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Abstract: This paper introduces a practical system for combining overt, covert and forensic information in a single, 
small printed feature. The overt “carrier” feature need not be a dedicated security mark such as a 2D or 
color barcode, but can instead be integrated into a desirable object such as a logo as part of the aesthetically-
desired layout using steganographic halftones (Stegatones). High-resolution imaging in combination with 
highly accurate and robust image registration is used to recover, simultaneously, a unique identity suitable 
for associating a unique print with an on-line database and a unique forensic signature that is both tamper 
and copy sensitive. 

1 INTRODUCTION 

Counterfeiting, warranty fraud, product tampering, 
smuggling, product diversion and other forms of 
organized deception are driving the need for 
improved brand protection. The potential for 
security printing and imaging to provide an 
extremely cost-effective forensic level of 
authentication is well-recognized (Pizzanelli, 2009). 
There are also a number of instances in which 
embedding data in hard copy is desired, but overt 
marks such as bar codes would damage the 
aesthetics of the document. The novel method, 
outlined in this paper, simultaneously addresses both 
of these needs by combining forensics and 
steganographic halftoning (Ulichney et al., 2010) on 
the same printed object, and describes a system for 
both encoding and decoding such objects. 

In order to perform a forensic authentication of 
printed material, it is necessary use an image 
resolution sufficient to expose unique properties of 
the print that are extremely difficult, if not 
impossible on a regular paper substrate, to reproduce 
or copy (Pollard et al., 2010). For the majority of 
printing technologies, these properties result 
naturally from the stochastic nature of the print 
process itself and its interaction with the underlying 
structural properties of the substrate material on 
which ink is printed. As such they represent a unique 
fingerprint that can be used to authenticate 

individually printed items such as labels, documents, 
product packaging and monetary notes. 

Previously (Pollard et al., 2012) a method 
derived from iris recognition (Daugman, 1993) has 
been used to derive a general area-based print 
signature that can be applied to halftones images and 
thus affords general utility and applicability for 
forensic print authentication. Here that idea is 
extended to show that the methodology developed 
for regular halftones is applicable to steganographic 
halftone, or Stegatone, images where the content of 
the original halftone has been modulated, in a 
manner unknown to the decoding system, to carry 
extra covert information. Most importantly, the 
image alignment strategy on which the method is 
founded is not disrupted by the introduction of 
unknown deformations in the printed material. 
Furthermore, despite the small extent of the 
stegatones used in our experiments (4mm on a side), 
they are able to encode sufficient bit data to be a 
practical alternative overt 2D barcode alternatives 
such as Data Matrix or QR-Codes. 

2 METHOD 

The Stegatone encoding system outlined in Figure 1 
allows the creation of a secure hardcopy document 
with an embedded payload along with the filing of 
its forensic signature in a registry located on a 
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size over a small but significant range. Second, parts 
of the iris are not properly imaged due to either 
obscuration (by the eyelids or the eye-lashes) or 
specular reflections of the near-infrared light 
sources. Thus encoded features extracted from these 
regions must be robustly and accurately excluded 
from the statistical comparison process. Print 
images, on the other hand, do not generally suffer 
such imperfections and the whole of the encoded 
sequence can be used. Finally, unique iris features 
can be encoded across a wide range of spatial 
frequencies while the random perturbations 
associated with printed halftones are more limited.  

For both Stegatone decoding and print signature 
extraction it is important to accurately and with good 
repeatability be able to register the captured 
Stegatone image as shown in Figures 3(d). In this 
work Stegatone patterns are registered using multi-
scale gradient descent (Bouguet, 1999) derived from 
the well-established Lucas and Kanade (1981) 
method. For the multi-scale representation we 
normalize band pass filters (difference of successive 
Gaussian filtered images) to have unit standard 
deviation in order to minimize the difference 
between the stylized scaled (13x from 600 to 
7900dpi) half-tone images and the printed and 
captured Stegatones that are closely related to them.  

Following Daugman’s methodology, the random 
signal is demodulated to extract its phase 
information using quadrature 2-D Gabor wavelets. 
In our case the Gabor filters use Cartesian 
coordinates and not the polar coordinates used for 
iris biometrics. That is ℎሼோ,ூሽ = ,ݔሺܫሼோ,ூሽඵ݊݃ݏ .ሻ݁ݕ ݁ఠ	݀ݕ݀ݔ 

where 

݁ = ݁ିగ൳ሺ௫ି௫బሻమ ఈమ⁄ ାሺ௬ି௬బሻమ ఉమ⁄ ൷, ݁ఠ = ݁ିଶగఠబሺ௫ି௫బሻ 
ignoring orientation: where h{Re, Im} is a complex 
valued bit whose real and imaginary parts are either 
1 or 0 depending on the sign of the 2-D integral; I(x, 
y) is the warped raw image; α and β are size 
parameters of the Gaussian envelope; the parameter 
ω0 is the spatial frequency of the filter. There is an 
additional orientation parameter θ0 which is ignored 
in this formulation for simplicity. Thus, for all 
samples each wavelet provides two bits towards the 
phase encoding that describes the random elements 
of the printed halftone. Samples can be combined 
spatially over an M x M grid and through the choice 
of filter control parameters – notably frequency ω 
and orientationθ. 

3 RESULTS & CONCLUSIONS 

We have printed a number (>8) of identical halftone 
and Stegatone images on 3 identical HP4345 Laser 
Printers. There are two versions of an HP logo 
(labeled Logo1 and Logo2 with white and grey 
backgrounds respectively) and the Rainbow Bridge. 
Each print is captured twice (using different imaging 
devices) in order to compare the fractional Hamming 
Distance (HD) scores of valid matches with those of 
the binomially distributed statistically independent 
false matches.   

First let’s compare the statistical properties of 
Stegatone derived Gabor signature profiles with 
those derived from halftones as previously reported 
in Pollard et al (2012). The crucial difference is that 
the same digital halftone model is used to register 
both the halftone print (which was derived from it 
directly) and the Stegatone which includes small but 
significant deviations from the original halftone; 
which are unknown at the start of the decoding 
process. In Table 1 fractional Hamming distance 
statistics are compared for each of the three printed 
images. Each row represents false comparisons 
amongst all collected halftone (HT) and Stegatone 
(ST) images. For this test, there were 24 such images 
(276 comparisons) for all cases except the original 
Rainbow halftone images reported in the earlier 
paper for which there were 48 images (1128 
comparisons). In every case, a single Gabor filter 
was used with λ = 8 pixels and two sampling 
densities M = 32 (which leads to a 2K bits/256 bytes 
code used for iris biometrics) and M = 80 (beyond 
which recognition rates were found to plateau). In all 
cases, except M = 80 for the second HP logo, the 
mean and standard deviations of Stegatone images 
compared to their halftone equivalents were 
sufficiently similar as to be considered the same 
within the 95% confidence limit of the t-Test. 

Table 1: Hamming Distance Statistics. 
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The results in Table 1 show that the false match 
distribution statistics are not significantly altered by 
the change from halftone to Stegatone printing. This 
is not very surprising as the frequency content of 
each image type is significantly the same. 
Furthermore, the collection of false match statistics 
is not dependent on high accuracy registration and 
so is not likely to be affected by mismatch between 
the digital halftone used to register the Stegatone 
image. Of more interest is the effect this mismatch 
has on the Hamming distance of correct matches. 
Figure 4 shows a scatter plot of fractional Hamming 
distance for 20 correctly matching image pairs for 
the Rainbow Bridge Stegatone (λ = 8; M = 80) along  
with the (rotated) probability density function (PDF) 
for false matches. As can be seen clearly from this 
figure the probability of any of the correct matches 
being generated by chance is very low indeed. In 
fact the average z-score of false positives for the 
Rainbow Bridge is 57.95 which corresponds to a 
markedly small probability of 4x10-732. 

 
Figure 4. 

Using the average z-score as a representative 
shorthand for the statistical robustness of the 
forensic print signature, Figure 5 compares halftone 
and Stegatone values for the conditions presented in 
Table 1. Robustness is clearly maintained for all 
conditions and image types. Note that the longer 
phase code (M = 80) results in much greater 
statistical robustness. This improvement can be 
increased further by combining extra Gabor filter 
frequencies and orientations. 

Thus it is possible to use a single small 4mm 
square Stegatone print and capture with a high 
resolution imaging device to provide both covert 
data encoding (raw error rates for the best printer 
were 10%, 6% and 1% for the respectively for the 
Logo1, Logo2 and Rainbow stegatones) and a 
unique forensic print signature that exploits the 
stochastic nature of the print process and underlying 
surface substrate of the paper on which it is printed.  
 

 

Figure 5: Mean z-scores for valid matches (λ = 8; M = [32, 
80]) for both Stegatone (ST) and halftone (HT) image 
data. 

Despite their modest size, Stegatones of this kind are 
able to encode considerable amounts of data; in fact 
the Rainbow Bridge example is able to robustly 
encode 256 bits which is at least comparable to the 
highest resolution 2D barcode of this size. In fact 2D 
barcodes rarely, if ever, encode more than 150 bytes 
per square cm, meaning a 4 x 4 mm barcode would 
be no more than 200 bits, easily outdistanced by the 
examples herein. 

Using the Gabor phase coding approach 
halftones and Stegatones of this size are able to 
practically discriminate an almost infinite number of 
printed instances. While iris biometrics limited the 
code size to 2K bits, the high resolution (7200ppi) 
images used in these experiments allows us to 
greatly extend the code length (real and effective) 
through higher sampling frequency. In fact it is 
possible to increase this yet further by adding more 
independent Gabor components at other frequencies 
and orientations to achieve exceptional coding 
efficiency (albeit at greater memory requirement for 
the stored data).  

REFERENCES 

Adams, G., 2010, Handheld Dyson Relay Lens for Anti-
Counterfeiting, IEEE IST. 

Bouguet, J-Y., 1999, Pyramid Implementation of Lucas 
Kanade Feature Tracker: Description of the algorithm, 
OpenCV Documents, Intel Corporation, 
Microprocessor Research Lab. 

Daugman, J. G., 1993, High confidence visual recognition 
of persons by a test of visual phase information, IEEE 
PAMI, 15(11).  

Daugman, J., 2006, Probing the uniqueness and 
randomness of IrisCodes: results from 200 billion 
comparisons, Proc. IEEE, 94(11). 

Daugman, J., 2007, New methods in iris recognition, IEEE 
SMC, 37(5). 

VISAPP�2013�-�International�Conference�on�Computer�Vision�Theory�and�Applications

112



 

Lucas, B., Kanade, T., 1981, An iterative image 
registration technique with an application to stereo 
vision, IJCAI.  

Pollard, S., Simske, S., Adams G., 2010, Model based 
print signature profile extraction for forensic analysis 
of individual text glyphs, IEEE WIFS. 

Pollard, S., Simske, S., Adams G, 2012, Print Biometrics: 
Recovering Forensic Signatures from Halftone 
Images, IAPR ICPR. 

Pizzanelli, D., 2009, The Future of Anti-Counterfeiting, 
Brand Protection and Security Packaging V, Pira 
International, Leatherhead, UK. 

Ulichney, R., Gaubatz, M., Simske, S., 2010 Encoding 
information in clustered-dot halftones, IS&T NIP26. 

Forensic�Authentication�of�Data�Bearing�Halftones

113


