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Abstract:  The Faustmann optimal rotation harvesting pine stands models under Logistic and Gompertz wood stock 
and Brown price stochastic diffusion processes are reformulated as stochastic one dimensional optimal 
stopping problem, which are solvable with the Hamilton-Jacobi-Bellman equations. The stochastic models 
predict a significant increase of the deterministic optimal cut, with 47.0% and 48.0% in the cases of the 
Logistical and Gompertz wood stock diffusion respectively. The application of these models to a Chilean 
forest company shows discrepancies due to the absence of consideration to wood stock and price 
uncertainties that the company actual cut policy shows. The experimental data significantly validate the 
Faustmann stochastic logistic model. They give a better approximation of the company cut policy, 
underestimating it by 8.09% and producing a more reliable saturation volume than the Gompertz model. 
The sensitivity analysis shows that both volatilities have a similar linear effect in the optimal cut, but the 
wood stock volatility volume elasticity of 0.687 almost doubles the stumpage price volume elasticity of 
0.350, showing the importance of this uncertainty.

1 INTRODUCTION TO RADIATA 
PINE STANDS EXPLOITATION 

The need to incorporate uncertainty in wood stock 
and price is not new. Samuelson (1976) not only 
validated Faustmann’s deterministic formula (1995) 
as the correct  one, but also considered that the 
forestry economist’s “simple notion of stationary 
equilibrium needs to be replaced by the notion of 
perpetual Brownian motion”. The majority of the 
early papers considered only price stochastic 
diffusion and simple harvest rotation see (Clark and 
Reed, 1989); Others like (Morck & Schwartz,1989); 
(Insley, 2002; and Alvarez et al., 2006) considered 
also wood stochastic diffusion. Few of them (Insley 
& Rollins, 2005; Willasen, 1998) formulated these 
problems as stochastic impulsive control and 
considered price and wood stock stochastic diffusion 
for the multiple rotation or Faustmann model. In a 
previous paper Navarrete (2011) extended the single 
and multiple optimal rotations harvesting pine stands 
models without the stands’ regeneration cost for 
Logistic wood stock and Brown price stochastic 
diffusion processes, and reformulated it  as  an 
optimal stopping problems with only one  stochastic 
diffusion, solvable with the Hamilton-Jacobi-
Bellman differential equations. 

The objective of this paper is to extend those 
stochastic results to the Faustmann formula with the 
stands regeneration cost for Logistic and Gompertz 
wood stock and Brown price diffusions, to solve the 
stochastic rotation of even aged pine stands 
harvesting and to validate these results by applying 
them to a Chilean forest company. 

2 METHODOLOGY 

2.1 Model Formulation 

Given the following variable and parameters  

Vt           = Wood stock at time t 
µ(Vt)       = Wood stock diffusion  drift parameter 
σ(Vt)       = Wood stock volatility parameter  
Pt             = Wood stumpage spot price at time t  
Po          = Initial stumpage wood price 
α            = Wood price diffusion drift rate   
β            = Wood price volatility  
W          = Wiener diffusion 
C           = Stands regeneration cost 
c            = C/Po 
R, Q       = Probabilistic metrics 
F            = Functional Objective 
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The model considers ITO diffusion for the wood 
stock and a geometric Brown diffusion for the wood 
price respectively, given by equations (1) and (2). 

dVt = µ(Vt)dt + σ(Vt) dW (1)

dPt = αPtdt + βPtdW (2)
 

Under the assumption of a weak solution (Vt, t) for 
the diffusion equations (1, 2) and initial conditions 

(V00, P00), the multiple actualized harvest 
value or Faustmann model (3), (see Johnson, 2006) 
is given by objective functional (3). 
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2.2 Reformulation of the Multiple 
Harvest Rotation Problem 

The stochastic model (1, 2, and 3) is difficult to 
solve. The following theorem    reduces this model 
to a one dimensional stopping problem that is more 
amenable.  

Theorem 1: A probabilistic measure Q exists and 
is equivalent to the actual metric R, such that:  (see, 
Appendix A) 
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Furthermore, under the metric Q, the process Vt   

follows the diffusion (5). 
 

WdVdtVVdV tttt )()}()({   (5) 

 

An optimization strategy previously developed by 
the author (see Navarrete, 2011) was used. The 
functional objective (3) was parameterized for 
different time values t=tn, generating a family of n 
stochastic optimization problems. Since 

 )1/( nrteC   is constant for each tn, we can apply 

theorem 1 and reformulate each of these problems as 
the following optimal stopping problem with one 
dimensional ITO diffusion. 

FF(V) = sup (EP[ nrte PtVt]-C)/(1- nrte )) 

= Po sup{EQ[ ntre )(  Vt/(1- nrte )]– C/(1- nrte } (6)

Dividing by the constant Po, this objective is 
reformulated as 

F(V) = Max { EQ[ ntre )(  Vt/(1- nrte )] 

– c/(1- nrte )} 
(7)

with the following wood stock diffusion under the 
metric Q. 

WdVdtVVdV tttt )()}()({    (8)
 

The formulation of the Hamilton Jacobi Bellman 
equation for this problem is given by the following 
inequation with the capitalized interest rate rt = r/ (1-

nrte ). 

Max{ ½σ2V2F´´(V) + [µ(V) + βσ(V)] F´(V) 

– [rt-α] F(V) – c rt , (V-c)/(1- nrte )-F(V)} = 0 
(9)

In this case the differential equation for the 
continuation region (V< V*) is given by the non 
homogenous differential equation (10). 
 

½σ2 V2 F´´(v) + [µ(V)+βσ(V)] F´(V) 

- (rt-α) F(V) – c rt = 0 
(10)

 

with F(0) = -(rt/r)c. 
And by equation (11) for the stopping zone (V< V*). 
 

(V-c)/ (1- nrte )-F (V) = 0 (11)
 

The solution of this ordinary differential equation 
under the initial condition for a given capitalized 
interest rt is given in (12), with ψ(V) the solution of 
the homogenous part  and [ rt/r]c the  particular 
solution of equation (10). 
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In this case the smooth pasting condition for each 
parameter rt is given by:  
AΨ (V*)-(rt/r) c = (V*-c)/ (1-e-rt) = (rt/r) (V*-c) and 
Aψ´ (V*) = rt/r . So V*t must fulfill a similar 
smooth-pasting condition to the Vicksell model for 
each parameter rt. 

Ψ (V*) = V* ψ´ (V*) (13)

This solution series is then optimized for the 
Faustmann functional objective equation (7) under 
metric Q by inspection of its values. 
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Figure 3.1: VOLUME (m3/ha) versus years, single plot.

3 EXPERIMENTAL DATA  
AND PARAMETERS FITTING 

3.1 Logistic Diffusion Fitting 

The experimental data was provided by a Chilean 
forest company. These data belongs to 128 harvest 
stock of its pine stocks stands between 1999 and 
2005 and came from different sample plots which 
belong to site indexes between 30 and 35 meters and 
represent sites with high forest aptitude and a tree 
average initial volume of 32 m3/ha after the end of 
the first 4 years initial seed cultivation period. This 
information is located outside the 95% range of 
confidence for the logistic adjusted figure, forming 
an initial series of 122 data points, which are plotted 
in figure 3.1. 
 

dV = µ V (1- γ V) dt  + σ Vdw (14)
 

The basic requirement of a pine stand growing 
diffusion is its sigmoid pattern (Garcia, 2005). The 
logistic diffusion, equation (14) is a special case of 
the sigmoid model given by µ(V) = µV(1-γV) and 
σ(V) = σ V, where µ and γ are the drift and 
saturation parameters and σ is the volatility 
parameter. 
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The integration of the value of V is given by 
equation (15) (Kloeden& Platen, 1991, page 125) 

and its expected value is given by equation (16)  
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With; 1/γ = saturation volume, µ = growth rate 
parameter = Ln (81)/Δt, Δt = time necessary to 
increase volume from 10% to 90% of saturated 
volume and tm= time to achieve the midpoint of the 
saturation volume. 

The standard deviation Sd(∞) at  the saturation 
zone is constant and σ can be easily estimated by 
equation (17). 

σ = Sd(∞)/Vs 

= (95%  saturation confidence 

interval)/(2 *1.96 *Vs) 

(17)

 

The logistic diffusion model was fitted using a 
logistical nonlinear regression and a Monte 
Carlo/Bootstrap simulation sampling method, 
implemented by Meyer et al. (Loglet Lab.1 software, 
1999). 

The result is presented in figure 3.2, showing the 
drift parameter and its 95% confidence interval for 
the whole series and for its saturation zone. The 
summary of the parameter fitting is shown in table 
3.1. 
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Figure 3.2: Expected logistic fitting for the stands 30/35 site. 

Table 3.1: Logistic fitting parameters. 

Site 
Index 
mts. 

Drift 
Parameter 

µ 

Drift 
Saturation 

Parameter γ 

Saturation 
Standard 
Deviation 

Volatilit
y 
σ 

30/35 0.163 0.00161 210.66 0.339 

Deter
minist
ic  

0.163 0.00161 0.00 0.00 

See Navarrete 2011 

3.2 Gompertz Diffusion Fitting 

Another important sigmoid diffusion is the 
Gompertz geometrical diffusion, which is given by 
the following equation (18) 
 

dV=kV[θ-ln(V)]dt + σVdW (18)
 

This equation is integrated to the following 
expression, (see Gutierrez 2009) 
 

V(t)= exp[ ln(V0)e
-kt + {(kθ-σ2/2)/k} (1-e-kt) 

+ σe-kt ∫dW] 
(19)

 

The expected value takes the following expression 

E[V(t)]= exp [ln(V0)e
-kt  + {(θ-σ2/(2k)}(1-e-

kt) + (σ2/(4k))(1-e-2kt)] (20)

Taking natural logarithm and rearranging it, we get 

  ln E[V(t)]=  A- Bx-Cx2 (21)

with A= θ-σ2/(4k), B=θ-σ2/(2k) - ln(V0), C=σ2/(4k) 
and x= e-kt 

Given a value for k, a quadratic fitting for e-kt and 
e-2kt can be done estimating the value of A, B and C 
until a common value for θ can be obtained from A 
and B, determining the estimation for  θ, k and σ. 
The deterministic parameter only requires a linear 
fitting with e-kt,. Both fittings were done for the 
initial value V0 = 32 (m3/ha.) and the results are 
summarized in table 3.2.  

Table 3.2: Gompertz Diffusions Parameters Estimations. 

Models       V0 Vs k θ σ 
Gompertz  32.00 1046.68 0.058 7.0 0.171
Deterministic 32.00 1083.09 0.058 6.984 0.000

3.3 Gompertz  versus Logistical 
Diffusion Fitting 

The expected drift growing pattern of the Logistic 
and Gompertz Wood Stock diffusion are shown in 
figure 3.3.  

Both models have fitting advantages and 
disadvantages.  

The Logistic model is a better representation of 
the sigmoid growth pattern of the tree stands and 
produces a more reliable estimation of the saturation 
zone. Unfortunately they cannot be adjusted by 
maximum likelihood estimates, and must be adjusted 
by a Bootstrap simulating sampling method, see 
(Beskos et al., 2006), similar as the one used.
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Figure 3.3: Wood Stock growing diffusion pattern. 

The Gompertz model can be fitted by common 
statically features, such as Maximum likelihood. See 
Gutierrez, et al, (2008) or a Quadratic fitting, which 
were the methods used. It also presents a better 
adjustment to the experimental data given its lower 
volatility parameter, but it produces a worst 
estimation equal to 1046.6 m3/ha of the saturation 
zone for the tree growth stands, which was not 
validated by the experimental data used. Given its 
higher initial estimation of the growth parameter and 
its lower volatility parameter it will always produce 
a lower stochastic optimal solution than the Logistic 
model. 

3.4 Wood Price Diffusion Fitting  

The stumpage stands price Brown diffusion 
parameters were estimated by Navarrete, (2011). 
The summary of Brown diffusion parameters for the 
pulp commercial and stumpage prices is given in 
Table 3.3 and for  actual stumpage price in table 3.4. 

Table 3.3: Stumpage Price Diffusion Parameters. 

Summary 
Stumpage 

logs 
Saw logs 

Pulp 
logs 

Percentage 100 % 83.9 16.1 
Price drift  α 2.9% 3.08 1.79 
Volatility β 15.9% 16.52 12.74 

See Navarrete 2011 

Table 3.4: Stumpage Actual Price Estimation. 

YEARS 

Saw log 
price 

(83.9%) 
US$/m3 

Pulp log 
price 

(16.1%) 
US$/m3 

Stumpage 
log price 
(100%) 
US$/m3 

2007 43 20 39.30 
2008 46 22 42.14 
2009 41 21 37.78 
Average   39.74 

Source: IFOP Anuario Forestal 2010 

The regeneration costs of Radiata Pine Stands in 
2009 are given in table 3.5 

Table 3.5: Radiata Pine Stands Regeneration Cost. 

Stands regeneration cost C US$/ha 882 
Actual stumpage log price 
PT 

US$/ha 39.74 

Initial stumpage price P0 US$/ha 21.43 
c=C/P0  41.16 

Source: CEFOR-UACH 

3.5 Capital Cost Estimation 

The capital cost is estimated by using the CAPM 
model for the Chilean Forest industrial sector. The 
risky rate of return “r” was estimated as the 
international Weight Average Cost of Capital 
WACC given the high volatility of actual financial 
markets.  

Chilean equity capital cost   Ke= Rf + β( E(Rm) –
Rf)= 3.3+(1.01) 6 = 9.4 
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Chilean Company WACC= 0.76 (12.4) 
+0.24(7.6) (1-0.17) = 11% 

International   Company WACC = r = 11.8 ~12% 
Source: CMPC Corp Search June 2009 

4 STOCHASTIC RADIATA PINE 
HARVESTING RESULTS  

4.1 Wood Stock Logistic and Brown 
Price Diffusion 

Two of the more common sigmoid diffusion 
processes used in this area (see Garcia, 2005) are the 
Gompertz and the Logistic geometric diffusion. The 
logistic geometric diffusion wood stock diffusion 
parameters are; µ(V) = µV (1- γV) and σV = σ V. 

The Faustmann deterministic optimum is given 
by the optimization of the deterministic functional 
objective in equation (22). 
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Replacing it in the equation (22) Pt = Poe
αt   and Vt´ = 

µVt(1-γVt) we finally obtain 

Vt = {(α+µ-rt) + √[(α+µ-rt)
2 + 4µγcrt e

-αt]} 
/(2µγ) 

(23)

In the stochastic case, the positive function ψ (V), is 
the solution of the homogenous component (24) of 
the differential equation (10), (see Navarrete 2011) 
 

½ σ2 V2F´´(v) + [µV(1-γV) + β σV] F´(V) - 
(rt-α) F (V) = 0 (24)

 

The solution of equation (24) is given by the 
Kummer expression (25) 
 

ψ(V) = Vθ KummerM {
2
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with θ the positive root is given by equation (26) 
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The Faustmann deterministic optimum is obtained 
by intersecting curve (24) with the logistic curve 
(16). The solution is programmed in Maple 15 for 
both curves, and the optimum obtained is V* = 
245.7 m3/h. The Faustmann stochastic solution, in 

(13), for different values of the capitalized interest rt 

= r/ (1-e-rt) is programmed in Maple 15, using its 
KummerM function. The optimum is obtained by 
evaluating the Faustmann functional objective under 
the Q metric (20) for the different V*t solutions of 
equation (13). The summary of all optimal cuts 
results for the aggregate 30/35 site index series of 
the multiple rotation harvest or Faustmann formula 
is given in table 4.1.  

These results show that the Faustmann 
deterministic optimum underestimates the actual 
policy cut by 37.47% and its stochastic optimum 
also underestimates the actual average cut by 8.09%, 
so that the Stochastic optimum is 47.0 % bigger than 
the deterministic value. 

Table 4.1: Multiple Harvest Rotation Optimal Results 
Wood stock Logistic diffusion. 

Optimum 
Stands 

cuts 
m3/ha 

Percentage 
Increase   

% 

Percentage 
Increase  % 

Deterministic 245.7 -37.47 100 
Actual 392.9 100  
Stochastic 361.12 -8.09 47.0 

4.2 Wood Stock Gompertz and Brown 
Price Diffusion 

In this case the parameters of the diffusion are: µ(V) 
= k V (θ- ln(V)), and σ(V) = σ V.  The deterministic 
optimum is obtained by replacing Pt=P0 e

αt andV = 
exp (ln(V0)e

-kT+ θ(1-e-kT) in equation (22) resulting 
equation (28). Which intersection with equation (20) 
gives the optimal volume Vopt. 
 

V ={rtce-αt + k(θ - ln(V0)) exp(θ – kT - (θ - 
ln(V0))e

-kT}/{rt - α} 
(27)

 

The stochastic increasing function ψ(V), in this case,  
is given by the  solution of the homogenous part of 
the differential equation (10) or equation (28). 
 

½ σ2 V2F´´(v) + [kV(θ - ln(V)) + β σV] 
F´(V) - (rt - α) F (V) = 0 

(28)

Choosing θ´= θ - σ2/(2k) + βσ/k and r = rt - α, the 
equation is similar to the exponential Ornstein 
Ulhembeck equation whose positive solution  ψ(V) 
is given by  equation (29), (see  Johnson, 2005) 
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with a= (rt - α)/(2k)   b= 0.5   and  z= (k/σ2) [θ - 
σ2/(2k)+ βσ/k-ln(V)]2.
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Figure 4.4: Faustmann stochastic optimal cut sensitivity. 

The deterministic and stochastic optimum were 
programed in Maple 15, using in this case the 
KummerU   function of the program, the results are 
summarized in table 4.2. 

Table 4.2: Multiple Harvest Rotation Optimal Results 
Wood Stock Gompertz diffusion. 

Optimum 
Stands 

cuts 
m3/ha 

Percentage 
Increase % 

Percentage 
Increase 

% 
Deterministic 182,6 -53.45 100 
Actual 392.9 100  
Gompertz 211.13 -46.26 15.62 

4.3 Growing Pattern of the Wood Stock 
Logistic Diffusion Process 

The sensitivity of the Faustmann model shows 
similar effects for both volatilities in the optimal cut, 
being the Inventory elasticity lower than the 
stumpage price elasticity. Obviously, this is due to 
the higher volatility of inventory 33.9% over price 
15.9%. 

4.4 Summary 

Table 4.3 shows the summary of the results. 

Table 4.3: Results summary. 

Optimum 
Logistic 

Diffusion % 
Gompertz 

Diffusion % 
Deterministic 
Optimum 

-37.47 -53.45 

Actual Policy 100 100 
Stochastic Optimum -8.09 -46.26 
Stochastic optimum 
increment 

47.0 15.62 

5 CONCLUSIONS 

The effects of the wood Stock and price stochastic 
diffusion processes are important for the optimal cut. 
The Logistic diffusion increases the deterministic 
optimum by 47.0%, and the Gompertz diffusion by 
15.62%. The difference is due to the lower volatility 
estimation of the Gompertz model.   

The deterministic optimums in both cases 
significantly underestimate the company actual 
average cut, and the stochastic optima, being higher, 
also underestimate the Company actual average. The 
discrepancy in the theoretical and practical cut 
policy can be explained by the absence of 
consideration that the Company gives to the 
Faustmann model and the stochastic behavior of 
price and wood stock.  

The experimental data significantly validate the 
Faustmann stochastic logistic model. They give a 
better approximation of the company cut policy (-

 0

 200 

 400 

 600 

 800 

 1000

 1200

 1400

 0  20  40  60  80  100

OPTIMAL  

VOLUME (m3/ha)

VOLATILITY (%)

 WOOD STOCK LOGISTIC VOLATILITY SENSITIVITY

Wood Stock volatility 
elasticity 0.687 

Stumpage Price  volatility 
elasticity 0.350 

Faustmann�Optimal�Pine�Stands�Stochastic�Rotation�Problem

63



 

 

8.09%) and produce a more reliable saturation 
volume than the Gompertz model.  

The sensitivity analysis of both volatilities of the 
Logistic models shows similar linear relations with 
the stochastic optimal cut. The wood stock volatility 
elasticity of 0.687 almost double the stumpage price 
volatility elasticity of 0.350 due to its lower actual 
volatility. 
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APPENDIX A 

Proof of Lemma 1 

Theorem  1: A probabilistic measure Q exists and is 
equivalent to the actual metric R, such that it is 
proven (see, Jacco J.J. Thijssen, 2010) 
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Furthermore, under the metric Q, the process Vt 
follows the diffusion (A2) 
 

WdVdtVVdV tttt )(})(){  
 

(A2)
 

Proof. 
Replacing the integral solution of (2) in this last 
expression (A1), Pt = P0 eαt exp {βWt - 1/2β2t], 
since Mt = exp {βWt - 1/2β2t] is a martingale, a new 
metric Q (dQ/dR = Mt ) can be defined via the 
Radon-Nikodym derivative. Considering that, in this 
case, β is positive, a straightforward application of 
Girsanov´s theorems I and II (Oksendal, 2000, 
pages155-157) yields the equivalent objective for 
metric Q, and the ITO diffusion (A2)  
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