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Abstract: The Vehicle Routing Problem is a well-studied problem. Since its formulation in 1959, a great number of
powerful solution methods have been designed. However, for large scale problems, few techniques are able
to consistently find good solutions within an acceptable time limit. In this paper, the concept of Static Move
Descriptors, a recently published technique for speeding up Local Search algorithms, is analyzed and an
efficient implementation is suggested. We describe several changes that significantly improve the performance
of an SMD-based Local Search algorithm. The result is an efficient and flexible technique that can easily be
adapted to different metaheuristics and can be combined with other complexity reduction strategies.

1 INTRODUCTION

1.1 Vehicle Routing Problem

The Vehicle Routing Problem is a general formula-
tion used to model a wide range of common distri-
bution problems. The basic VRP minimizes the total
distance required to visit a set of customers using mul-
tiple vehicles. This paper deals with the Capacitated
VRP, where vehicles have a capacity constraint.

A CVRP instance is defined by a complete graph
G = (V;E), with V the customer set and E the edge
set. Each edge in E has an associated distance ci j, i.e.
the cost of traversing edge (i; j). The goal is to find
the minimum cost set of routes, starting and ending
in v0, so that each vertex in V is visited. The sum
of customer demands, di, assigned to a route may not
exceed the capacity of the vehicle, D j.

We will assume a homogenous fleet, D j = D 8 j,
and a symmetric distance matrix, ci j = c ji 8i; j, that
satisfies the triangle inequality, ci j � cik + ck j 8i; j;k.
For a thorough introduction to the VRP, we refer to
(Lenstra and Kan, 1981) and (Laporte, 2009).

1.2 Heuristics

The solving capabilities of exact methods are limited
to relatively small instances. For large scale problems
only heuristic methods are a viable option. Simple

heuristics, such as the Clarke and Wright savings al-
gorithm (Clarke and Wright, 1964), find decent solu-
tions in minimal time.

Once a solution is found, improvement heuristics,
such as the Lin-Kernighan algorithm (Lin, 1965), are
used to further improve the solution. However, the
result can be far from optimal, as basic heuristics get
stuck in local optima. When heuristic solutions are
inadequate, metaheuristics are used to strategically
guide the search beyond local optima. Modern meta-
heuristics can find near-optimal solutions, but their
performance scales poorly for larger instances.

Popular, high-performance local search-based
metaheuristics include Guided Local Search
(Voudouris et al., 2010) (Kilby et al., 1997),
Tabu Search (Gendreau et al., 1994) (Xu and Kelly,
1996) (Cordeau and Maischberger, 2011) and
Variable Neighborhood Search (Mladenovic and
Hansen, 1997) (Kytöjoki et al., 2007). Local Search
is also used in hybrid metaheuristics (Nguyen and
Yoshihara, 2007) (Lee et al., 2010).

This paper deals with Static Move Descriptors
(SMD), a new concept proposed by (Zachariadis and
Kiranoudis, 2010). To understand the logic behind
SMDs and the impact of our suggestions in this paper,
we will first discuss the fundamental building blocks
of local search based algorithms in 2 and their con-
nection to performance in 2.5. We will then turn to the
SMD technique in 3. Our suggestions are explained
in 4. Finally, we will compare implementations in 5.
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2 LOCAL SEARCH

Local Search-based algorithms perform an iterative
search through the solution space, by continuously
evaluating and making small adjustments to a solu-
tion. The search is very intense and highly localized,
but requires a guiding system to escape local minima.

A Local Search algorithm exists of several build-
ing blocks, or decision rules: the operator set, the
search and acceptance strategies, feasibility handling
and the guidance system.

2.1 Operators

The local search operators define which adjustments
can be made to a solution, or which solutions can
be reached at each step. Simple operators are cheap
to evaluate, but have less potential for improvement.
Complex operators can find larger improvements, but
require more effort. Most modern algorithms use sim-
ple operators with a complex guiding system.

The most popular simple operator is the 2-Opt
(Croes, 1958) and its generalization k-Opt (Lin,
1965). Excellent examples of complex operators are
Node Ejection Chains (Rego, 2001) and Cyclic Trans-
fers (Thompson and Psaraftis, 1993).

2.2 Search and Acceptance

Move selection is a crucial decision. Most authors
use a best-accept strategy, where all possible moves
are evaluated and the best is executed. Alternatively,
the search can accept the first improving move it en-
counters. This reduces the evaluation effort, but can
lead to low quality moves.

For the first-accept strategy, the order in which
we evaluate moves dictates which move will be exe-
cuted. A smart search strategy might find high quality
moves in minimal effort, but finding such strategies
has proven difficult for the VRP.

2.3 Feasibility

Allowing temporary constraint violations can give the
search more flexibility. However, it can be difficult to
guide the search back to a feasible solution. Most au-
thors prefer to enforce feasibility and guide the search
around infeasible regions.

2.4 Search Guiding

A local search heuristic stops when it reaches a local
optimum and no operator can find further improve-
ments. To diversify the search, a guiding system helps

the local search operators move away from the in-
cumbent by adjusting the problem. Simple systems
include random restarts and mutations, where a new
starting point is generated for the local search to con-
tinue. More complex systems keep track of frequent
solution characteristics, which are then penalized or
even forbidden to ensure new solutions are reached.

2.5 Complexity

The total optimization effort is decided by the cost
of a single iteration and the number of iterations re-
quired to reach an optimum. The first depends on the
cost of a single move evaluation, which is a small,
operator-specific constant, multiplied by the number
of possibilities for each operator in the set, easily de-
termined by how many nodes are required to define a
single move of that type, e.g. there are O(n2) distinct
ways of swapping two nodes. The number of itera-
tions is influenced by the quality of each move. Ad-
ditionally, as each operator only affects a small part
of the solution, we can intuitively see that the move
count will increase with instance size.

The double impact of instance size causes bad
scaling in Local Search-based metaheuristics. Reduc-
ing the impact of size on these effort factors improves
the efficiency. Sadly, few general efficiency strategies
exist in the VRP literature. The next paragraphs hold
short descriptions of several important complexity re-
duction strategies.

Candidate Lists. Attributed to (Glover, 1990), the
idea of Candidate Lists (CL) is to restrict the neigh-
borhood by preemptively eliminating unlikely edges
based on relevant characteristics, such as edge cost.
The size of the List varies widely between authors. A
narrow list may exclude the optimal solution.

Variable Neighborhood Descent. Variable Neigh-
borhood Descent (Mladenovic and Hansen, 1997) re-
duces the search effort by iteratively performing LS
optimizations with a single operator instead of the en-
tire set. The operator changeover strategy can affect
the performance in terms of quality and efficiency.

Don‘t-Look Bits. The nature of Local Search
makes it so that each iteration only affects a small part
of the solution. Moves that take place in unaffected
regions therefore remain unchanged. DLBs (Bentley,
1990) exploit this information by tagging unimproved
neighbor solutions until they are affected by an itera-
tion. This way, unchanged parts can be ignored in the
next iteration and redundant evaluations are skipped.
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3 STATIC MOVE DESCRIPTORS

The idea of Static Move Descriptors (Zachariadis and
Kiranoudis, 2010) is to build a memory structure that
enables the algorithm to keep track of changes in the
solution. Each move is stored in an efficient data
structure, ordered by its solution-dependent cost tag.
When a move is affected, its cost tag is updated. This
improves the scaling of operators by an order of n.

The implementation of the SMD technique pro-
vides efficient access to every move so they can be
easily found and updated, as well as make it easy to
search for the best move available. The underlying
algorithm is simple, iterating over three phases:

Initialization Phase. Given a starting solution, all
possible SMDs, one for each move, are generated and
their cost tags are calculated. The SMDs are then in-
serted into a Priority Queue (PQ), which keeps them
organized by their current cost tag.

Search Phase. The best SMD is extracted from the
PQ and its feasibility is checked. If infeasible, the
SMD is added to a Stack and the next SMD is ex-
tracted from the PQ. If feasible, the search ends and
all SMDs in the Stack are reinserted into the PQ. The
Update phase starts.

Update Phase. The feasible SMD is executed,
changing the solution. Using the SMD definition and
the update rules, all affected SMDs are identified and
deleted from the PQ. Their cost tags are updated with
regards to the new solution and they are reinserted.
The Search phase begins on the updated PQ.
The cost of the initialization phase can be amortized
over all moves. By updating the minimal amount of
cost tags, the scaling is improved. The downside is the
overhead of keeping the PQ organized. In the original
paper, the PQ is implemented as a Fibonacci Heap
(Fredman and Tarjan, 1987), which is a theoretically
optimal implementation for a PQ.

Drawbacks

The SMD technique is very promising in theory, but
does have several drawbacks. These will be the focus
of our own work, as we try to reduce their impact.

Memory Usage. Every SMD is stored during the
entire runtime of the algorithm. The memory require-
ments increase with the number of operators and the
complexity of each operator (e.g.: 2Opt � O(n2) vs.
3Opt � O(n3)). Additionally, the implementation of
the PQ adds significant extra costs.

Cross-operator Effects. Any change in the solu-
tion will affect SMDs of every operator. The up-
date effort grows linearly with the size of the operator
set. Additionally, the amount of updating rules, which
determine which SMDs need to be updated, grows
quadratically with the number of operators, making
it harder to implement efficiently.

Heap Overhead. The Heap greatly speeds up the
Searching phase, but its benefits are reduced by
its own cost. The SMD-based algorithm requires
many Heap operations and whilte a Fibonacci Heap
is theoretically optima, its practical performance is
poor. The effort of an operation increases with Heap
size, which grows strongly with instance size.

In the next chapter, we will suggest some ways to im-
prove the performance of SMD-based algorithms.

4 EFFICIENT SMD
IMPLEMENTATION

Three major changes are made. First, a Variable
Neighborhood search strategy (2.5) is adopted. Sec-
ondly, the Heap implementation is changed to one
with better practical performance. Lastly, the Search
phase is replaced with a novel heuristic heap search.

4.1 Variable Neighborhood Descent

By iteratively optimizing with a single operator, no
cross-operator updating is needed, drastically reduc-
ing the evaluation effort. Secondly, the heap size is
reduced, making all operations cheaper. However,
this change requires an Initialization phase (3) at each
changeover and reduces average move quality.

4.2 Binary Heap

The Binary Heap (Johnson, 1975) is the conceptual
opposite of the Fibonacci Heap: theoretically inferior,
but excellent practical performance. Preliminary tests
showed reduced memory usage and much faster Up-
date phases, but slower Search phases.

4.3 Heuristic Heap Search

Unlike the Fibonacci Heap, which relies on pointers
to organize its elements, a Binary Heap can be imple-
mented as an array with its Heap properties enforced
implicitly. This allows us to access elements without
making use of expensive Heap operations.

An�Efficient�Implementation�of�a�Static�Move�Descriptor-based�Local�Search�Heuristic

131



The array implementation maps the Tree-like
structure to linear memory by means of index-
relations. A node located at index k will find its
parent at k=2 and its left and right children at 2� k
and 2� k+ 1 respectively. Combined with the Heap
property (par(k)� k� children(k)), this means good
nodes are more likely to be located early in the array.

Figure 1: Tree-like structure of a Binary Heap.

Table 1: Array representation of a Binary Heap.

Index 0 1 2 3 4 5 6
Value 18 16 12 15 9 11 3

We can exploit this property by replacing the ex-
pensive iterated root-extracts by simple linear traver-
sal of the array, until a feasible SMD is found. This is
not guaranteed to be the best feasible move, but it is
very likely to be one of the best moves available.

This change adopts a first-of-operator acceptance
strategy with a strongly guided search strategy.

Combining these three changes leads to significant
speedups, with as only downside the forced change
from best-of-all to a guided first-of-operator strategy.

5 RESULTS

We compare our version to the original. If we can
show reduced time per iteration without strong re-
ductions in average move quality, we can declare our
version more efficient, provided our version does not
consistently lead to worse final solutions.

In an effort to reduce external bias, we will com-
pare each version relative to a naı̈ve implementation.

5.1 Algorithm Overview

We implemented and tested three algorithms:

1. The BASE algorithm: a naı̈ve implementation of
a best-accept variable neighborhood search.

2. The FIB algorithm: the original SMD implemen-
tation; uses a Fibonacci Heap and best-accept.

3. The BIN algorithm: our suggested algorithm, us-
ing the heuristical heap search.

All algorithms use a VND (see 2.5) scheme to
allow for a better comparison. Preliminary results
showed that even for the original algorithm, VND al-
ways reduced runtimes without sacrificing final solu-
tion quality. Additionally, we believe it is a necessary
change for the SMD technique to be viable, as it pro-
vides more flexibility for the operator set.

The operator set exists of the same three quadratic
operators as in (Zachariadis and Kiranoudis, 2010):
Swap, Relocate and 2Opt. Swap takes two nodes, i
and j, and swaps their positions. Relocate takes two
nodes, i and j, removes i from its current position and
reinserts it after j. The 2Opt has two variants: if i
and j are part of the same route, the route segment
between i and j is reversed; if i and j belong to differ-
ent routes, both routes are cut at i or j and the start of
one route is combined with the end of the other. Each
version uses the same cheapest-insertion construction
heuristic. We follow the VND scheme that consis-
tently lead to better results for each algorithm: 2Opt,
then Swap, then Relocate, repeat.

Tests were performed on 36 instances provided by
(Zachariadis and Kiranoudis, 2010), but due to space
constraints we will limit the report to 7 sets: 3 small
sets to analyze the scaling and 4 large sets for the ac-
tual performance.

� Small sets: g01, g04, 24 (240, 480, 720).

� Large sets: zk1 - zk4 (3000).

5.2 Time per Move

First we analyze the time per iteration. The BASE al-
gorithm performs a full evaluation and executes the
best. The SMD-based algorithms perform an Update
and Search phase, except in the first iteration follow-
ing an operator changeover, in which case they per-
form an Initialization and Search phase. Frequent
changeovers increase the average time per iteration
because of the required Initialization step.

Table 2 shows the average time per iteration for
the small sets per operator. Note that 2Opt is sig-
nificantly more expensive overall, because of its dual
(inter- and intraroute) nature, which results in addi-
tional work for each evaluation.

Comparing between sets, we see the BASE algo-
rithm scales poorly: tripling the instance size leads to
13 to 20 times slower iteration times. The FIB algo-
rithm performs poorly on small sets due to internal
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overhead, but scales well with instance size: increas-
ing instance size by 3 leads to an average slowdown
factor of 5. The BIN algorithm scales slightly better
still and runs significantly faster across the board, up
to 50 times faster than the FIB algorithm.

Table 2: Average time (ms) per iteration on small sets.

Set g01 g04 24
Size 240 480 720

BASE Swap 1.16 4.14 17.28
Reloc 0.88 3.76 11.51
2Opt 3.72 12.59 73.72

FIB Swap 1.38 3.30 6.41
Reloc 0.91 2.87 5.33
2Opt 4.60 10.89 22.13

BIN Swap 0.07 0.11 0.19
Reloc 0.06 0.10 0.17
2Opt 0.11 0.22 0.57

Table 3: Average time (ms) per iteration on large sets.

Set zk1 zk2 zk3 zk4
Size 3000 3000 3000 3000

BASE Swap 181.82 180.17 167.16 168.18
Reloc 118.15 116.75 109.56 114.91
2Opt 430.06 432.00 441.79 430.42

FIB Swap 66.01 66.31 66.94 67.38
Reloc 64.16 64.50 67.74 67.16
2Opt 132.58 146.44 124.93 136.62

BIN Swap 2.20 1.91 2.08 2.11
Reloc 1.63 1.44 1.44 1.47
2Opt 2.83 2.69 2.62 2.61

In table 3 we see the same comparison for the
large sets, which are roughly 12 times larger than
set g01. We see relative average slowdown factors
of 130, 50 and 27 for the BASE, FIB and BIN algo-
rithms respectively, further proving the scaling bene-
fits of the SMD technique. In total, the FIB algorithm
works roughly 3 times faster than BASE, while the
our BIN algorithm works roughly 110 times faster on
the large sets. We conclude that the BIN implementa-
tion can find and execute improvements much faster.

5.3 Move Quality

To verify our assumption that our novel heuristic heap
search leads to high quality moves, we measured the
number of iterations each algorithm needed to reach
a solution. To account for differences in optimization
paths, we used the quality of the worst final solution
of the three algorithms as a cutoff point for our data.
We also verified that neither technique consistently
lead to better final solutions. On the large sets, each

algorithm got within 12% to 5% of the best known
solutions, which is normal for a basic heuristic.

Table 4: Iterations required to reach similar solution quality.

g01 g04 24 zk1 zk2 zk3 zk4
BASE 276 494 679 11334 11329 9968 9794

FIB 285 476 656 10311 10475 9284 9884
BIN 357 651 1069 13242 10985 9867 10610

Table 4 shows that even the BASE and FIB al-
gorithms, which use the same strategy, still lead to
slightly different results. This can be explained by
difference in tie-breaking as well as precision errors.
While FIB may seem to outperform BASE consis-
tently, tests on other sets have disputed this. We have
taken the average of the two algorithms as comparison
point for BIN. The difference with our BIN algorithm
is more profound, requiring up to 30% more iterations
to reach a similar solution, although we see the rela-
tive difference becomes smaller for larger instances.

Our results show that our new implementation
benefits greatly from the intelligent searching of the
SMD technique, leading to improved scaling factors,
while suffering less from the overhead that haunted
the original implementation proposed by (Zachariadis
and Kiranoudis, 2010). We feel the trade-off, being at
most 30% more iterations versus a speedup factor of
50, is greatly in favor of our implementation.

6 CONCLUSIONS

In this paper, we have taken a closer look at the fasci-
nating concept of Static Move Descriptors (Zachari-
adis and Kiranoudis, 2010), a strategy to speed up
Local Search-based algorithms by eliminating unnec-
essary reevaluations. We have revealed several flaws
and suggested changes to its implementation.

Firstly, we have changed the search strategy to a
Variable Neighborhood. This speeds up the search
and allows costless expansion of the operator set.

Secondly, we change the underlying data structure
used to keep the SMDs organized: the theoretically
optimal Fibonacci Heap is replaced by the practically
efficient Binary Heap. This speeds up the Update
phase tremendously, even for large instance sizes.

Lastly, we change the exact search phase to a
novel heuristic heap search, avoid expensive heap op-
erations. This makes the Search phase very efficient.

Our results show that the changed strategy does
not affect final solution quality. Moreover, we have
shown that the average move quality remains high,
while each iteration is sped up significantly, leading
to impressive speedups overall.
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7 FUTURE RESEARCH

The concept of Static Move Descriptors is very
promising and with our changes it is a practically vi-
able and flexible speedup strategy. However, its full
potential has not yet been explored.

Firstly, our implementation has not yet been tested
inside a metaheuristic. The flow of the algorithm
lends itself perfectly for a Guided Local Search or a
Tabu Search strategy. Either strategy could be imple-
mented without much difficulty and without hurting
performance.

Secondly, the flexibility of the SMD concept al-
lows for combination with other speedup techniques,
such as Candidate Lists. This could significantly
speed up the various parts of the algorithm.
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