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Abstract: Understanding software artifacts is not only time-consuming, without the proper training and experience it can
be impossible. From a model-driven perspective there are two benefits from translating platform-independent
models into natural language texts: First, the non-functional properties of the solution have already been
omitted meaning that the translations focus on describing the functional behaviour of the system. Second,
the platform-independent models are reusable across platforms and so are the translations generated from
them. As a proof-of-concept a platform-independent Action language is translated into natural language texts
through the framework of model transformations.

1 INTRODUCTION

In MDA the platform-independent model, PIM,
should be a bridge between the specifications in the
computationally-independent model, CIM, and the
platform-specific model, PSM (Miller and Mukerji,
2003; Mellor et al., 2004). Thus it is important that
the PIM is clear and articulate (Lange et al., 2006) to
convey the intentions and motivations in the CIM as
well as correctly describe the PSM (Perry and Wolf,
1992).

Since the PSM can be automatically generated
from the PIM all changes to the software can be done
at PIM-level or on the transformations. In this way the
PIM and the PSM are in synchronisation with each
other. To keep the CIM and the PIM synchronised
is not as easy since their are no automatic transfor-
mations from CIM to PIM, yet. Here the translation
of the PIM into textual representations can serve as a
means of validation of the PIM, in regard to the CIM,
during development or to make it easier for new de-
velopers to comprehend the structure and behaviour
of the system (Arlow et al., 1999).

Claims have been made that comprehensibility
is more important than completeness if models are
used for communication between stakeholders (Mo-
hagheghi and Aagedal, 2007). But if the stakeholders
want to know if the PIM is correct with regards to the
software specifications, completeness is just as im-
portant. Understanding the annotation and testing of
a model requires an understanding of object-oriented
design, knowledge of the used models and experience

of using the modelling tools (Arlow et al., 1999). Nat-
ural language on the other hand is suitable for stake-
holders without the necessary expertise in models and
tools (Spreeuwenberg et al., 2010).

Contributions

This paper shows i) how a platform-independent Ac-
tion language can be translated into natural language
texts ii) by putting natural language generation of
software behaviour within the perspective of model-
driven software development iii) with transformation
rules that are reusable across domains and platforms.

Overview

Section 2 presents the theoretical framework for the
study. The tools, technologies and transformations
that are used in the study are explained together with
examples of translations in section 3. The study is
then put in a more general context in the discussion,
section 4, before the conclusion is given in section 5.
Finally, possibilities to further explore the results are
presented in section 6.

2 THEORETICAL FRAMEWORK

2.1 Natural Language Generation

Natural Language Generation (NLG; (Reiter and
Dale, 1997)) is a theoretical framework for describ-
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ing the transformation from software internal mod-
els of information into natural language representa-
tions. The content, its layout and the internal order
of the generated text is dependent on who the reader
is, the purpose of the text and by which means it is
displayed. Traditionally NLG is broken down into a
three-stage pipeline; text planning, sentence planning
and linguistic realisation (Reiter and Dale, 1997).
Text Planning Text planning is to decide on what in-

formation in the original model to communicate
to the readers.

Sentence Planning The second stage defines the
structure of the individual sentences. This is also
the time for choosing the terms that are going to
be used for the different concepts. The original
software model has now been transformed into an
intermediate linguistic model, a grammar.

Linguistic Realisation In the last stage the linguistic
model is used to generate text with correct word
order and word forms. Through the linguistic re-
alisation the intermediate model has been trans-
formed into natural language text.

2.2 Related Work

Nicolás and Toval (Nicolás and Álvarez, 2009) pro-
vide a systematic literature review on the textual gen-
eration from software models. This is a good starting
point for a broader investigation into the topic. In their
study there is no evidence of text generation from
platform-independent Action languages that specify
software behaviour.

Recently there has been a flourish of publications
on generating natural language from source code.
Rastkar et. al. (Rastkar et al., 2011) generate English
for crosscutting concerns, functionality that is defined
in multiple modules, from Java code. As a result of
the scattered nature of the crosscutting concerns they
are difficult to handle during software evolution. Hav-
ing a natural language summary for each part of the
concern and where it is implemented helps develop-
ers handle software change tasks. Sridhara et. al.
(Sridhara et al., 2010; Sridhara et al., 2011) have also
investigated natural language generation from Java
code. Their motivation is that understanding code is
a time consuming activity and accurate descriptions
can both summarise the algorithmic behaviour of the
code and reduce the amount of code a developer needs
to read for comprehension. The automatic generation
of summaries from code mean that it is easy to keep
descriptions and system synchronized. An example
of a translation from Java to English is found in Fig-
ure 1, taken from (Sridhara et al., 2010). Another ap-
proach to textual summarisations of Java code is given

Java statement
if (saveAuctions())

English translation

/* If save auctions succeeds */

Figure 1: Example translation of Java to English.

by Haiduc et. al. (Haiduc et al., 2010). They claim
that developers spend more time reading and navi-
gating code than actually writing it. Central to these
publications is that they have to have some technique
for filtering out the non-functional properties from the
source code before translation into natural language.

There are also contributions on using grammars
to translate platform-independent specifications into
natural language. One such attempt is the transla-
tion between the Object Control Language (OCL;
(Warmer and Kleppe, 2003)) and English (Hähnle
et al., 2002; Burke and Johannisson, 2005). This work
was followed up by a study on natural language gen-
eration of platform-independent contracts on system
operations (Heldal and Johannisson, 2006), where the
contracts were defined as OCL constraints and speci-
fied the pre- and post-conditions of system operations.

3 EXPLORATORY CASE STUDY

In order to explore how a platform-independent Ac-
tion language can be translated into natural language
texts Executable and Translatable UML is used to
encode the PIM and define the transformation rules.
Instead of generating text straight from the PIM the
Grammatical Framework works as an intermediate
modelling language to handle the linguistic properties
of the text. In this way the MDA process is integrated
with the process of natural language generation.

3.1 Executable and Translatable UML

Executable and Translatable UML (xtUML; (Starr,
2001; Mellor and Balcer, 2002)) evolved from merg-
ing the Schlaer-Mellor methodology (Shlaer and Mel-
lor, 1992) with the UML1 and is a graphical program-
ming language for encoding platform-independent
models. BridgePoint2 was chosen as the xtUML tool.

Three kinds of diagrams are used for the graphi-
cal modeling together with a textual Action language.
The diagrams are component diagrams, class dia-
grams and state-machines. There is a clear hierar-

1http://www.uml.org/
2http://www.mentor.com/products/sm/

model_development/bridgepoint/
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Figure 2: An xtUML component diagram.

chical structure between the different diagrams; state-
machines are only found within classes, classes are
only found within components. Action language can
be used in all three component types to define their
functional behaviour. The diagrams and action lan-
guage will be further explained using simplified ex-
amples taken from the problem domain chosen for the
proof-of-concept implementation, a hotel reservation
system.

3.1.1 Diagrams

The xtUML component diagram follows the defini-
tion given by UML. In Fig. 2 there is an example of
a component diagram. It consists of two components,
Hotel and User, connected across an interface.

Fig. 3 shows the class diagram that resides within
the Hotel component in the component diagram. The
xtUML classes and associations are more restricted
than in UML. Only those differences that are inter-
esting for the case study are mentioned. In UML the
associations between classes can be given a descrip-
tive association name while in xtUML the association
names are automatically given names on the form RN
where N is a unique natural number. In Fig. 3 Room
is associated to Reservation over the association R2.
The BookingProcess has no operations, instead the
dynamic behaviour is defined by the statemachine re-
siding within, marked by the icon in the top-left cor-
ner of the BookingProcess class.

Figure 3: An xtUML class-diagram.

In xtUML a statemachine comprises states,
events, transitions and procedures (Mellor and Balcer,
2002). Fig. 4 shows the statemachine that describes

Figure 4: An xtUML statemachine.

the lifecycles of individual instances of a Booking-
Process. Given the statemachine there are two pos-
sible transitions from the state Searching; either the
event add_room is triggered and the BookingProcess
transits to the Adding rooms state or cancel is trig-
gered and the new state is Canceling. If another
event is triggered while a BookingProcess is in the
Searching state, the event is either ignored or an er-
ror is thrown. The states can contain procedures, both
events and procedures are defined by the Action lan-
guage.

3.1.2 Action Language

An important property of xtUML is the Action lan-
guage. It is a textual programming language that is in-
tegrated with the graphical models, sharing the same
meta-model (Shlaer and Mellor, 1992). Since the
Action language shares the same metamodel as the
graphical models it can be used to define how values
and class instance are manipulated (Larman, 2004) as
well as how the classes change their state (Shlaer and
Mellor, 1992). Action language can be used to define
the calls between the components as described by the
interfaces or to control the flow of calls through the
ports of the components. An example of how the Ac-
tion language can be used is given in Fig. 7. The code
details a simple algorithm for finding available rooms
and resides within the Searching state of Fig. 4. The
example will be further explained in section 3.

The number of syntactical constructs is deliber-
ately kept small. The reason is that each construction
in the Action Language shall be easy to translate to
any programming language enabling the PIM to be
reused for different PSMs. Over the years a number
of different Action languages have been implemented
(Mellor and Balcer, 2002) and in 2010 OMG released
there own standard, ALF3.

3http://www.omg.org/spec/ALF/
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The abstract syntax:
cat Exp
fun Sum : Exp � Exp ! Exp

EInt : Int ! Exp

The concrete syntax:
lincat Exp = Str
lin Sum n m = "the sum of" ++ n ++

"and" ++ m
EInt i = i.s

Figure 5: A small GF grammar.

3.1.3 Translating the Models

The xtUML model can be translated into a Platform-
Specific Model by a model compiler. A model com-
piler traverses the metamodel of the PIM and maps
each concept into the corresponding concepts of the
target language, while preserving the structure of the
PIM. Since the platform-specific code is generated
from the model, it is possible for the code and the
models to always be in synchronization with each
other since all updates and changes to the system are
done at the PIM-level, never by touching the code.

3.2 Grammatical Framework

Grammatical Framework (GF4; (Ranta, 2011)) is a
domain-specific language for defining Turing com-
plete grammars (Chomsky, 1959).

3.2.1 GF Grammars

GF separates the grammars into abstract and concrete
syntaxes (Mccarthy, 1962). The abstract syntax is de-
fined by two finite sets, categories (cat) and functions
(fun). The categories are used as building blocks and
define the arguments and return values of the func-
tions. From an NLG view the categories are the con-
tent and the functions the structure of the text. In the
concrete syntax each category and function is given
a linearisation definition (lincat and lin respec-
tively). These definitions gives the sentences their
structure and the terminology to be used for the con-
cepts.

A small example of a GF grammar is given in Fig.
5. In the concrete syntax the linearisation of expres-
sions is defined as strings. Integers are represented by
their string values which are obtained by record selec-
tion, i.s (Ranta, 2011). The linearisation rule for Sum
is then defined by concatenating the string arguments
into their corresponding slots.

An abstract syntax tree defines in which order the

4http://www.grammaticalframework.org/

functions of the abstract syntax are to be used. A text
with multiple readings is ambiguous and will return
an abstract tree for each possible reading but each tree
will only return one text.

Given the example above the sentence the sum of
3 and 5 will have the tree

Sum (EInt 3) (EInt 5)

The transformation from abstract tree to text is
called linearisation. Linearisation corresponds to the
linguistic realisation of NLG. This transformation is
a built-in property of GF (Ljunglöf, 2011; Angelov,
2011).

3.2.2 The GF Resource Library

In the Resource Grammar Library (RGL; (Ranta,
2009)) a common abstract syntax has 24 differ-
ent implementations in form of concrete syntaxes.
Among the concrete languages are English, Catalan
and Japanese. The resource grammars have a shared
interface which hides the complexity of each concrete
language behind abstract function calls. Just as a pro-
grammer can use a Java API without knowing how
the methods are implemented, the resource grammars
support grammar development through an interface
that specifies how grammatical structures can be de-
veloped (Ranta, 2008). The implementation of each
function can be retrieved from the source code and its
documentation.

3.3 Model-to-Text Transformations

The automatic translation from software models to
natural language texts consists of two transforma-
tions, see Fig. 6. The first transformation takes the
software model and reshapes it to an intermediate lin-
guistic model by performing text and sentence plan-
ning. The second transformation is the linguistic real-
isation when the linguistic model is used to generate
natural language text.

Both transformations are examples of uni-
directional and automatic transformations (Stevens,
2007). The first transformation is a reverse engineer-
ing translation since the level of abstraction is higher
in the target models than in the source models and
the two models are defined by different metamodels
(Mens and Gorp, 2006).

Each transformation consists of a set of rules
(Kleppe et al., 2005) and an algorithm for how to ap-
ply the rules (Mellor et al., 2004). Since the rules of
both transformations are defined according to their re-
spective meta-models they are reusable for all models
that conform to the same meta-model (Atkinson and
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Figure 6: From platform-independent models to natural lan-
guage texts

Kuhne, 2003; Mellor et al., 2004). The transforma-
tions can even be applied to partial xtUML models,
enabling textual feedback throughout development on
all changes and updates, even if the models need fur-
ther refining.

3.4 Defining the Grammar

The abstract grammar of the Action language speci-
fies two main categories, expressions and statements.
Expressions can be of two kinds, sentences or noun
phrases.

3.4.1 Expressions

From a linguistic point of view a sentence, abbrevi-
ated as S, expresses a proposition about the world it
inhabits. An example from the Action language is
x == y, represented in English as x equals y. The
proposition itself does not claim to be true or false,
that is dependent on the context of its evaluation. A
characteristic of English propositions are that they
follow the form subject-predicate-object, in the exam-
ple above x is the subject, equals is the predicate and
y is the object.

In natural languages, both subjects and objects can
have more complicated structures, an example being
the sum of n and m, written n + m in Action language.
Such a structure is referred to as a noun phrase, ab-
breviated as NP. The result of combining the two ex-
amples is the expression x == n + m, translated as x
equals the sum of n and m. (Expressions such as x
== y == n + m can not be formed since the expres-
sions on either side of the equality sign have to refer
to members of the program. From a linguistic point
of view the expressions have to be NPs.)

This distinction between expressions as sentences
and noun phrases is captured in the abstract grammar
by the two categories SExpr and NPExpr. The abstract
syntax for the equality function then becomes

equality : NPExpr � NPExpr ! SExpr

with the concrete syntax for English defined using the
resource grammars

equality x y = mkS (pred (mkV2 "equal" x y)

The function mkV2 takes a string value and returns a
verb that expects two NPs, a subject (x) and an object
(y). The function pred then takes the verb and the two
NPs in order to return an intermediate structure that is
passed on to mkS. The result of applying mkS is a sen-
tence on the form x equals y where both x and y can be
complex NPs. In order to handle agreement between
subject and verb the linearisation categories for nouns
and verbs have to be more complex than just strings.
Exactly how complicated is not a problem for those
using the RGL as an API for grammar development,
it has already been dealt with by the RGL developers.
Instead, the complexity lies in applying the appropri-
ate functions from the API in the right order.

Both the S- and NP-expressions are derived from
the xtUML metamodel where they are encoded as
subtypes of the metaclass Value or as instances of
Variable. In the above example for equality both
the binary operation and the NPExpr are defined as
Values. By recursively analysing the left and right
expressions of the operation shows that x and y are
instances of the metaclass Variable with their respec-
tive names. Unary operations, attribute references and
parameters for events and operations are other sub-
classes of Value.

3.4.2 Statements

If expressions could be both noun phrases and sen-
tences, all statements are sentences. An example of
this is the Action language’s return statement return
x where x could be both an NP such as the sum of n
and m as well as a sentence, n equals m. The solution
is to have two abstract functions defining the return
statement, one for returning noun phrases and one for
returning sentences
returnNP : NPExpr ! Stmt
returnS : SExpr ! Stmt

For the concrete syntax a more general phrasing than
return n is used since it can be unclear for non-
programmers to whom n is returned and what this
means. This decision highlights how the abstract
syntax defines the text planning of the natural lan-
guage generation while the concrete syntax defines
the words to be used for different concepts and how
these words are to be strung together, i.e. the sentence
planning.

The first function for return statements is imple-
mented in a fashion similar to the one used for equal-
ity expressions
returnNP n =
mkS (pred n (mkNP the_Det (mkN "result")))

and returns statements such as the result is the sum of
n and m for return n + m. For returning sentences
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other functions from the RGL are used since the type
of the argument is different

returnS s =
mkS (mkCl (mkNP the_Det (mkN "result")) s)

As an example the result is x equals y is the equivalent
translation for return x == y.

Finally, a program is defined as a list of statements

fun sequence : [Stmt] ! Prgm

3.5 Translations

The diagram in Fig. 7 shows an example of a pro-
gram written in Action language side-by-side with its
translation where the Action code resides within the
Searching state shown in Fig. 4. The generated text
is an example of a controlled natural language (CNL;
(Wyner et al., 2010)) where the described language is
a subset of a natural language. A common aspect of
such languages is that they are perceived as lacking
in naturalness (Clark et al., 2009) and that the sen-
tences have a repetitive structure inherited from the
source model. This can also be a benefit since it al-
lows readers to quickly recognise and interpret the
different sentence structures (Clark et al., 2009).

The Action language is platform-independent in
the sense that it makes no assumptions on how col-
lections are to be implemented, all collections are
treated as sets. This is exemplified on line 6 where
many Rooms are selected and stored as a set using
the variable rooms. On line 7 a for-loop is used to
iterate over the set. On the other side, the Action
language is not independent from the object-oriented
modelling paradigm. This shows in lines 1 and 2
where an instance of an object is created and then
associated to another object. To interpret the Action
language requires an understanding of the implicit in-
formation encoded in the paradigm of object-oriented
languages (Arlow et al., 1999). The aim of the trans-
lation is to make such information explicit without be-
ing to lengthy. Another aspect of the underlying de-
sign choices of the Action language is shown in the
naming convention for traversing across associations.
Here the unique association names are used, which
have no relevance for the domain. In the translation
to natural language texts association names, such as
R2, are therefor not mentioned.

Just as graphical models the Action language is
supposed to deliver a high-level view of the system.
But the abstraction gets muddled by language-specific
details such as the association names and the object-
oriented syntax, concepts that are not meaningful to
all stakeholders (Forward and Lethbridge, 2008).

The generated text is dependent on that meaning-
ful values have been assigned to class names, param-
eters etc. If the class Reservation was named RSV
instead the translation would generate sentences such
as res refers to an RSV making the generated texts
harder to comprehend.

On line 2 the statement relate res to self
across R4 could have been translated as relate res
to self. But what does it mean that two objects are
related? From an object-oriented view it means that
they can access each other’s public attributes and op-
erations. The translation tries to capture this without
going into details about the fundamentals of object-
oriented design, substituting the reference self for
the definite form of the class name of the referent, the
BookingProcess.

The Action code finishes by sending a signal
across the interface to the User component. De-
pending on if a room was found or not different
signals are sent. Here the name of the interface,
HotelInterfaces is substituted for the more infor-
mative User which is found by traversing the meta-
model across the interface and its ports to the receiv-
ing component.

The signals exemplify a challenge for generat-
ing summarisations; should the parameters be trans-
lated using the parameter name, its defining ex-
pression or both? In the case of the message the
expression is more descriptive than the name but
for the room:room_number parameter both name
and expression would be useful. The value of the
process_id is less informative than the parameter
name (process_id is included as a parameter to en-
sure that the right instance of BookingProcess gets
the reply from the User). To make an informed de-
cision on the best phrasing in each case would re-
quire a semantic analysis of the values of the parame-
ter expressions in comparison to the parameter names,
something that is not supported by the transformation
language.

4 DISCUSSION

4.1 Changing the Language

Different stakeholders have different needs in terms of
the content of the summarisations, e.g. the developers
want a quick introduction to the functionality of the
system (Sridhara et al., 2010) while domain experts
want to validate that certain requirements are met and
maintained (Arlow et al., 1999). This can be accom-
modated by using different transformation rules for
generating the grammars. One transformation can
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create object instance res of Reservation; res refers to a Reservation
relate res to self across R4; res and the BookingProcess share information
res.check_in = param.in; res’s check in gets the value of the given in
res.check_out = param.out; res’s check out gets the value of the

given out
res.guests = param.quantity; res’s guests gets the value of the given

quantity
room_number = 0; room number gets the value of 0
select many rooms from instances of Room; rooms refers to many Rooms
for each room in rooms for each room in rooms
relate self to room across R6; the BookingProcess and room share information
select many ress related by ress refers to many Reservations
room -> Reservation[R2];

for each res in ress for each res in ress
if (res.check_in > param.out if res’s check in is greater than the

given out
or res.check_out < param.in) or res’s check out is less than the given in
and room.beds == param.quantity and room’s beds equals the given quantity
room_number = room.getNumber(); then room number gets the value of room’s

get Number
break; %the for-loop is terminated

end if;
end for;
if room_number > 0 if room number is greater than 0
break; %the for-loop is terminated

end if;
end for;
if room_number == 0 if room number equals 0, then a cancellation
send HotelInterfaces:: with process id and message is sent to User
cancellation(process_id:self.process_id,
message:"No available rooms.");

else else a confirm room with process id and room
send HotelInterfaces:: is sent to User
confirm_room(process_id:self.process_id,
room:room_number);

end if;

Figure 7: An example of Action language code with natural language summarisation.

then generate a grammar that produces summarisa-
tions for the developers while another transformation
is aimed towards the needs of the domain experts. The
result is a shared abstract syntax that is realised by dif-
ferent concrete syntaxes to fit their respective needs
using different functions from the RGL.

Some stakeholders might prefer another language
than English. This can be facilitated by the multi-
lingual aspect of the Grammatical Framework. In
this approach the lexicon (or domain vocabulary) of
the grammar is generated from the Action language.
However, it is not obvious that the domain concepts
share their names across languages. There are two
ways to overcome this challenge; The naïve way is to
ensure that the modelling elements use the terminol-
ogy of the desired target language, by this approach
the lexicon is automatically generated in the desired
language. The other solution is to manually develop
a lexicon per desired language, as explained in (An-

gelov and Ranta, 2009). Since the abstract functions
defined by the RGL are language-independent, the
same rules can be used for all desired languages. In
this way the structure and content of the texts are pre-
served but with language-specific implementations of
the sentences.

It is important to remember that any changes to the
grammars are made through the transformation rules.
As a consequence the transformation experts need to
know the grammar that is used to model the texts well
enough to implement the changes. It also means that
neither the software modellers nor the customers need
to know how the text is generated or how to formu-
late model transformations. When the transforma-
tions have been defined the translations are generated
by a push on the button. The generation can then be
repeated and reused for all models that conform to the
same metamodel as the transformation rules (Atkin-
son and Kuhne, 2003; Mellor et al., 2004).
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4.2 The Complexity of Model
Transformation

The complexity of the model transformations does not
lie in the complexity of the transformation rules but
in the complexity of the modelling language they are
applied to (Jézéquel et al., 2012).

On the target end of the transformation a knowl-
edge of linguistics in general and the grammar API
is needed to utilise the different categories and func-
tions of the grammar in an efficient way. The alter-
native to grammars would be to generate text straight
from the models with the tedious work of making sure
that there is congruence between the verbs and the
noun phrases as well as taking care of aspects like
a reservation but an interface.

4.3 Text vs Models

Another benefit of natural language translations of
textual software models embedded in graphical model
elements is that they enable using any preferred text
editor for searching after concepts and actions that
should be in the text. Different modelling tools have
their own support for searching with different inter-
faces, learning how to use them all is a tall request on
stakeholders (Arlow et al., 1999).

5 CONCLUSIONS

The proposed way of translating Action code differs
from previous work on code summarisation in that the
platform-independent models already have filtered
away the non-functional properties of the software,
leaving the functional properties exposed. In compar-
ison to previous research on generating natural lan-
guage texts from software models this is the first at-
tempt to generate software behaviour from platform-
independent code.

The PIM can be reused to generate a number of
different platform-specific models that include the us-
age of different APIs, programming languages, con-
nections to operative systems and deployment on
hardware. Since, the functionality of the system is
captured in the PIM so the generated text gives a nat-
ural language summary of the system’s behaviour dis-
regarding how this behaviour is implemented. This
means that the generated text can be used across plat-
forms and updated by re-generation whenever the
PIM is changed to reflect new requirements or bug-
fixing. So, instead of having one framework for trans-
lating Java, another framework for translating C and
a third for C++, a general framework for translating

platform-independent code can be reused across plat-
forms independently of how the system is realised.

6 FUTURE WORK

The mapping rules that define the transformation from
PIM to PSM add the non-functional features that de-
termine a certain combination of platform-specific de-
tails. Generated summarisations from the mappings
could then describe the different profiles and proper-
ties of the system, such as safety and persistency.

The challenges in natural language generation
from the combination of textual and graphical models
is an interesting step to further explore. A case study
is planned for including transformation rules that map
the structure of the statemachines on to the generated
translations. In this way the translations will give an
overall structure of the software that follows the life-
cycles of the system’s classes and objects.
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