with greater 
concentration in city centres and more spread out in 
the suburbs and rural areas. 

Among waste collection companies, a common 
problem is finding efficient methods for performing 
the collection of separated waste, while using a 
limited fleet of vehicles and obtaining the highest 
possible profit. This problem may be addressed as a 
variation of the well-known Vehicle Routing 
Problem (VRP), described in the literature as the 
problem of designing the least-costly routes from a 
depot to a set of customers of known demand. The 
routes must be designed so that each customer is 
visited exactly once, without violating capacity 
constraints and while aiming to minimize the 
number of vehicles required and the total distance 

travelled. However, the majority of real-world 
applications require systems that are more flexible in 
order to overcome some imposed constraints that 
may lead to the selection of customers. To deal with 
these changes, the Team Orienteering Problem 
(TOP) models can be used. In the TOP, each 
customer has an associated profit, and the routes 
have maximum durations or distances. The choice of 
customers is made by balancing their profits and 
their contributions for the route duration or distance. 
The objective is to maximize the total reward 
collected by all routes while satisfying the time 
limit. 

The TOP is a fairly recent concept, first 
suggested by Butt and Cavalier (1994) under the 
name Multiple Tour Maximum Collection Problem. 
Later, Chao et al. (1996) formally introduced the 
problem and designed one of the most frequently 
used sets of benchmark instances. In 2006, Archetti 
et al. achieved many of the currently best-known 
solutions for the TOP instances by presenting two 
versions of Tabu Search, along with two 
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metaheuristics based on Variable Neighbourhood 
Search (VNS). Other competitive approaches were 
carried out by Ke et al. (2008), with two Ant Colony 
Optimization (ACO) variations; Vansteenwegen et 
al. (2009), with a VNS-based heuristic; and more 
recently, Souffriau et al. (2010) designed two 
variants of Greedy Randomized Adaptive Search 
Procedure with Path Relinking. 

The work presented in this paper is part of 
experiments that are integrated in the R&D project 
named Genetic Algorithm for Team Orienteering 
Problem (GATOP), which was approved by the 
Portuguese Foundation for Science and Technology 
(Fundação para a Ciência e Tecnologia – FCT). It 
involves five combined tasks to accomplish the 
desired goal which is the development of a more 
complete and efficient solution for several real-life 
multi-level Vehicle Routing Problems (VRP), with 
emphasis on the waste collection management. This 
should be achieved by the implementation and 
testing of heuristic and optimization strategies, in 
close collaboration with demand forecasting, 
transportation problems, simulation, and multi-
criteria decision models. 

Within the GATOP project, the main task is to 
solve the TOP and the development of heuristic 
solutions based on a genetic algorithm (GA) is 
suggested. The simplicity of a GA in modelling 
more complex problems and its easy integration with 
other optimization methods were the factors 
considered for its choice. Therefore, we believe it 
can be applied to solve the TOP, since it was also 
used for the Orienteering Problem by Tasgetiren 
(2002). 

In this work we propose to solve medium-to-
large-scale TOP instances considering a time 
constraint. We intend to verify whether it is possible 
to develop a method, based on a GA, that optimizes 
the TOP by achieving equal or better results as 
presented in previous studies. 

2 PROBLEM FORMULATION 

The aim of the present study is to solve the TOP, 
which means to develop a method that determines P 
paths which start in the same location and have the 
same destination, in order to maximize the total 
profit made in each path, while respecting a time 
constraint. Then, the generated paths are assigned to 
a limited vehicle fleet, usually one path to each 
available vehicle.  

In this work we followed the mathematical 
formulation presented in the work done by Ke et al., 

(2008). The objective function for the TOP is given 
in equation 1, where n is the total number of 
vertices, m is the number of vehicles available, the 
value y shows if vertex i is visited or not by a 
vehicle k, and finally, r is the reward associated to a 
certain vertex i. The objective function consists of 
finding m feasible routes that maximizes the total 
reward or profit.  

 

maxݎ ∙ ݕ
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3 DEVELOPING TOOLS 

3.1 The Genetic Algorithm 

The Genetic Algorithm (GA) is a search heuristic 
that imitates the natural process of evolution as it is  
believed to happen to all the species of living beings. 
This method uses nature-inspired techniques such as 
mutation, crossover, inheritance and selection, to 
generate solutions for optimization problems. The 
success of a GA depends on the type and complexity 
of the problem to which it is applied. 

In a GA, the chromosomes or individuals are 
represented as strings which encode candidate 
solutions for an optimization problem, that later 
evolve towards better solutions. 

The GA evolutionary process starts off by 
initializing a population of solutions (usually 
randomly), which will evolve and improve during 
three main steps: 

 

 Selection:  a portion of each successive 
generation is selected, based on their fitness, in order 
to breed the new, and probably better fit, 
generations. 

 Reproduction: the selected solutions produce 
the next generation through mutation and/or 
crossover, propagating the most crucial changes to 
the future generations by inheritance. 

 Termination: once a stopping criteria is met, the 
generational process ends. 

3.2 Algorithm Details 

The GA we developed to solve the TOP takes into 
account the main elements of the problem: the 
customers and the vehicles. 

 There is a set of n customers that must be visited 
by at most once and only by one vehicle. The 
customers correspond to the vertices in a network 

Developing�Tools�for�the�Team�Orienteering�Problem�-�A�Simple�Genetic�Algorithm

333



 

graph. 
A fleet of m vehicles is available, and each 

vehicle is given a priority list, randomly generated, 
representing the preferred visiting order of 
customers, figure 1. 

 

Figure 1: Priority lists for 2 vehicles in an instance with 6 
vertices. 

In this GA, every chromosome is composed by m 
sub-chromosomes, each one corresponding to a 
different priority list of customers (figure 1). The 
sub-chromosomes are composed by n genes, one for 
each customer. The i gene of a chromosome 
corresponds to the i-th (݅௧) customer to be visited. 
In other words, it is the customer in the i-th position 
in a priority list. The allele is the index of a customer 
in the service network and therefore indicates which 
customer is visited in a given gene or position. 
Consequently, the total number of genes in a 
chromosome is equal to ݉ ൈ ݊ (one priority list for 
each vehicle). 

The representation of a valid solution is the result 
of a constructing process, where the vertices are 
added to the routes by following the order they 
appear in priority lists for each vehicle. During this 
process, each vertex (or customer) v is chosen for a 
route if: 

 

 It is possible to go from the last added vertex to 
v and from v directly to the final vertex, without 
violating the time limit. 

 Vertex v does not belong to another vehicle’s 
route. 

In figure 2 it is presented a graphic representation 
of a feasible solution for a 6-vertices instance with 
two vehicles, A (red line) and B (blue line). 
Therefore, two routes, one for each vehicle, were 
calculated: 

 Route A – The solution contains vertices 1-6-3-
4, and these vertices become automatically 
unavailable for vehicle B. Vertices 5 and 2 are not 
visited because the time limit for the route is 
exceeded. 

 Route B – Since the route determined for 
vehicle A already picked up four vertices from the 
priority list of vehicle B, the next available vertex to 
be added is vertex 5, concluding the route since 
adding vertex 2 means disrespecting the time 
constraint.  

 

Figure 2: Representation of a possible solution for 2 
vehicles in a 6-vertices instance. 

A fitness function is used in the genetic 
algorithm to evaluate the overall fitness of a 
chromosome, which corresponds to the total reward 
collected in a reached solution. The quality of this 
information highly influences the reproductive 
process. 

The implemented GA follows a very simple and 
common operation structure: 
 

Begin 
P ← Initialize (population); 
S ← Selection (P); 
While stop criteria not met do: 

  O ← Reproduction (S); 
  P ← O + ΔP  

S ← Selection (P); 
End 
 

 

Where P is the population of potential solutions 
(chromosomes) at the moment, S is the group of 
solutions within P, selected to produce the offspring 
O, which is the next generation of solutions. As for 
ΔP, it represents a residual part of P that contains 
non-selected solutions, used to promote 
diversification in the reproductive process and avoid 
early convergence to local optimal solutions. 

During the reproduction phase, two procedures 
take place: crossover and mutation. The crossover 
operation involves the combination of two 
chromosomes in order to obtain a better one by 
inheriting the good genes from each parent. In our 
algorithm the process goes by removing a block of 
consecutive genes from one parent solution and 
placing it in a random position within the other 
parent solution. The block of genes has a random 
size, and the insertion position may vary randomly. 
After the insertion, the repeated vertices in the 
solution are removed to maintain the correct size of 
the sub-chromosomes. 
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The schematic in figure 3 shows how the 
crossover procedure is done. In this example, the 
crossover occurs between two chromosomes, A and 
B, with two sub-chromosomes each. At first, a block 
of consecutive genes is removed from B. Then, the 
same block is inserted in A within a randomly 
chosen sub-chromosome, in an arbitrary position. 
The removal of repeated vertices starts in the 
position where the sub-chromosome of A was 
modified, therefore preventing the removal of the 
new added vertices. The new generated solution is 
then ready to struggle for a spot in the next 
generation. 

 

Figure 3: The crossover procedure. 

In the other reproduction method, mutation, a 
valid solution can alter its own genetic code by 
randomly modifying the genes order. In this case we 
decided to perform a simple position switch by first 
selecting one vertex (or gene) from one of the 
priority lists and exchange with the vertex right after 
that selected one, in the same list. An example on 
how this process works can be observed in figure 4. 

The individuals are selected to be reproduced  by  
Crossover and Mutation according to a triangular 
distribution, where the higher the fitness of a 
chromosome, the higher the probability it has to take 
part in the reproduction process. In our algorithm 
there are parameters that set the number of 
mutations and crossovers that may occur during each 
reproduction phase (optimization cycle). 

 

Figure 4: The mutation procedure. 

Other parameters allow changing the number of 
randomly generated chromosomes at each new 
iteration, and the number of immune chromosomes 
(unchangeable between iterations). It is also possible 
to set the algorithm to just accept crossovers and/or 
mutations that improve the group of solutions. In the 
case of just accepting improving crossovers, the 
offspring of two chromosomes is measured in terms 
of fitness, and if it is more fit than one of its parents, 
then the new chromosome is kept, otherwise it is 
discarded. 

All the above mentioned parameters will 
determine the global efficiency of the algorithm in 
respect to a specific problem, which in this case is 
the Team Orienteering Problem (TOP). 

3.3 Software Developed 

A JAVA software application was developed to 
implement the algorithm described previously. The 
application has a simple, yet functional, Graphical 
User Interface (GUI), with a handful of options that 
allows parameters of the GA to be adjusted and help 
obtain better results in a specific problem or TOP 
instance. Although aware of this, we decided to keep 
the same settings during all the tests so that a 
comparison with other research authors could be 
done, as well as an overall evaluation of our GA. 

 

Figure 5: The “Solution Viewer” representing routes while 
the application solves an instance. 

The developed software application can load 
different instances and it is possible to set the 
stopping condition. The other previously described 
parameters can also be changed through the menu. 
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There is also a visualization element that represents 
the current loaded instance (figure 5), where the 
circles correspond to customers in the TOP.  

We consider the software is able to run a series 
of experiments on some well-known test instances.  

4 COMPUTATIONAL RESULTS 

A series of computational experiments were 
conducted in order to test the performance of our 
GA. The computational experiments were performed 
on 24 of the 320 benchmark instances published by 
Chao et al. (1996). The instances were chosen in a 
semi-random way within four different sets, in order 
to introduce diversity and different degrees of 
difficulty while testing our algorithm. We compared 
our results to the ones obtained by Chao et al. 
(1996), hereafter referred to as CGW, the results 
achieved by Tang and Miller-Hooks, hereafter 
referred to as TMH, and also the results produced by 
the algorithms presented by Archetti et al. (2006), 
hereafter referred to as AHS. The tests were run on a 
laptop computer with an Intel Pentium Core 2 Duo 
2.53GHz processor and 4GB of RAM. 

The chosen stopping criterion was the number of 
iterations to run the algorithm for each instance. This 
value was set to 100,000 iterations. There are 100 
vertices in the first set, 66 in the second set, 64 in the 
third, and 102 in the fourth set of instances.  

In each set of instances, the location and score of 
each vertex is identical. An instance is characterized 
by a number of vehicles, varying between 2 and 4, 
and by a time limit (Tmax). The best-known solution 
values for the tested instances were produced by the 
AHS algorithms. 

In order to execute the tests, the following 
configuration for the GA was set: 

 

 Total Population: 55 
 30 Crossovers per iteration 
 10 Mutations per iteration 
 10 Randomly Generated Individuals 
 5 Immune Individuals 
 Only accepts crossovers with improvement 
 Accepts all the results from mutations 
 

We ran our algorithm ten times on each instance. 
The results obtained in the tested instances with our 
GA algorithm, hereafter referred to as GATOP-1, 
are presented in Table 1, with the best scores 
displayed in bold print.  The values fmin and fmax 
are respectively denoted as the minimum and 
maximum value obtained with the fitness function. 

In the TOP, the fitness value corresponds to the 
total reward collected or profit made with all the 
determined routes (one for each available vehicle). 
The value fmin can be considered a guaranteed 
value, reflecting the overall robustness of the 
algorithm, along with the average fitness value. The 
value fmax represents the ability of the algorithm to 
reach good solutions. It is obtained by running the 
algorithm more than once (ten times in our 
experiments) and taking benefit of the randomness, 
resulting in a larger computational time. 
Computational time of a run, with the default 
settings, rarely exceeds 8 minutes in the most 
difficult instances. 

As can be observed in Table 1, on 13 of the 24 
instances, our algorithm achieved the same value as 
AHS. Comparing to the other authors, our scores 
were equal to TMH in 6 instances and equal to 
CGW in 4. In addition, GATOP-1 outperformed 
TMH eight times and CGW eleven times. 

Table 1: Results achieved with GATOP-1 in the selected 
benchmark instances. 

 

Avg fmin fmax
p4.2.e 566.80 514 601 618 593 580

p4.2.n 978.40 894 1056 1171 1150 1112

p4.3.f 552.40 519 573 579 579 552

p4.3.i 696.00 624 778 807 785 798

p4.4.l 774.40 730 812 880 875 847

p4.4.q 941.90 876 1010 1161 1124 1084

p5.2.e 180.00 180 180 180 180 175

p5.2.m 829.50 800 860 860 860 855

p5.3.h 260.00 260 260 260 260 255

p5.3.v 1357.00 1310 1395 1425 1410 1400

p5.4.o 676.50 660 690 690 680 675

p5.4.t 1076.00 1035 1160 1160 1100 1160

p6.2.j 913.20 882 948 948 936 942

p6.2.n 1192.80 1164 1242 1260 1260 1242

p6.3.i 630.50 606 642 642 612 642

p6.3.l 961.80 936 1002 1002 990 972

p6.4.k 526.80 522 528 528 522 546

p6.4.n 1030.80 948 1068 1068 1068 1068

p7.2.e 290.00 290 290 290 290 275

p7.2.r 924.10 863 1027 1094 1067 1082

p7.3.g 344.00 344 344 344 344 338

p7.3.s 907.30 839 974 1081 1061 1064

p7.4.i 366.00 366 366 366 359 338

p7.4.t 920.40 839 953 1077 1067 1066

CGW
Inst 

ance

GATOP‐1
AHS TMH
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In respect to the best scores, GATOP-1 fell 
behind on 12 instances, with a maximum error of 
151 and an average error of 57.7. The results 
produced with GATOP-1, in terms of consistency, 
are worse than the results achieved by AHS. In some 
instances, since there is a considerable gap between 
the fmin and fmax values, and also between fmax and 
the average values (Avg column in Table 1). In 
addition , in some of the tested benchmark instances, 
our GA scored considerably less than the best 
solution for each of those instances, marked in bold 
print (Table 1). We consider the gap between our 
scores and the best scores occurred for three reasons. 
One of them may relate to a non-optimal balance 
between the genetic operators (crossovers, 
mutations), the number of new solutions randomly 
generated, and the number of immutable solutions 
(auto-immune individuals). 

We performed the tests with a fixed parameter 
configuration, but we also checked if, by 
proportionally increasing the parameters values, the 
algorithm would perform better, which in fact did 
occur but not in a significant way and at the expense 
of greater computational time. Therefore, improved 
results may be produced once a better configuration 
for the GA is determined.  

Another reason that might explain some failures 
with GATOP-1 is the way of constructing feasible 
solutions. Before the algorithm evaluates the fitness 
of a chromosome, the process of solution 
construction takes place. It begins by generating the 
route for the first vehicle, following the priority list 
present in the first sub-chromosome. The customers 
are consecutively added to the route, respecting the 
ordered list. Once the time limit is reached, the next 
route starts to be generated. This method can restrict 
the evolution of the solution, and this process could 
be improved if it is performed in a parallelized 
system, so that all the routes are generated at the 
same time, allowing them to achieve better profits.  

We concluded that the last reason for failure 
could be the lack of another genetic operator in the 
algorithm. During the tests with GATOP-1, we 
observed the best solution values achieved and also 
their graphical representations, and in some cases we 
noted optimization deficits in the generated routes. 
For example, we can consider a part of a route where 
six customers are visited, following the order given 
by the blue lines in figure 6. The time (t) between 
the vertices is also given. By calculating the total 

time of the current route, we get the value 15.6, but 
it is possible to lower this to 10.6 simply by 
following a different visiting order of customers, for 
example, going from vertex 1, then to vertex 3, then 
2, and finally to vertex 4. So when rearrangement is 
possible and it decreases the total time consumption 
of the routes, then the new route should be kept 
instead of the initial one, since the fitness or total 
reward is maintained (same customers visited). It 
can also happen that the time saved by the improved 
route is enough to add one or more customers to it, 
and consequently increase the total profit to be 
collected. 

 

Figure 6: Example situation of an under-optimized route. 

 

Figure 7: Improving an under-optimized route with a 
special mutation process.  

Our algorithm, GATOP-1, is not able to optimize 
situations such as the given example with its current 
features. To overcome this problem, we promote the 
development of a new and specific mutation 
operator that can perform rearrangements to the 
routes between their validation (construction of a 
feasible solution) and their fitness evaluation. In 
order to perform properly, the new mutation 
operator should execute a series of swaps between a 
group of random yet consecutive genes in a route. 
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While executing the swaps, unfeasible solutions 
might be produced, but they should be kept and 
mutated until a maximum number of swaps are 
attained. In figure 7, the special mutation process is 
presented, where consecutive simple swaps take 
place to optimize the route in figure 6. 

5 CONCLUSIONS 

In this paper we presented a solution method for the 
TOP based on a genetic algorithm (GA). Based on 
our results, we can state that our GA is fairly 
efficient and attained the best-known solutions in 
half of the tested instances. 

With these experiments, we were able to improve 
our knowledge in the TOP while aiming for the 
purposes of the GATOP project. Future research 
should focus on the development and testing of other 
methods to apply in a GA to solve the TOP.  

The overall performance of the developed GA is 
fairly acceptable, but there are some small, yet 
observable, inconsistencies that lie specifically in the 
gap between the highest and the lowest scores we 
achieved during the tests. We believe that by 
avoiding the suggested sources of error, our results 
will improve significantly in our lowest scores. The 
usage of dynamic parameters to set the behaviour of 
the evolution process within the genetic algorithm 
can be interesting idea to explore. That way, the 
algorithm would be able to adapt to its own current 
performance and try to improve it actively. 
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