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Abstract: This paper presents a new biological and psychologically motivated edge contour feature that could be used 
for shaped based object recognition. Our experiments indicate that this new feature perform as well or better 
than existing methods. This method have the advantage that computation is comparatively is simpler. 

1 INTRODUCTION 

Recent works in computer based image recognition 
using image-based patches have been very 
successful. However there are limitations with this 
approach. Some objects are not efficiently 
recognized using image patches, as there are some 
objects that are more easily categorized by their 
shape or contours. The choice of the shape feature is 
critical, and ideally the chosen feature should be 
used to inform the object contour segmentation. 

2 RELATED WORKS 

Due to space constraints we discuss some selected 
related works. Opelt et al. (2006) used edge 
boundary fragments that are specifically selected 
from the training procedure that matched edge 
chains and centroids in the positive images more 
often than negative images. It used a boosting 
algorithm to create the detector. Shotton et al. (2008) 
also used boundary fragments and calculated the 
chamfer distance to find the best match curve. The 
Shape Band approach (Bai et al., 2009) used a 
coarse-to-fine procedure for object contour 
detection. The Shape Band defines a radius distance 
from the image sampled edge points from which 
approximate directional matching of points could be 
performed. Edges within the Shape Band would be 
then matched more accurately using Shape Context  
(Belongie et al., 2002). Ferrari and colleagues 
(Ferrari et al., 2010) used a local feature they called 
pairs of adjacent segments (PAS). A codebook is 
used for matching object shapes.  

These approaches are very similar to our work, 
in that edge fragments are used for matching. 
However, the features from the curve fragments are 
selected without experimental psychological 
support. They seemed to be selected based on 
training discrimination tests. Features that are 
selected based on training tests are probably too 
limited because of their dependency on training 
examples. In contrast to the works above, our 
approach is to select features that have 
psychological, perceptual and neurophysiological 
basis, i.e. we will make use of the curve’s 
perceptually salient point, the turning angle, as the 
representation of the curve fragment. 

3 PHYSIOLOGICAL AND 
PSYCHOLOGICAL EVIDENCE 

Research in V4 of the cortex has found that the cells 
respond to boundary conformation at a specific 
location in the stimulus, such as a certain curvature, 
with other parts of the shape having no effect. The 
cells appeared to be tuned to curvature and position 
within their receptive fields (Pasupathy and Conner, 
2001). The findings suggest that at this intermediate 
stage, complex objects are represented in parts as 
curvature position of their contour components and 
not the global shape.  

Experiments at the perceptual level indicate that 
humans are indeed sensitive to curvatures in 
contours. Research has shown that in visual search 
task, curved contours pop-out instantly when placed 
among distractors of straight contours. In the 
experiments by Kristjasson and Tse (2001), it was 
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concluded that the visual system is highly sensitive 
to curvature discontinuities and not to the rate of 
change of curvature. They define curvature 
discontinuity as the point where the second 
derivative along an image contour is not defined or 
where the curvature changes abruptly. In addition, 
they found that curvature discontinuities need not be 
visible, but can be implied. They reasoned that this 
sensitivity is because the curvature discontinuities 
are particularly informative about the world 
structure.  

Attneave (1954) has proposed that information is 
concentrated in regions of high curvature of any 
object contour. The points along the contour where 
curvature reaches (curvature extrema) a local 
maximum contains the most information about the 
contour. However, not all curvature extrema points 
are equally salient. Hoffman and Singh (1997) 
proposed that the change of the normal angle from 
the two sides of a curve, called the turning angle, as 
a determinant of saliency. De Winter and Wageman 
(2008) concluded that the turning angle between the 
two flanking lines on both side of the curve  (Figure 
1) is an important factor for perceptual saliency, and 
more so than the local curvature. The best 
correlations to perceptual saliency are when the 
normal is taken from the lines formed by 
neighbouring salient points. The strength of saliency 
correlates with the sharpness of the turning angle. 

Summarizing, it can be concluded that not all 
salient points are situated at strong curvature 
extrema because some salient points do not occur at 
peaks of curvature. The strongest factor underlying 
perceptual saliency is the turning angle when it is 
measured as the difference in normal of the 
adjoining lines between neighbouring salient points. 
Saliency correlates to the sharpness of the angle. The 
results from these tests provide valuable insights for 
building artificial systems.  

 
 

 
 

 

Figure 1: Turning point from normals Ni and Ni+1 of 
salient points. 

3.1 Turning Points 

The mathematical framework for obtaining points 
with high turning angle is based on Feldman and 
Singh (2005).  

ሻߙሺݑ ൌ െlogሾሺߙሻሿ (1)

The quantity u(ߙ) is called the surprisal of ߙ which 
is the negative log of the probability of ߙ.  

The surprisal for a curvature ߢ (as change in 
tangent direction along the curve) using the von 
Mises distribution is (Feldman & Singh, 2005) given 
as: 

ሻߢሺݑ ൎ ᇱܣ݈݃ െ ܾሺ∆ݏሻଶ cosሺ∆ߢݏሻ (2)

In other words ݑሺߢሻ is proportional to െcosሺ∆ߢݏሻ, 
and increase monotonically with the scale invariant 
version of the curvature ∆ߢݏ: 

ሻߢሺݑ ∝ cosሺ∆ߢݏሻ (3)

We disregarded the sign (De Winter & Wageman, 
2008) since it does not agree with psychological 
experiments. Based on the location of the surprisal, 
we calculate the location of the turning angles using 
the local neighbourhood peaks of the surprisal 
(Figure 2, left). Then the normal angles adjoining 
two points on either side of a central point are 
calculated (Figure 1). The largest of difference of the 
normals within the neighbourhood are kept as a 
turning point. All other edge information is 
discarded. If we connect all the turning points with a 
straight edge then we obtain the result in Figure 2 
(right).  

 

Figure 2: Left: Surprisal location and magnitude (as 
length). Right: Edges represented by turning points 
connected via straight lines. 

4 OUR APPROACH 

Our basic approach uses turning points (TPs) as 
representation of contour fragments. The TPs are 
matched against an exemplar using sliding windows 
to account for size and location. 

The image is pre-processed first by a slight 
blurring. The edges are extracted using the Canny 
edge detector with all branching and loops removed. 
The surprisal is calculated to obtain the TPs.  

To obtain the TPs, we first find the local 
neighbourhood peaks of the surprisal and measure 
the normal angles adjoining two points on either side 
of the central point (Figure 1). The peak surprisal 
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within a window that exceeds a certain threshold is 
marked as our TPs.  
For every point ̅ݒ in an edge, where the previous 
point is ̅ݒ	and the next point is ̅ݒ we calculate the 
magnitude of the angle ߙ formed by the previous 
and next point. In practise we take the smoothed 
version by averaging over the resolution size of ∆ݏ.  

ߙ ൌ
ݒ̅	 ∙ ݒ̅
ห̅ݒ ∙ หݒ̅

 (4)

Next we calculate the surprisal 

݈ܽݏ݅ݎݎݑݏ ൌ െlog	
expሺcos ቀߙ െ

ݏ∆ߨ2
ܰ ቁሻ

ሺ1ሻܫߨ2
 (5)

Over a small local neighbourhood, we mark the peak 
surprisal with local turning angle that exceeds a 
threshold within that window. If there are many 
equal maximum values, we pick the one point in the 
middle of the window; these will be our turning 
points.  

From these we obtain the following features 
(Figure 3): 

 ఏܶ	,	the angle of the TP Ti to previous Ti-1 and 
next turning point, Ti+1 

 The length and direction of the line 
connecting Ti to the previous Ti-1 and next 
turning point Ti+1. 

Feature matching is performed using sliding window 
of difference sizes across the image. Across all 
windows, the TP at each location are matched with 
the exemplar TPs. An edge fragment is successfully 
matched if all its turning point features are matched 
within a threshold. 

 
 
 
 
 
 
 
 

 

Figure 3. Matching of two curves using turning points. 

The algorithm returns the bounding box L, of 
window size S, where the matching is the maximum, 
ie. where the total number of TP matched is at the 
maximum. 

argmax
ೄ

݄݉ܽܿݐሺ ܶೞ
ᇱ ሺ݅ሻ, ܶೄሺ݆ሻሻ

ೄ

 (6)

T’(i) is the ith turning point from the sequence of 
turning points from the exemplar. T(j) is the jth TP 
from the sequence of TPs from the test image. LS is 
the location of the window of size S. The matching 
process only considers a TP that is a fixed r distance 
from another TP (see Figure 3). TLS refers to the TPs 
at location L for window of size S. The exemplar, 
T’, has a fixed window and size therefore its 
location and size is a constant of ls.  

The detection process requires matching all the 
TPs from the same contiguous curve: 

,ሺ݄ܶܿݐܽ݉ ܶᇱሻ ൌܦ௧ሺ݂݃ܽݎሺܶ, ݅ሻ, ,ሺܶᇱ݃ܽݎ݂ ݆ሻሻ


 (7)
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0 ݁ݏ݅ݓݎ݄݁ݐ

(8)

The function frag(T,i) returns the ith TP of the curve 
fragment that T belongs to. The current TP T, is 
indexed as i and the previous point is i-1 and the 
following point is i+1. Dfeat returns a match (value of 
1) when the angles of the three consecutive points 
T(i-1), T(i) and T(i+1) have approximately the same 
turning angles. For point i this is given by ܶሺ݅ሻఏ. The 
parameters ߙ and ߚ are fixed constants. De is the 
Euclidean distance between the two points, and ߚ 
ensures that consecutive points are not too far apart.  

The window location with the largest match 
count is the probable location of the target object. 
From the bounding box we obtain these attributes 
for classification: centre of gravity of all TPs, 
bounding box area, average angular error, total 
length matched and number of matched TP.  
Attributes calculated from this window are 
forwarded to a classification algorithm to determine 
if the target object is in the scene image.  

5 RESULTS 

We use the Weizmann Horse database since 
segmented contour outlines are available. For testing 
against other categories we use the Broderbund 
ClickArt collection, and used scene images of 
buildings and wildlife for testing. We tested various 
classification algorithms (with best results from 
ADTree) using the open source Weka application. 
The test was conducted using 10-fold cross 
validation averaged 97% correct classification. 
Table 1 and Figure 4 show some of the results from 
the recognition algorithm. 
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6 DISCUSSION 

There are other works that used turning angles for 
contour recognition e.g. (Rusinal et al., 2007; 
Kpalma et al., 2008), but those works either tested 
on simple images or used turning angles which are 
based on technical or mathematical arguments, 
whereas our work are derived from psychological 
and physiological research.  

This work is closest with Shotton et al. (2008) 
work, and their results are so far the best, but 
compared to Shotton et al., our method achieved 
comparable results on the same Weizmann Horse 
database. Both approaches work well, despite the 
rather challenging images with background clutter; 
and wide variety of poses and sizes. The images that 
are misclassified are due to significant pose 
differences, the small size of the target object and 
similarity of the background edges to the training 
model edges.  

 

Figure 4: Results of Horse recognition with automatically 
detected bounding box (yellow). 

Table 1: Comparison of classification results. 

 Results ROC AUC 

Shotton-Boosted Edge  0.9518 

Shotton (retrained)-Canny 0.9400 

SVM-SIFT 0.8468 

Our method  0.9966 

Shotton et al., (2008) use a total 228 horse images 
and Caltech 101  background set for tests, whereas 
we use 238 horse images (from the same Weizman 
database) against 244 animals and buildings images 
from the Broderbund 65,000 ClickArt collection. 
The Caltech 101 background category consist of 
assorted scenes around the Caltech campus is 
comparable to the building images that we use. The 

animal category that we use is likely to be more 
challenging and not used in Shotton et al. Based on 
the published results (Table 1), our method achieved 
a better classification rate. 

Our method do not require building a codebook 
of contours, as we used turning points that made 
comparison easier as we are comparing points with 
points, wherease Shotton et al. (2008) used a 
comparatively more complicated chamfer distance 
measure that required the contour need to be aligned, 
complicating the procedure.  

In summary, we have presented a perceptually 
justified edge boundary feature based on psychology 
and neurophysiological research. 
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