
Advanced Trajectory Engineering of Diffraction-Resisting 
Laser Beams 

Ioannis D. Chremmos1, Zhigang Chen2, Demetrios N. Christodoulides3 and Nikolaos K. Efremidis1 
1Department of Applied Mathematics, University of Crete, Heraklion 71409, Greece 

2Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132, U.S.A. 
3CREOL/ College of Optics, University of Central Florida, Orlando, Florida 32816, U.S.A. 

Keywords: Laser Beams, Bessel Beams, Diffractionless Beams, Accelerating Beams, Trajectory Engineering. 

Abstract: We introduce an analytical technique for engineering the trajectory of diffraction-resisting laser beams. The 
generated beams have a Bessel-like transverse field distribution and can be navigated along rather arbitrary 
curved paths in free space, thus being an advanced hybrid between accelerating and non-accelerating 
diffraction-free optical waves. The method involves phase-modulating the wavefront of a Gaussian laser 
beam to create a continuum of conical ray bundles whose apexes define a prespecified focal curve, along 
which a nearly perfect circular intensity lobe propagates without diffracting. Through extensive numerical 
simulations, we demonstrate the great flexibility in the design of a gamut of different beam trajectories. 
Propagation around obstructions and self-healing scenarios are also investigated. The proposed wave 
entities can be used extensively for light trajectory control in applications such as laser microfabrication, 
optical tweezers and curved plasma filamentation spectroscopy. 

1 INTRODUCTION 

Over the past few years there has been a vivid 
interest in optical beams with peculiar diffraction 
and propagation properties. The stimulus has been 
the broad set of new possibilities and disciplines in 
optical micromanipulation, testing and 
manufacturing enabled by our ability to navigate the 
optical power on appropriately ‘sculpted’ optical 
waveforms Grier, 2003); (Andrews, 2008. Such 
structured optical beams can be used to overcome 
the diffraction limitations in focusing optical power 
at long distances and, moreover, to control the 
trajectory of light around obstructions and provide 
access to otherwise inaccessible regions of the 
medium being tested or processed. 

Structured laser beams with such advantageous 
characteristics can so far be distinguished into two 
major categories: non-accelerating and accelerating. 
The first category includes the classical diffraction-
free solutions of Maxwell’s equations whose profile 
and direction of propagation remains invariant as 
they evolve in space. Bessel beams Durnin, 1987 
are arguably the most widely known members of 
this family and perhaps the only propagation-

invariant beams that have actually been used in 
applications successfully Durnin et al., 1987); 
(Herman and Wiggins, 1991. This is owed to their 
simple structure, essentially being the result of 
interference of a conical bundle of plane waves, that 
can be easily obtained by passing a broad Gaussian 
laser beam through a conical lens, the axicon Arlt 
and Dholakia, 2000); (Herman and Wiggins, 1991. 
The indirect generation of Bessel beams in the 
Fourier domain is also straightforward due to the 
simple annular shape of their Fourier transform 
Durnin et al., 1987. Since their inception, Bessel 
beams have found diverse applications in 
micromanipulation, atom and nonlinear optics 
McGloin and Dholakia, 2005. Other less known 
types of non-accelerating diffractionless waves exist, 
such as parabolic Bandres et al., 2004) and Mathieu 
Gutiérrez-Vega et al., 2000) waves; however they 
haven’t been used in applications so far due to the 
complicated structure of their wavefront. 

The second category involves optical beams 
whose profile remains invariant along a transversely 
accelerating frame of coordinates. The existence of 
these beams was revealed in 2007 when the 
quantum-mechanics concept of the Airy wavepacket 
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Berry and Balazs, 1979) was introduced into the 
optics domain by Siviloglou and Christodoulides 
2007. Airy optical beams were the first diffraction-
free beams with the ability to self-accelerate along a 
parabolic trajectory in free space. The 
implementation of realistic, finite-energy Airy 
optical wavepackets was also found to be 
straightforward after it was found that the Fourier 
transform of the exponentially truncated Airy 
function is a Gaussian modulated by a cubic phase 
Siviloglou and Christodoulides, 2007. Soon after 
their conception, these finite energy Airy beam 
counterparts were generated and demonstrated 
experimentally Siviloglou et al., 2007. So far, Airy 
laser beams have found several applications for light 
trajectory control along ballistic-like paths Hu et al., 
2010, optical manipulation of particles 
Christodoulides, 2008, navigation of long-range 
surface plasmons Salandrino and Christodoulides, 
2010, curved plasma filaments Polynkin et al., 
2009, abruptly autofocusing beams Efremidis and 
Christodoulides, 2010 and others. As was later 
shown by Bandres 2009, Airy beams are a 
fundamental representative of the broader class of 
accelerating diffraction-free beams, another member 
being parabolic accelerating beams Bandres, 2008. 
Notably, the trajectory of any accelerating and 
diffractionless beam can only be parabolic. 
However, due to their complex spectrum, 
accelerating beams, other than Airy, have to date 
remained mainly in the theoretical level. 

The above review shows that finite-energy 
Bessel and Airy beams are to date the most popular 
and straightforward to implement forms of 
structured light waves with diffraction-resisting 
quality and non-accelerating or accelerating 
trajectories, respectively. With a Bessel beam, one 
can target a perfectly circular intensity lobe along a 
straight line and at distances much larger than 
implied by the diffraction length of a Gaussian beam 
with comparable width, while, with an Airy beam, 
one can steer the asymmetric Airy profile over many 
diffraction lengths along a parabolic trajectory. 
Thus, on the one hand, the fine symmetry of the 
Bessel profile is obtained at the cost of an 
exclusively straight trajectory, while, on the other 
hand, the curved trajectory of Airy beams is 
obtained at the cost of an asymmetric intensity 
distribution. Moreover, the curve of an Airy beam is 
limited to the parabolic law. 

In view of these limitations, it is reasonable to 
ask if it would be possible to design hybrid beams 
that combine the best features of the two classes; 

namely to design beams with the symmetry of the 
Bessel function that are also capable of self-
accelerating similar to the Airy wavepacket. In 
addition, we may require that the trajectory is not 
limited to a parabola but it can be shaped rather 
arbitrarily. In this announcement we show that the 
answer to this question is affirmative.  

Specifically, we present a technique for 
transforming a standard Gaussian laser beam into a 
Bessel-like beam capable of propagating along a 
prespecified path with arbitrary shape. The key idea 
is to phase-engineer the unmodulated wavefront so 
that the emitted rays form a continuum of conical 
ray bundles whose apexes or foci write the desired 
trajectory. The method is straightforward to 
implement experimentally since it only involves 
imprinting an appropriately computed phase pattern 
on the Gaussian wavefront using a spatial light 
modulator SLM or a hologram.  

Interestingly, the possibility of Bessel beams 
with curved trajectories has recently been addressed 
in few works with the aim of producing spiralling 
and snaking Bessel beams Jarutis et al., 2009); 
(Matijosius et al., 2010); (Morris et al., 2010). The 
method proposed in these works is quite 
approximate in the sense that the phase modulation 
of the beam is derived heuristically in a closed form 
and is not the one required to obtain a strict 
intersection of the ray cones exactly on the spiralling 
or snaking trajectory. Going beyond these fixed 
trajectories, we here address the problem of 
navigating Bessel beams along arbitrary trajectories 
in its most general formulation possible. We show 
how the correct phase pattern can be determined 
rigorously to ensure that the desired trajectory is 
actually a focal trajectory or image curve defined 
by the strict intersection of continuously expanding 
ray cones. Therefore, the present method can be 
used to design not only spiraling helical or snaking 
trajectories but any smooth curve. Moreover, a very 
clear Bessel profile is obtained that persists for much 
longer compared to the reported approximate 
approaches. 

2 METHOD 

To begin, assume that the initial distribution 

0( , )u    of the optical field on the plane 0z   has 

the form of a slowly varying envelope ( , )A    

modulated by the phase ( , ),Q    where ,   stand 

for the ,x z  coordinates on that plane. For practical 
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laser beams, the transverse beam width order of 
mm is much larger than the optical wavelength 
order of μm, hence the propagation of the optical 
field can be described very accurately by the scalar 
paraxial wave equation 2 0,z xx yyiu u u    whose 

solution is given by the Fresnel integral 
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where 0( , ) ( , )exp[ ( , )]u A iQ       and the space 

coordinates are normalized by the arbitrary length 
scale   in the transverse and by 2k  in the 

longitudinal direction, 2 /k    being the vacuum 
wavenumber. Note in Eq. 1) that the phase factor 

2exp[ ( ) ]i k z  has been omitted for convenience. 

Our goal is to determine the phase modulation Q  so 

that a focal track with a desired shape is created in 
0.z  Parametrizing the trajectory of the focus with 

the propagation distance, this implies that, at any ,z  
rays starting from the input plane must focus at the 
point ( ) ( ( ), ( ), ),F z X z Y z z  where ( ),X z ( )Y z  are 

given functions. This strict requirement is a critical 
difference between our method and that used by 
Jarutis et al. 2009 or Morris et al. 2010). In these 
works the phase Q  was heuristically by assuming a 
segmentation of an axicon into displaced annuli, 
each of which produces a different part of the beam 
trajectory. In this way, Q  was defined in closed 
form but the rays do not actually intersect on the 
trajectory of the main lobe resulting in a not so clear 
Bessel-like profile.  

Returning to our analysis, the equations of the 
rays are determined by the stationary points in the 
phase of the integrand in Eq. 1) and are given by 
 

,
x y

Q Q
z z 
  

   2
 

where ,Q Q   are the first partials of .Q  Equations 

2) imply that the ray starting from point ( , )   on 

the input plane travels in the direction of vector 
( , ,1),Q Q   i.e. it is determined by the gradient 

, Q   of the input phase. According to our 

requirement, the point ( )F z  must be the intersection 

of the bundle of rays starting from all points ( , )   

lying on a certain geometric locus ( )C z  on the input 

plane Fig. 1. This allows us to use Eq. 2) and 
rewrite the partial derivatives as 

( ) ( )
,

X z Y z
Q Q

z z 
  

   3
 

The correspondence between the point ( , )   and 

the distance ,z  at which the rays emitted from the 
locus ( )C z  intersect, can be thought to define a 

function of two variables ( , )z    which makes the 

right-hand sides of Eqs. 3) functions of , .   

Equations 3) can then be used to determine the 
locus ( ),C z  which is essentially an isoline of 

function ( , ).z   To this end we note that, if Q  is 

twice continuously differentiable, its mixed partials 
must be equal Clairaut’s theorem), i.e. Q Q   

or explicitly from Eqs. 3) 
 

   0 0z z z z              (4
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and the prime denotes the derivative with respect to 
.z  Equation 4) shows that the vector 

0 0( ( ), ( ))z z       is normal to the gradient 

, z   and hence tangent to the local isoline, namely 

the locus ( ).C z  We may therefore write along ( )C z  
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Figure 1: The idea for producing diffraction-resisting laser 
beams with arbitrary trajectories: Conical ray bundles 
emitted from expanding circles on the input plane intersect 
on a predefined focal line. 

Since z  is constant along an isoline, the above 
expression is an exact differential yielding: 
 

     2 2 2
0 0z z r z              6
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We therefore reach the conclusion that the geometric 
locus on the input plane of the starting points of the 
rays which intersect at ( ),F z  is a circle with center 

0 0( ( ), ( ))z z   given by Eqs. 5) and radius ( ),r z  

which is an arbitrary function for the moment. 
Equations 5) also show that the center of this circle 
is the point at which the tangent to the focal curve at 

( )F z  intersects the input plane. The analysis has 

therefore led to a clear physical picture which is 
illustrated in Fig. 1: with increasing z  as the beam 
propagates, a continuous focal line is created by the 
intersection of the bundles of rays emitted from 
circles ( )C z  on the input plane with increasing 

radius ( )r z  and a moving center 0 0( ( ), ( )).z z   

The radius ( )r z  together with functions ( ),X z

( )Y z  determine the slope with which the rays 

interfere to create the focus ( )F z  and hence the 

transverse field distribution around that point on the 
plane .z  To see this explicitly, we take into account 
that each ray contributes a plane wave to the field in 
the region around ( ).F z  Defining the local 

coordinates around the focal point as ( ),x x X z    
( ),y y Y z    the field contribution of the ray from 

point ( , )   of circle ( )C z  is written in the paraxial 

approximation as 
 

   ( ) , ( ) ,
exp ( )

i X z Y z x y
du iW z

z

     
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where   denotes the inner product and 
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Note in Eq. 8 that the two phase terms yield a 
constant sum for all points ( , )   of circle ( ),C z  
which is a result of the stationarity Eq. 2 of the 
phase of the integrand of Eq. 1). Within the paraxial 
approximation, ( )W z  is essentially the phase of the 

field contributed exactly on ( )F z  by the ray 

emanating from ( , ).   Thanks to this remark, it is 

now easy to integrate the contributions du  over the 
circle ( ).C z  Introducing polar coordinates for 

convenience as cos ,x   sin ,y    and 

0 cos ,r    0 sin ,r     we find  

   0 0
0
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2 exp

C

X Y x y r
du iW i J

z z
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    (9)

where the angular spectrum representation of the 
Bessel function has been used 
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Equation 9) shows that, at any distance, the optical 
field around the focus is distributed like a Bessel 
function modulated by a plane wave, which justifies 
the characterization of these waves as Bessel-like. 
Moreover, the result indicates explicitly the effect of 
the radius function ( )r z  on the shape of the beam. 

To obtain a circular, Bessel-like beam with a lobe 
width that remains constant with ,z  and hence 
resists diffraction, the radius should be chosen to be 
proportional to the propagation distance or 

( ) ,r z z  and then the lobe becomes proportional 

to 0 ( ),J  where   is the normalized transverse 

wavenumber. Without loss of generality, we can 
choose the transverse length scale   so that 1   

which we will assume in the numerical simulations 
section. 

We now return to the main goal of our analysis 
which is the computation of the phase ( , ).Q    By 

virtue of Eq. 8), the problem is reduced to finding 
the phase  ( )W z  on the circle ( )C z  that passes from 

the point ( , ).   For this purpose, we differentiate 

Eq. 8) with respect to   or  ) and use Eqs. 3) and 

6) to find after some algebra 
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where we have arbitrarily set (0) 0.W   We have 

therefore ended up with a simple algorithm to 
compute Q  for given trajectory and radius functions 

( ), ( ), ( ) :X z Y z r z  For any point ( , )   on the input 

plane, we first solve Eq. 6) for z  to find the isoline 
passing from that point, subsequently substitute into 
Eq. 9) to obtain ( )W z  and finally obtain ( , )Q    
from Eq. 8). Thus, in order to design arbitrary 
trajectories, the input phase must be computed 
numerically through the above algorithm, while 
closed form solutions exist only when Eq. 6 can be 
explicitly solved for .z  This is the key finding 
reported in this announcement. 

Now let us consider a critical issue. It is 
important to see that the above algorithm is well 
defined only when Eq. 6) has a unique solution for 
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,z  which means that circles ( )C z  corresponding to 

different z  values must not intersect. Since the 
circles are the isolines of function ( , ),z    this 

requirement is ensured by the finiteness of the 
gradient , .Q 

 
Differentiating Eq. 6) with respect 

to   and   we readily obtain 
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0 0
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 
     

 
(11)

where from Eqs. 5) we have 0 0, .zX zY        

From the above equation, it is clear that the gradient 
remains finite if and only if the denominator does 
not vanish. This must hold for all points along ( )C z  

which we parametrize as 0 cos ,r     

0 sin ,r     with 0 2 .    The denominator 

is then written 
 

     2 2 cosrr rz X Y      
 

where 1tan ( / ).Y X     Obviously, this 

expression remains nonzero when 
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which is the sought condition. Note that, under this 
condition, the denominator is always positive which, 
from Eq. 11), means that the gradient , z   points 

toward the exterior of the circle ( ),C z  thus 

verifying the expansion of the isolines with 
increasing z Fig. 1. 

The condition of Eq. 12) defines an upper limit 
to the propagation distance mz  at which the focal 

curve can be created and, equivalently, a maximum 
circle m( )C z  in the exterior of which the above 

definition of Q  fails. Indeed, consider for example 

the case of a power law trajectory lying on the plane 

0,y   with ( ( ), ( )) ( ,0).X z Y z z  Substituting 

into Eq. 12) with ( ) ,r z z   the maximum distance 

follows as 1/( 1)
m [ ( 1)] ,vz       while from Eq. 

5) it follows that the maximum circle is centered at 

0 0 max( , ) ( (1 ) ,0)z      and has radius m .r z  

Beyond the distance m,z  the above analysis is not 

applicable and a different phase Q  must be defined 

in the exterior of the maximum circle. To this end, 
there is a certain choice that ensures two desired 

properties: first, that Q  remains continuously 

differentiable on m( )C z  and, second, that the beam 

preserves its diffraction-resisting quality for m ,z z  

although it stops accelerating. The choice is to 
continue the beam’s trajectory along its tangent line 
at the ultimate point m( )F z , i.e. as 
 

m m m

m m m

( ) ( ) ( )( )

( ) ( ) ( )( )

X z X z X z z z

Y z Y z Y z z z

  
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13

 

where m .z z  It is then easy to see from Eq. 5) 

that the isolines of ( , )z    for mz z  are concentric 

circles with fixed center 0 m 0 m( ( ), ( ))z z   and 

increasing radius ( ) .r z z  The algorithm for 

computing Q  is the same with the mz z  regime 

using however the new straight trajectory of Eqs. 
13). Furthermore, for any point ( , )   in the 

exterior of m( ),C z  Eq. 6 can be readily solved for 

z  giving 
 

   2 2
0 m 0 m ,z z z             14

 

namely the distance between points ( , )   and 

m m( ( ), ( ))z z   on the input plane. From Eq. 10) 

the corresponding ( )W z  follows easily as 
 

 
2 2

m m
m m

[ ( )] [ ( )] 1
( ) ( )

2

X z Y z
W z W z z z

  
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and finally the phase follows from Eq. 8 
 

 
 

0 0 m m

0 m m

, [ ( )] ( )

( ) ( )

Q Q z z X z

z Y z

   

 

   

 
16

 

where 
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0 m
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By defining the new coordinates on the input plane 

0 m 0 m( , ) ( ( ), ( )),z z          the phase from 

Eq. 16 can be equivalently written 
 

0 m m( , ) ( , ) ( ( ), ( )),Q Q X z Y z               (18)
 

where 2 2 1/2[( ) ( ) ] .       Therefore, the phase in 

the local polar coordinate system of point 

m m( ( ), ( ))z z  is the sum of a linear radial term and 

the phase of a plane wave. Such a phase is known to 
produce a modulated by a plane wave Bessel beam 
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that propagates along the straight line of Eq. 13). 

 

Figure 2: A self-accelerating Bessel-like beam with the 
parabolic trajectory 20.025 .x z  a Modulo-2π input 

phase Q  b Amplitude evolution on the plane 0.y  The 
dashed line is the prespecified analytic trajectory. The 
bottom row shows images of the beam amplitude at 
different propagation distances. 

This becomes evident if one recalls that the input 
condition    0 expJ i x   to the paraxial wave 

equation propagates as a tilted Bessel beam 
modulated by a plane wave, explicitly 
 

2
2 2

0
(1 )

( ) exp .
2

J x z y i x i z
 

            
 

We have therefore determined through rigorous 
analytical steps the phase required to produce a 
diffraction-resisting beam with a distant-independent 
Bessel profile capable of propagating along an 
arbitrary smooth trajectory. In the next Section we 
examine numerical simulations of several cases of 
the proposed beams as well as scenarios of self-
reconstruction after distortions and propagation 
around obstacles. 

3 NUMERICAL RESULTS 

In Fig. 2 we design a Bessel-like beam with the 
parabolic trajectory 2( ( ), ( )) (0.025 ,0)X z Y z z

 
in 

normalized coordinates lying on plane 0.y   The 

input Gaussian envelope has a full-width-at-half-
maximum FWHM equal to 35 in normalized units. 
In a, the phase modulation is shown as derived 
with the described algorithm and plotted as modulo-
2π. Part b depicts the evolution of the field 

amplitude on plane 0y   as obtained via a second-

order split-step Fourier simulation. Note how 
accurately the trajectory of the main lobe reproduces 
the analytically expected trajectory. For this example 
the maximum distance is m 20,z   beyond which 

the beam continues along a straight line that matches 
the slope of the parabola at the transition point 
( , ) (20,20).x z  The bottom row of Fig. 2 depicts 

snapshots of the beam’s transverse profile at 
different distances and clearly verifies the expected 
Bessel-like pattern. The main lobe is remarkably 
symmetric and resistant to diffraction and fits almost 
perfectly the central lobe of 0 ( ),J   as predicted by 

Eq. 9. To the best of our knowledge, this is the first 
time that a self-accelerating optical beam with an 
almost perfect circular lobe is reported. 

The clarity of the Bessel central profile observed 
in Fig. 2 and in the following simulations is a result 
of our strict requirement that the ray cones intersect 
exactly on the prespecified focal curve. The reader 
can contrast this with the simulation results for the 
spiraling Bessel beam in the context of the more 
approximate approach by Jarutis et al. 2009. It is 
also interesting to observe in Fig. 2 the weak 
asymmetric deformation of the surrounding rings 
toward the direction of the acceleration. When the 
beam enters its final straight track, the acceleration 
is zero and the intensity rings obtain again their 
symmetric profile. 

 

 

Figure 3: a Modulo-2π input phase Q  and b amplitude 

evolution on the plane 0y   for a beam with the cubic 

trajectory 4 31.85 10 .x z   c-d The same results for a 
beam with the hyperbolic trajectory 

2 1/2 1/20.8(z 50z 1250) 800 .x      
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Going beyond parabolic trajectories, Fig. 3 
demonstrates the phase patterns and the evolution of  
beams with a cubic a-b and hyperbolic c-d 
trajectory. Note how the phase patterns appear as 
distorted versions of the perfect circular phase 
pattern 

2 2 1/2[ ( , ) ( ) ]Q       of a Bessel beam, 

and that the direction of the distortion stretching is 
that of the acceleration of the focal curve. To our 
knowledge, this is the first report of beams with a 
Bessel-like profile that can follow trajectories 
designed at will. In some sense, the possibility of 
producing remarkably stable Bessel intensity lobes 
that can move along arbitrary curved paths in free 
space marries and at the same time enhances the best 
features of the standard Bessel and the standard 
accelerating beams. 

Figure 4 shows another interesting possibility. 
Here the trajectory of the beam has been defined 
piecewise. Initially the beam propagates straight for 
a normalized distance 10 and subsequently detours 
along a half-period cosine path with length 50 and 
peak-peak distance 8 which guides it to its straight 
and parallel to the initial final path. Remarkable is 
the resistance that the beam shows against 
diffraction, as recorded in the amplitude snapshots at 
several distances b-f. At the initial part of the 
route a, the beam cannot be distinguished from a 
standard Bessel beam. When the acceleration starts, 
a weak deformation of the rings is evident toward 
the negative x axis c. At around 35,z   i.e. at 
the first quarter of the cosine period, the acceleration 
of the curve is zero and the deformation disappears 
d. Along the second quarter the acceleration 
changes sign and the rings start to weakly deform in 
the opposite direction e. Along its final straight 
track the beam recovers its perfectly symmetric 
Bessel profile f. It is thus interesting to observe 
the series of rings undergoing ‘elastic’ deformations 
under the acceleration experienced at different parts 
of the beam trajectory. Such and even more 
complicated configurations may be useful for 
navigating the optical power to avoid obstructions or 
carve elaborate paths with femtosecond pulses inside 
bulk glasses, as has recently been demonstrated 
using Airy-like beams Mathis et al., 2012. 

An example of a beam flowing around an 
obstruction is shown in Fig. 5. The obstruction is 
assumed to have the form of a cylindrical refractive 
index potential. The beam trajectory has been 
designed to obey the hyperbolic secant law with its 
maximum lateral shift occurring at the point where 
the potential barrier is centered along the z axis. 

 

Figure 4: a Amplitude evolution on plane 0y   for a 

beam with piecewise trajectory: ( ) 0X z   for 0 10,z 
( ) 4[cos( ( 10) / 50) 1]X z z    for 10 60,z   and 

( ) 8X z    for 60 .z   The analytic curve is shown with a 

dashed line. b-f Snapshots of the wave amplitude at 
different propagation distances. 

Note in Fig. 5a how the beam avoids the potential 
essentially flowing around it thus minimizing the 
distortion of its profile b all along its route. 
Finally, as the trajectory tends asymptotically to the 
z-axis, an almost perfect symmetric Bessel beam 
profile is recovered c. 

Another beneficial feature of our hybrid beams is 
their ability to self-reconstruct their wavefront after 
distortions, even severe ones. This property is 
inherited by standard Bessel beams whose ray 
structure allows their field amplitude to be 
reconstructed after the beam has propagated for 
some sufficient ‘healing’ distance beyond the plane 
of distortion Garces-Chavez et al., 2002. An 
analogue mechanism works with our arbitrary 
accelerating Bessel-like beams, where the beam 
profile at farther distances is due to the interference 
of rays emitted from distant points from the axis on 
the input plane (Fig. 1). Thus even if the central 
beam part is distorted or totally blocked, the beam 
eventually recovers its transverse pattern and 
trajectory. 
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Figure 5: a-c Evolution and transverse amplitude 
snapshots at the indicated distances of a beam with a 
hyperbolic secant trajectory, in the presence of cylindrical 
potential drawn with dashed line with normalized 
amplitude 1. d-f Evolution and snapshots of the beam 
with the hyperbolic trajectory of Fig. 3b after blocking a 
central disk with radius 20 from the input condition. 

A characteristic example is shown in Figs. 2d-f 
where the hyperbolic beam of Fig. 3d is left to 
propagate after blocking a large circular disk from 
the center of its input wavefront. We see that even if 
initially the beam profile e and trajectory d 
are significantly distorted, the wave manages to 
recover its structure after covering a healing distance 
of around 20 and write the intended hyperbolic 
track. Far beyond the healing point f, the beam 
has fully recovered its profile and can hardly be 
distinguished from the undistorted beam of Fig. 3d. 

In a last example, Fig. 6 shows the case of a 
beam with a 3D trajectory that varies linearly in the 
y and quadratically in the x direction. The path of the 
main lobe has been recorded in b. Parts c and d 
show how the images of the transverse beam profile 
follow the projection of the trajectory on the xy 
plane. Beyond this example, the gamut of possibly 
interesting trajectories is virtually endless depending 

on the optical setting that the beam has to confront.  
We have thus managed to go beyond standard 
accelerating waves and design Bessel-like optical 
beams that can actually self-accelerate along 
arbitrary 3D paths. 

 

 

Figure 6: a Modulo-2π input phase Q  and b track of 
the main lobe in 3D for a beam with trajectory 

2( ( ), ( )) (0.05 ,0.5 ).X z Y z z z  c-d Snapshots of the 
wave amplitude at different distances. The dashed line is 
the projection of the trajectory on the xy plane. 

4 CONCLUSIONS 

We have proposed a method for generating 
diffraction-resisting, Bessel-like laser beams capable 
of propagating along arbitrary trajectories in free 
space. The key idea is to phase-modulate the 
wavefront of a standard Gaussian beam so that the 
emitted rays are grouped into conical bundles with 
expanding circular bases on the input plane that 
intersect continuously on a prespecified trajectory. 
Our work generalizes previous and more 
approximate efforts to manage the trajectories of 
Bessel beams along helical and snaking paths by 
setting a rigorous analytical framework for the 
systematic design of any beam trajectory.  We have 
shown that, if the radius of these ‘source’ circles is 
chosen to be a linear function of the focal distance, 
the resulting focus has a distance-independent and 
hence diffraction-resistant Bessel function profile. 
The method can be used to design an inexhaustible 
gamut of trajectories, beyond the fixed parabolic law 
of Airy and Airy-related accelerating beams, such as 
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hyperbolas, general power laws, hyperbolic 
functions or even piecewise functions. We have 
demonstrated the feasibility of our method through 
several numerical simulations of paraxial optical 
beams. Such optical beams can be considered as 
advanced hybrids between nonaccelerating and 
accelerating diffractionless waves and, for that 
reason, can find extensive applications in optical 
tweezing, testing and microfabrication. Moreover, 
they can operate as curved photophoretic optical 
traps, capable of guiding particles around 
obstructions and exerting forces that are tunable in 
3D. 
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