
Developing Tools for the Team Orienteering Problem
A Simple Genetic Algorithm

João Ferreira1, José A. Oliveira1, Guilherme A. B. Pereira1, Luis Dias1
Fernando Vieira2, João Macedo2, Tiago Carção2, Tiago Leite2 and Daniel Murta2

1Centre Algoritmi, Universidade do Minho, Braga, Portugal
2 Graduation in Informatics Engineering, Universidade do Minho, Braga, Portugal

Keywords: Routing Problems, Team Orienteering Problem, Optimization, Metaheuristics, Genetic Algorithm.

Abstract: Presently, the large-scale collection process of selective waste is typically expensive, with low efficiency
and moderate effectiveness. Despite the abundance of commercially available software for fleet
management, real life managers are only minimally helped by it when dealing with resource and budgetary
requirements, scheduling activities, and acquiring resources for their accomplishment within the constraints
imposed on them. To overcome these issues, we intend to develop a solution that optimizes the waste
collection process by modelling this problem as a vehicle routing problem, in particular as a Team
Orienteering Problem (TOP). In the TOP, a vehicle fleet is assigned to visit a set customers, while executing
optimized routes that maximize total profit and minimize resources needed. In this work, we propose to
solve the TOP using a genetic algorithm, in order to achieve challenging results in comparison to previous
work around this subject of study. Our objective is to develop and evaluate a software application that
implements a genetic algorithm to solve the TOP. We were able to accomplish the proposed task and
achieved interesting results with the computational tests by attaining the best known results in half of the
tested instances.

1 INTRODUCTION

In the last few decades, waste separation and
recycling have become critically important. They are
performed via an easy to accomplish daily routine
due to the existence of collection points, which are
usually placed near residential areas, with greater
concentration in city centres and more spread out in
the suburbs and rural areas.

Among waste collection companies, a common
problem is finding efficient methods for performing
the collection of separated waste, while using a
limited fleet of vehicles and obtaining the highest
possible profit. This problem may be addressed as a
variation of the well-known Vehicle Routing
Problem (VRP), described in the literature as the
problem of designing the least-costly routes from a
depot to a set of customers of known demand. The
routes must be designed so that each customer is
visited exactly once, without violating capacity
constraints and while aiming to minimize the
number of vehicles required and the total distance

travelled. However, the majority of real-world
applications require systems that are more flexible in
order to overcome some imposed constraints that
may lead to the selection of customers. To deal with
these changes, the Team Orienteering Problem
(TOP) models can be used. In the TOP, each
customer has an associated profit, and the routes
have maximum durations or distances. The choice of
customers is made by balancing their profits and
their contributions for the route duration or distance.
The objective is to maximize the total reward
collected by all routes while satisfying the time
limit.

The TOP is a fairly recent concept, first
suggested by Butt and Cavalier (1994) under the
name Multiple Tour Maximum Collection Problem.
Later, Chao et al. (1996) formally introduced the
problem and designed one of the most frequently
used sets of benchmark instances. In 2006, Archetti
et al. achieved many of the currently best-known
solutions for the TOP instances by presenting two
versions of Tabu Search, along with two

332 Ferreira J., Oliveira J., Pereira G., Dias L., Vieira F., Macedo J., Carção T., Leite T. and Murta D..
Developing Tools for the Team Orienteering Problem - A Simple Genetic Algorithm.
DOI: 10.5220/0004273801340140
In Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems (ICORES-2013), pages 134-140
ISBN: 978-989-8565-40-2
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

metaheuristics based on Variable Neighbourhood
Search (VNS). Other competitive approaches were
carried out by Ke et al. (2008), with two Ant Colony
Optimization (ACO) variations; Vansteenwegen et
al. (2009), with a VNS-based heuristic; and more
recently, Souffriau et al. (2010) designed two
variants of Greedy Randomized Adaptive Search
Procedure with Path Relinking.

The work presented in this paper is part of
experiments that are integrated in the R&D project
named Genetic Algorithm for Team Orienteering
Problem (GATOP), which was approved by the
Portuguese Foundation for Science and Technology
(Fundação para a Ciência e Tecnologia – FCT). It
involves five combined tasks to accomplish the
desired goal which is the development of a more
complete and efficient solution for several real-life
multi-level Vehicle Routing Problems (VRP), with
emphasis on the waste collection management. This
should be achieved by the implementation and
testing of heuristic and optimization strategies, in
close collaboration with demand forecasting,
transportation problems, simulation, and multi-
criteria decision models.

Within the GATOP project, the main task is to
solve the TOP and the development of heuristic
solutions based on a genetic algorithm (GA) is
suggested. The simplicity of a GA in modelling
more complex problems and its easy integration with
other optimization methods were the factors
considered for its choice. Therefore, we believe it
can be applied to solve the TOP, since it was also
used for the Orienteering Problem by Tasgetiren
(2002).

In this work we propose to solve medium-to-
large-scale TOP instances considering a time
constraint. We intend to verify whether it is possible
to develop a method, based on a GA, that optimizes
the TOP by achieving equal or better results as
presented in previous studies.

2 PROBLEM FORMULATION

The aim of the present study is to solve the TOP,
which means to develop a method that determines P
paths which start in the same location and have the
same destination, in order to maximize the total
profit made in each path, while respecting a time
constraint. Then, the generated paths are assigned to
a limited vehicle fleet, usually one path to each
available vehicle.

In this work we followed the mathematical
formulation presented in the work done by Ke et al.,

(2008). The objective function for the TOP is given
in equation 1, where n is the total number of
vertices, m is the number of vehicles available, the
value y shows if vertex i is visited or not by a
vehicle k, and finally, r is the reward associated to a
certain vertex i. The objective function consists of
finding m feasible routes that maximizes the total
reward or profit.

maxݎ ∙ ݕ

ୀଵ

ିଵ

ୀଶ

 (1)

3 DEVELOPING TOOLS

3.1 The Genetic Algorithm

The Genetic Algorithm (GA) is a search heuristic
that imitates the natural process of evolution as it is
believed to happen to all the species of living beings.
This method uses nature-inspired techniques such as
mutation, crossover, inheritance and selection, to
generate solutions for optimization problems. The
success of a GA depends on the type and complexity
of the problem to which it is applied.

In a GA, the chromosomes or individuals are
represented as strings which encode candidate
solutions for an optimization problem, that later
evolve towards better solutions.

The GA evolutionary process starts off by
initializing a population of solutions (usually
randomly), which will evolve and improve during
three main steps:

 Selection: a portion of each successive
generation is selected, based on their fitness, in order
to breed the new, and probably better fit,
generations.

 Reproduction: the selected solutions produce
the next generation through mutation and/or
crossover, propagating the most crucial changes to
the future generations by inheritance.

 Termination: once a stopping criteria is met, the
generational process ends.

3.2 Algorithm Details

The GA we developed to solve the TOP takes into
account the main elements of the problem: the
customers and the vehicles.

 There is a set of n customers that must be visited
by at most once and only by one vehicle. The
customers correspond to the vertices in a network

Developing�Tools�for�the�Team�Orienteering�Problem�-�A�Simple�Genetic�Algorithm

333

graph.
A fleet of m vehicles is available, and each

vehicle is given a priority list, randomly generated,
representing the preferred visiting order of
customers, figure 1.

Figure 1: Priority lists for 2 vehicles in an instance with 6
vertices.

In this GA, every chromosome is composed by m
sub-chromosomes, each one corresponding to a
different priority list of customers (figure 1). The
sub-chromosomes are composed by n genes, one for
each customer. The i gene of a chromosome
corresponds to the i-th (݅௧) customer to be visited.
In other words, it is the customer in the i-th position
in a priority list. The allele is the index of a customer
in the service network and therefore indicates which
customer is visited in a given gene or position.
Consequently, the total number of genes in a
chromosome is equal to ݉ ൈ ݊ (one priority list for
each vehicle).

The representation of a valid solution is the result
of a constructing process, where the vertices are
added to the routes by following the order they
appear in priority lists for each vehicle. During this
process, each vertex (or customer) v is chosen for a
route if:

 It is possible to go from the last added vertex to
v and from v directly to the final vertex, without
violating the time limit.

 Vertex v does not belong to another vehicle’s
route.

In figure 2 it is presented a graphic representation
of a feasible solution for a 6-vertices instance with
two vehicles, A (red line) and B (blue line).
Therefore, two routes, one for each vehicle, were
calculated:

 Route A – The solution contains vertices 1-6-3-
4, and these vertices become automatically
unavailable for vehicle B. Vertices 5 and 2 are not
visited because the time limit for the route is
exceeded.

 Route B – Since the route determined for
vehicle A already picked up four vertices from the
priority list of vehicle B, the next available vertex to
be added is vertex 5, concluding the route since
adding vertex 2 means disrespecting the time
constraint.

Figure 2: Representation of a possible solution for 2
vehicles in a 6-vertices instance.

A fitness function is used in the genetic
algorithm to evaluate the overall fitness of a
chromosome, which corresponds to the total reward
collected in a reached solution. The quality of this
information highly influences the reproductive
process.

The implemented GA follows a very simple and
common operation structure:

Begin
P ← Initialize (population);
S ← Selection (P);
While stop criteria not met do:

 O ← Reproduction (S);
 P ← O + ΔP

S ← Selection (P);
End

Where P is the population of potential solutions
(chromosomes) at the moment, S is the group of
solutions within P, selected to produce the offspring
O, which is the next generation of solutions. As for
ΔP, it represents a residual part of P that contains
non-selected solutions, used to promote
diversification in the reproductive process and avoid
early convergence to local optimal solutions.

During the reproduction phase, two procedures
take place: crossover and mutation. The crossover
operation involves the combination of two
chromosomes in order to obtain a better one by
inheriting the good genes from each parent. In our
algorithm the process goes by removing a block of
consecutive genes from one parent solution and
placing it in a random position within the other
parent solution. The block of genes has a random
size, and the insertion position may vary randomly.
After the insertion, the repeated vertices in the
solution are removed to maintain the correct size of
the sub-chromosomes.

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

334

The schematic in figure 3 shows how the
crossover procedure is done. In this example, the
crossover occurs between two chromosomes, A and
B, with two sub-chromosomes each. At first, a block
of consecutive genes is removed from B. Then, the
same block is inserted in A within a randomly
chosen sub-chromosome, in an arbitrary position.
The removal of repeated vertices starts in the
position where the sub-chromosome of A was
modified, therefore preventing the removal of the
new added vertices. The new generated solution is
then ready to struggle for a spot in the next
generation.

Figure 3: The crossover procedure.

In the other reproduction method, mutation, a
valid solution can alter its own genetic code by
randomly modifying the genes order. In this case we
decided to perform a simple position switch by first
selecting one vertex (or gene) from one of the
priority lists and exchange with the vertex right after
that selected one, in the same list. An example on
how this process works can be observed in figure 4.

The individuals are selected to be reproduced by
Crossover and Mutation according to a triangular
distribution, where the higher the fitness of a
chromosome, the higher the probability it has to take
part in the reproduction process. In our algorithm
there are parameters that set the number of
mutations and crossovers that may occur during each
reproduction phase (optimization cycle).

Figure 4: The mutation procedure.

Other parameters allow changing the number of
randomly generated chromosomes at each new
iteration, and the number of immune chromosomes
(unchangeable between iterations). It is also possible
to set the algorithm to just accept crossovers and/or
mutations that improve the group of solutions. In the
case of just accepting improving crossovers, the
offspring of two chromosomes is measured in terms
of fitness, and if it is more fit than one of its parents,
then the new chromosome is kept, otherwise it is
discarded.

All the above mentioned parameters will
determine the global efficiency of the algorithm in
respect to a specific problem, which in this case is
the Team Orienteering Problem (TOP).

3.3 Software Developed

A JAVA software application was developed to
implement the algorithm described previously. The
application has a simple, yet functional, Graphical
User Interface (GUI), with a handful of options that
allows parameters of the GA to be adjusted and help
obtain better results in a specific problem or TOP
instance. Although aware of this, we decided to keep
the same settings during all the tests so that a
comparison with other research authors could be
done, as well as an overall evaluation of our GA.

Figure 5: The “Solution Viewer” representing routes while
the application solves an instance.

The developed software application can load
different instances and it is possible to set the
stopping condition. The other previously described
parameters can also be changed through the menu.

Developing�Tools�for�the�Team�Orienteering�Problem�-�A�Simple�Genetic�Algorithm

335

There is also a visualization element that represents
the current loaded instance (figure 5), where the
circles correspond to customers in the TOP.

We consider the software is able to run a series
of experiments on some well-known test instances.

4 COMPUTATIONAL RESULTS

A series of computational experiments were
conducted in order to test the performance of our
GA. The computational experiments were performed
on 24 of the 320 benchmark instances published by
Chao et al. (1996). The instances were chosen in a
semi-random way within four different sets, in order
to introduce diversity and different degrees of
difficulty while testing our algorithm. We compared
our results to the ones obtained by Chao et al.
(1996), hereafter referred to as CGW, the results
achieved by Tang and Miller-Hooks, hereafter
referred to as TMH, and also the results produced by
the algorithms presented by Archetti et al. (2006),
hereafter referred to as AHS. The tests were run on a
laptop computer with an Intel Pentium Core 2 Duo
2.53GHz processor and 4GB of RAM.

The chosen stopping criterion was the number of
iterations to run the algorithm for each instance. This
value was set to 100,000 iterations. There are 100
vertices in the first set, 66 in the second set, 64 in the
third, and 102 in the fourth set of instances.

In each set of instances, the location and score of
each vertex is identical. An instance is characterized
by a number of vehicles, varying between 2 and 4,
and by a time limit (Tmax). The best-known solution
values for the tested instances were produced by the
AHS algorithms.

In order to execute the tests, the following
configuration for the GA was set:

 Total Population: 55
 30 Crossovers per iteration
 10 Mutations per iteration
 10 Randomly Generated Individuals
 5 Immune Individuals
 Only accepts crossovers with improvement
 Accepts all the results from mutations

We ran our algorithm ten times on each instance.
The results obtained in the tested instances with our
GA algorithm, hereafter referred to as GATOP-1,
are presented in Table 1, with the best scores
displayed in bold print. The values fmin and fmax
are respectively denoted as the minimum and
maximum value obtained with the fitness function.

In the TOP, the fitness value corresponds to the
total reward collected or profit made with all the
determined routes (one for each available vehicle).
The value fmin can be considered a guaranteed
value, reflecting the overall robustness of the
algorithm, along with the average fitness value. The
value fmax represents the ability of the algorithm to
reach good solutions. It is obtained by running the
algorithm more than once (ten times in our
experiments) and taking benefit of the randomness,
resulting in a larger computational time.
Computational time of a run, with the default
settings, rarely exceeds 8 minutes in the most
difficult instances.

As can be observed in Table 1, on 13 of the 24
instances, our algorithm achieved the same value as
AHS. Comparing to the other authors, our scores
were equal to TMH in 6 instances and equal to
CGW in 4. In addition, GATOP-1 outperformed
TMH eight times and CGW eleven times.

Table 1: Results achieved with GATOP-1 in the selected
benchmark instances.

Avg fmin fmax
p4.2.e 566.80 514 601 618 593 580

p4.2.n 978.40 894 1056 1171 1150 1112

p4.3.f 552.40 519 573 579 579 552

p4.3.i 696.00 624 778 807 785 798

p4.4.l 774.40 730 812 880 875 847

p4.4.q 941.90 876 1010 1161 1124 1084

p5.2.e 180.00 180 180 180 180 175

p5.2.m 829.50 800 860 860 860 855

p5.3.h 260.00 260 260 260 260 255

p5.3.v 1357.00 1310 1395 1425 1410 1400

p5.4.o 676.50 660 690 690 680 675

p5.4.t 1076.00 1035 1160 1160 1100 1160

p6.2.j 913.20 882 948 948 936 942

p6.2.n 1192.80 1164 1242 1260 1260 1242

p6.3.i 630.50 606 642 642 612 642

p6.3.l 961.80 936 1002 1002 990 972

p6.4.k 526.80 522 528 528 522 546

p6.4.n 1030.80 948 1068 1068 1068 1068

p7.2.e 290.00 290 290 290 290 275

p7.2.r 924.10 863 1027 1094 1067 1082

p7.3.g 344.00 344 344 344 344 338

p7.3.s 907.30 839 974 1081 1061 1064

p7.4.i 366.00 366 366 366 359 338

p7.4.t 920.40 839 953 1077 1067 1066

CGW
Inst

ance

GATOP‐1
AHS TMH

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

336

In respect to the best scores, GATOP-1 fell
behind on 12 instances, with a maximum error of
151 and an average error of 57.7. The results
produced with GATOP-1, in terms of consistency,
are worse than the results achieved by AHS. In some
instances, since there is a considerable gap between
the fmin and fmax values, and also between fmax and
the average values (Avg column in Table 1). In
addition , in some of the tested benchmark instances,
our GA scored considerably less than the best
solution for each of those instances, marked in bold
print (Table 1). We consider the gap between our
scores and the best scores occurred for three reasons.
One of them may relate to a non-optimal balance
between the genetic operators (crossovers,
mutations), the number of new solutions randomly
generated, and the number of immutable solutions
(auto-immune individuals).

We performed the tests with a fixed parameter
configuration, but we also checked if, by
proportionally increasing the parameters values, the
algorithm would perform better, which in fact did
occur but not in a significant way and at the expense
of greater computational time. Therefore, improved
results may be produced once a better configuration
for the GA is determined.

Another reason that might explain some failures
with GATOP-1 is the way of constructing feasible
solutions. Before the algorithm evaluates the fitness
of a chromosome, the process of solution
construction takes place. It begins by generating the
route for the first vehicle, following the priority list
present in the first sub-chromosome. The customers
are consecutively added to the route, respecting the
ordered list. Once the time limit is reached, the next
route starts to be generated. This method can restrict
the evolution of the solution, and this process could
be improved if it is performed in a parallelized
system, so that all the routes are generated at the
same time, allowing them to achieve better profits.

We concluded that the last reason for failure
could be the lack of another genetic operator in the
algorithm. During the tests with GATOP-1, we
observed the best solution values achieved and also
their graphical representations, and in some cases we
noted optimization deficits in the generated routes.
For example, we can consider a part of a route where
six customers are visited, following the order given
by the blue lines in figure 6. The time (t) between
the vertices is also given. By calculating the total

time of the current route, we get the value 15.6, but
it is possible to lower this to 10.6 simply by
following a different visiting order of customers, for
example, going from vertex 1, then to vertex 3, then
2, and finally to vertex 4. So when rearrangement is
possible and it decreases the total time consumption
of the routes, then the new route should be kept
instead of the initial one, since the fitness or total
reward is maintained (same customers visited). It
can also happen that the time saved by the improved
route is enough to add one or more customers to it,
and consequently increase the total profit to be
collected.

Figure 6: Example situation of an under-optimized route.

Figure 7: Improving an under-optimized route with a
special mutation process.

Our algorithm, GATOP-1, is not able to optimize
situations such as the given example with its current
features. To overcome this problem, we promote the
development of a new and specific mutation
operator that can perform rearrangements to the
routes between their validation (construction of a
feasible solution) and their fitness evaluation. In
order to perform properly, the new mutation
operator should execute a series of swaps between a
group of random yet consecutive genes in a route.

Developing�Tools�for�the�Team�Orienteering�Problem�-�A�Simple�Genetic�Algorithm

337

While executing the swaps, unfeasible solutions
might be produced, but they should be kept and
mutated until a maximum number of swaps are
attained. In figure 7, the special mutation process is
presented, where consecutive simple swaps take
place to optimize the route in figure 6.

5 CONCLUSIONS

In this paper we presented a solution method for the
TOP based on a genetic algorithm (GA). Based on
our results, we can state that our GA is fairly
efficient and attained the best-known solutions in
half of the tested instances.

With these experiments, we were able to improve
our knowledge in the TOP while aiming for the
purposes of the GATOP project. Future research
should focus on the development and testing of other
methods to apply in a GA to solve the TOP.

The overall performance of the developed GA is
fairly acceptable, but there are some small, yet
observable, inconsistencies that lie specifically in the
gap between the highest and the lowest scores we
achieved during the tests. We believe that by
avoiding the suggested sources of error, our results
will improve significantly in our lowest scores. The
usage of dynamic parameters to set the behaviour of
the evolution process within the genetic algorithm
can be interesting idea to explore. That way, the
algorithm would be able to adapt to its own current
performance and try to improve it actively.

ACKNOWLEDGEMENTS

This study was partially supported by the project
GATOP - Genetic Algorithms for Team
Orienteering Problem (Ref PTDC/EME -
GIN/120761/2010), financed by national funds by
FCT / MCTES, and co-funded by the European
Social Development Fund (FEDER) through the
COMPETE – Programa Operacional Fatores de
Competitividade (POFC) Ref FCOMP-01-0124-
FEDER-020609.

REFERENCES

Archetti, C., Hertz, A., Speranza, M. G., 2006.
Metaheuristics for the team orienteering problem. In
Journal of Heuristics, 13:49-76.

Butt, S. E., Cavalier, T. M., 1994. A heuristic for the
multiple tour maximum collection problem. In
Computers and Operations Research, 21:101-111.

Chao, I. M., Golden, B., Wasil, E. A., 1996. Theory and
Methodology - The Team Orienteering Problem. In
European Journal of Operational Research 1996a, 88,
464-474.

Ke, L., Archetti, C., Feng, Z., 2008. Ants can solve the
team orienteering problem. In Computers and
Industrial Engineering, 54, 648-665.

Souffriau, W., Vansteenwegen, P., Vanden Berghe, G.,
Van Oudheusden, D., 2010. A Path Relinking
Approach for the Team Orienteering Problem. In
Computers & Operations Research, Metaheuristics for
Logistics and Vehicle Routing, 37 (11), 1853-1859.

Tang, H., Miller-Hooks, E., 2005. A tabu search heuristic
for the team orienteering problem. In Computers and
Operations Research, 32, 1379-1407.

Tasgetiren, M. F., 2002, A Genetic Algorithm with an
Adaptive Penalty Function for the Orienteering
Problem. Journal of Economic and Social Research, 4
(2), 1-26.

Vansteewegen, P., Souffriau, W., Vanden Berghe, G., Van
Oudheusden, D., 2009. A guided local search
metaheuristic for the team orienteering problem. In
European Journal of Operational Research, 196(1),
118-127.

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

338

