
Making Task Models and Dialog Graphs Suitable for Generating
Assistive and Adaptable User Interfaces for Smart Environments

Michael Zaki and Peter Forbrig
Department of Computer Science, Rostock University, Albert-Einstein Str.22, Rostock, Germany

Keywords: Smart Meeting Room, Explicit Interaction, Implicit Interaction, Assistive User Interface, Task Model, Dialog
Graph, Activity Pattern, HCI Pattern, User Profile.

Abstract: Nowadays smart environments are gaining special attention among the various ubiquitous computing environ-
ment types. The main tenet of a given smart environment is to deliver proper assistance to the resident users
while performing their daily life tasks. The environment aims to implicitly infer the user’s intention and based
on that information, it offers the optimal feasible assistance which helps the user performing his/her task. Task
models seem to be a convenient starting point for developing applications for those environments, as they give
the developer the opportunity to focus on the user tasks to be assisted. Already existing approaches offer so-
lutions to make the transition between task models and the final user interfaces. However, smart environments
are dynamic environments in which the inclusion of new user or device types is probable. Consequently, an
optimal application to be operated in such an environment is required to consider the extensibility aspect within
its design. Additionally, the implicit interaction technique has to be taken into account. Thus, in this paper we
provide an attempt to include the implicit interaction paradigm within the design of our application as well as
to ensure the extensibility needed to encounter the variation of the surrounding environmental settings.

1 INTRODUCTION

In the last few decades, the topic of smart environ-
ments has become a hot research field. A lot of work
has been accomplished by researchers in order to de-
velop prototypes of such environments assisting the
users performing their daily life tasks (e.g. (Das et al.,
2002), (Bobick et al., 1999), (Srivastava et al., 2001)
and (Waibel et al., 2003) ). The notion of smart en-
vironment has been inspired by the work of (Weiser,
1999), when he motivated the idea of ubiquitous com-
puting environments by declaring that “Machines that
fit the human environment instead of forcing humans
to enter theirs will make using a computer as refresh-
ing as taking a walk in the woods”. Afterwards,
(Cook and Das, 2004) defined the term “smart envi-
ronment” as a “a small world where different kinds
of smart devices are continuously working to make
inhabitants’ lives more comfortable”. In contrast to
various approaches in the HCI field adopting an ex-
plicit user-machine interaction technique, several at-
tempts suggesting an implicit interaction technique
between the user and the hidden application have also
been presented (Schmidt, 2000). Implicit interaction
as defined by Schmidt is “an action, performed by

the user that is not primarily aimed to interact with
a computerized system but which such a system un-
derstands as input”. The main advantage offered by
the implicit interaction paradigm is the application’s
transparency. The resident users do not have to do
extra-tasks in order to ask for assistance (e.g. press-
ing a button on a user interface). Instead, the environ-
ment is equipped with sensors perceiving the user and
the state of the environment, and based on that infor-
mation the system can infer the task being currently
executed by the user and thus acts accordingly. Ac-
cording to (Kirste et al., 2001) the level of smartness
associated to a given environment is measured by its
capability to react to the user’s objectives and not to
pure sensor data.

Despite the many advantages of the implicit inter-
action technique, experiments have shown that users
usually prefer to have control over the system they
are using. The user gets a negative impression about
the application if he/she feels being controlled by the
environment. Moreover, if the system fails to infer
the right intention of the user, then the application
cannot react in the expected way which can be very
distracting for the user. Therefore, getting continuous
feedback from the end user and giving him/her the op-

66 Zaki M. and Forbrig P..
Making Task Models and Dialog Graphs Suitable for Generating Assistive and Adaptable User Interfaces for Smart Environments.
DOI: 10.5220/0004315100660075
In Proceedings of the 3rd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2013), pages 66-75
ISBN: 978-989-8565-43-3
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



portunity to explicitly adjust the system is still highly
desirable. From our point of view, an optimal design
of the application to be operated in a given smart en-
vironment has to satisfy the required equilibration be-
tween the explicit and implicit interaction paradigms.
Such an equilibration enables the minimization of the
burden of performing the tasks without totally taking
the control from the user.

A pre-requisite for developing an application for
smart environments is to analyze the nature of tasks
to be performed by the resident users. Only a thor-
ough understanding of the activities the user wants to
perform and the goal he/she wants to achieve enables
the application designer to provide the proper assis-
tance to be offered for that user. Therefore, task mod-
els seem to be a convenient starting point for the de-
velopment of such an application, since they give the
developer the opportunity to focus on the user’s tasks.
Whereas task models have initially been introduced
as a tool to elicit requirements in the early analysis
stages (Kato and Ogawa, 1993), they are nowadays
considered as an appropriate starting point for inter-
active processes development (Caffiau et al., 2007;
Paterno, 2000). Various task model notations exist
(e.g. HTA (Annett and Duncan, 1967), GOMS (Card
et al., 2000), CTT (Paternò et al., 1997),UAN (Hart-
son and Gray, 1992) ,...etc.). Considering its hierar-
chical structure and its huge set of temporal opera-
tors, CTT has become one of the most widely used
task model notations as it gives the developer the op-
portunity to define the execution order of the tasks to
be performed.

In the context of our work, we strive to develop
an application to be operated in a smart meeting room
(smart lab in our university). Smart meeting rooms
are a specific subset of smart environments where the
main goal is the beneficial exchange of information
among the resident users (Nijholt et al., 2004). Sev-
eral requirements have to be fulfilled by the desired
application in order to achieve the optimal conceiv-
able assistive system which then leads to the user’s
satisfaction with the environment. Among those re-
quirements, we focus in this paper on two crucial
points: The application’s adaptability and scalability
and also the equilibration between the explicit and the
implicit interaction techniques and the smooth transi-
tion between them. As already discussed, a typical
smart environment is enriched with various devices
and user types which are supposed to cooperate to-
gether in order to achieve a final shared team goal.
The application should be capable of providing the
needed assistance for every individual within the en-
vironment. However, the individuals are not identi-
cal and can be categorized according to their personal

characteristics (modality preference, impairment type
(if any), level of expertise,...etc). Moreover, the role
being played by every user determines the range of
possible system interventions. For instance, if we take
the example of a smart meeting room and consider the
simple scenario of having a presentation, it is notice-
able that the assistance to be offered by the room to a
specific user at a given time ‘t’ depends on this user’s
profile (i.e., personal characteristics), the task he/she
is performing at that time and the platform or device
on which the interface is to be rendered. It is note-
worthy to mention that our ultimate goal is to gen-
erate individualized user interfaces for every actor in
the room. In other words, the view displayed for ev-
ery user to help him/her performing a given task has
to be compatible with this user’s personal preferences
and desires and has also to change whenever he/she
starts to perform another task.

Consequently, the application’s adaptability to the
different user and device types is of great interest if
we aim to achieve a tailored assistance to be offered
for every user within the environment depending on
his/her profile. In the context of our work, we do not
refer to “adaptability” only as the ability of the user
interface to get adapted to the various predefined user
and device categories, but also the application’s ex-
tensibility and its ability to get adjusted according to
emerging factors which were unforseen at the primary
design phase. We aim to minimize the effort needed
by the designer if later on he/she decided to extend
the application to serve a totally new user category or
device type.

In this paper, we briefly discuss the flow of the de-
velopment of our application for smart meeting rooms
and we propose useful extensions to task models and
dialog graphs (Schlungbaum and Elwert, 1996) in or-
der to make it feasible to achieve an adaptable and
extensible assistive system where a smooth merging
between explicit and implicit interaction techniques
is realized. The paper is structured as follows: In
the next section, previous related approaches and rel-
evant work are being discussed. Section 3 starts
by highlighthing the needed features in task models
and dialog graphs and motivates the extensions which
are then thoroughly explained in subsections 3.1 and
3.2. In those subsections, the application’s adaptabil-
ity and the notion of hybrid interaction technique are
tackled in more details. Afterwards, in section 4 an il-
lustrative example is presented to assimilate the func-
tionality of the assistive application, and also to clar-
ify the contribution of the paper and the benefit gained
out of the suggested extensions. Finally, we conclude
the paper and we summarize the main points we dis-
cussed and the contribution of our work.

Making�Task�Models�and�Dialog�Graphs�Suitable�for�Generating�Assistive�and�Adaptable�User�Interfaces�for�Smart
Environments

67



2 RELATED WORK

As already mentioned, the usage of task models has
evolved from being just a tool to extract the needed
software requirements to a useful basis on which
the development of interactive user interfaces can
be founded. In the literature, several attempts to
derive final user interfaces out of task models ex-
ist (Limbourg and Vanderdonckt, 2003; Wolff and
Forbrig, 2009). In general, those attempts follow
a model-driven development approach. In (Sousa
et al., 2010) the business alignment framework is in-
troduced where the development process starts by a
task model and a supplementary domain model. Af-
terwards an abstract user interface (AUI) is generated
which then should be employed to derive concrete UI
components.

In the context of smart environments, the inter-
action can be divided in explicit or implicit interac-
tion (Sara, 2009). Whereas the above mentioned ap-
proaches are aiming to a final user interface where
the tasks should be explicitly triggered by the end
user (explicit interaction), another feasible interaction
technique can be realized by reasoning about the con-
textual data from the surrouding sensors (implicit in-
teraction). According to (Ju and Leifer, 2008) , even if
it is possible to interact using only one of those tech-
niques, both paradigms are needed to implement a ro-
bust and usable system. In Section 3, it is described in
further details how we suggest to design our applica-
tion based on a conceivable merging process between
both interaction paradigms.

The term task can be described as an action the
user performs in order to achieve a desired goal. Task
models in general aim to represent the tasks to be car-
ried out by the user. Being the most used notation
for task models, CTT was prone to several improving
attempts. Initially, CTT distinguished five task types
namely “abstract”, “user”, “interaction”,‘application”
and “cooperation” tasks. However, several extensions
took place in order to make the notation more suit-
able for specific purposes. For example, the authors
in (Klug and Kangasharju, 2005) extended the Con-
curTaskTree (CTT) notation to allow the dynamic ex-
ecution of task models. Moreover, in (Bergh and Con-
inx, 2004) an approach extending the CTT notation in
order to integrate the dynamic context within the task-
based design is proposed. As it will be shown in sub-
section 3.1, we also extend the already existing CTT
task types to make the automation of the adaptation
process feasible for our final application.

Usually, after the resulting task model of the anal-
ysis phase is modeled, further iterative transformation
processes take place until we reach the most fine-

grained task model in the lowest level of the design
stage where all the technical details of the applica-
tion are defined (Wurdel et al., 2008b). According to
(Wolff et al., 2005), the resulting model can be em-
ployed in addition to other environmental models in
order to derive a dialog graph. The dialog model can
afterwards be transformed to an abstract user inter-
face to be tailored based on the encountered situation
and finally results in the desired concrete user inter-
face. Fig. 1 illustrates the meta-model of a dialog
graph as it has been introduced by (Wolff and Forbrig,
2009). As it is shown, every dialog graph is composed
of a group of dialog views and transitions between
those views. Only two transition types already exist,
namely the sequential and the concurrent transitions.
Additionally, input and output ports are attached to
the different dialog views. Wheareas a dialog view’s
input port gets the transition from the previous dia-
log view, the output port is responsible to link the
current dialog view to the next one to be displayed.
According to (Luyten et al., 2003) , a dialog model
is defining a sequence of user interactions, or activity
chain that has to be followed to achieve the desired
goal. However, within the existing dialog graphs ap-
proaches, the transition between the views can only
be triggered explicitly when the end user performs a
specific event. In the context of smart environment
applications, there is an emerging need for the inclu-
sion of the implicit transition possibility in the dialog
models. This aspect is tackled in more details in sub-
section 3.2.

Figure 1: Meta-model of a dialog graph as presented by
Wolff.

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

68



3 PRACTICAL EXTENSIONS
FOR TASK MODELS AND
DIALOG GRAPHS

First of all, we start by a brief explanation of the inter-
action technique our application aims to realize in the
room. We strive to provide an optimal hybrid interac-
tion technique minimizing the burden on the end user
but still providing him/her the control over the system.
Therefore, our idea is to implicitly infer the role to be
played by every individual in the room, and depend-
ing on his/her role the corresponding assistance is
provided through his/her own user interface. This ap-
proach is better than having a fixed user interface with
all assistance options provided by the room, since our
user interface has the ability to adapt itself according
to the task the user is currently performing and conse-
quently the user is not bothered with a crowded user
interface where a lot of enabled tasks are not relevant
to the goal he/she wants to achieve. In other words,
the room acts neither in a complete implicit way by
providing the assistance required, nor following a to-
tal explicit interaction paradigm where the user has to
specify everything. Instead, the room implicitly infers
the goal the user wants to achieve, and displays only
the relevant supporting tasks from which the user can
take benefit.

As already discussed, the design of a supportive
system for smart environments has to focus on the
tasks the user wants to perform and to follow the user-
centered design guidelines. Therefore, we started our
system’s development process which is captured in
Fig. 2, by analyzing the user’s behavior in our smart
meeting room and collecting information about the
various tasks he/she may want to perform in the con-
text of various scenarios which may take place in such
a room (e.g. conference session, parallel presentation
session, work defense, video session,...etc.). For each
one of those scenarios, various roles have to be played
by the resident actors in order to successfully achieve
the final desired common goal. According to (Wurdel
et al., 2008a), approximating the user’s behavior in-
side the room to the role he/she plays is an acceptable
assumption. Thus, we compiled the extracted roles in
the form of task models. Afterwards, we iteratively
convert this model to a design level one by integrat-
ing step by step the assistance the room can provide
for every task to be carried out by the user. Once we
achieve the design level model, a transformation to
dialog graphs describing the logical sequence of tran-
sitions between the different views can take place. Fi-
nally, a simple mapping process of the resulting di-
alog model to final UI components is feasible. An
important point to mention is that the transformation

from task models to dialog graphs used to be a task
for the designer as he/she has to decide which tasks
should be included within the same views and how
exactly the transition between all of those views have
to occur. However, as our ultimate goal is to auto-
mate the conversion from the initially compiled task
models to the final user interfaces, we follow some
heuristics that are presented in subsection 3.2 in order
to bridge the gap between the task model in the design
level and the corresponding dialog graph.

Figure 2: Our application’s development flow.

Smart environments are dynamic environments in
which the entrance of new device types is probable.
Moreover, the user characteristics have a direct influ-
ence on the way the assistance offered by the room is
about to be displayed to the user. Even if we take the
current conceivable user characteristics into account
while designing our application, new relevant char-
acteristics may be discovered in the future and thus
the application will have to be extended in order to
encompass those new characteristics as well. There-
fore, an optimal solution from our point of view is
to formalize the changes that occur to the tasks in-
fluenced by a given user characteristic in the form of
task patterns abstracting from the specific context of
use. More details and examples of such a formaliza-
tion are to be discussed in the next subsection. In fact,
the notion of task patterns is not totally new. After the
term “pattern” was initially introduced by (Alexander,
1977) in the domain of urban architecture, patterns
have successfully made their way to the software en-
gineering (Gamma et al., 1995) as well as the HCI
field (Borchers, 2001). In their simplest form, task
patterns have been known as “task templates” when
they were first presented by Breedvelt in (Breedvelt-
Schouten and Severijns, 1997). Afterwards, several
approaches extending this notion have been suggested
e.g. (Paterno, 2001; Wurdel et al., 2007; Radeke,
2007; Zaki et al., 2011).

In a nutshell, in subsection 3.1, we tackle the ap-
plication’s adaptability issue by suggesting some use-
ful extensions to the CTT notation and presenting our
idea of defining different user characteristics’s effects

Making�Task�Models�and�Dialog�Graphs�Suitable�for�Generating�Assistive�and�Adaptable�User�Interfaces�for�Smart
Environments

69



on the tasks performance in the format of task pat-
terns. On the other hand, in subsection 3.2, we fur-
ther elaborate the extensions we suggest to the dialog
graph notation to enable the integration of the implicit
interaction paradigm in our development flow of the
application.

3.1 Making Task Models Adaptable to
User Characteristics

No matter how comprehensive the application we de-
sign is in terms of the user characteristics considered,
the environment is always subtle to the inclusion of a
new relevant characteristic or user group type. There-
fore, the application’s extensibility is a crucial fac-
tor to be taken into account. Since the developer can
only consider the already known influential user char-
acteristics while developing the application, we need
a methodology enabling the inclusion of any given
new aspect which was unforeseen at design time. The
main motivation is to minimize the work and effort
the developer will have to make in order to adjust the
system with respect to the newly introduced aspect.

In our work, we noticed that every specific user
characteristic (regardeless its type) is affecting the
task model in a systematic way. In other words, any
given characteristic influences specific task types (re-
ferring to the CTT notation) and changes them in a
repetitive manner, while other task types remain un-
changeable. To make the point more clear, let us con-
sider the user impairment type criterium. It is note-
worthy to mention that despite the low probability of
having impaired users in a smart meeting room, the
application we develop in our lab should then be gen-
eralized and is supposed to work in other smart envi-
ronment types as well. Smart homes for example are
environments in which the probability of existence of
elderly or impaired people is relatively high. In Fig.
3, a part of the task model at the design level repre-
senting the tasks to be carried out by a default listener
attending a presentation session is depicted. From the
figure, one can notice that the listener has to sit and
listen to the talk, take his/her own notes and then the
system is going to offer the opportunity to view the
slides of the presentation or even related information
on the user’s own user interface.

How would the model in Fig. 3 look like in case
the user we want to support is suffering from some
hearing problems? In our earlier work in (Zaki and
Forbrig, 2011), we introduced the so-called “user-
oriented accessibility patterns” where some task tem-
plates are suggested and which are supposed to be
manually used by the designer of the application in
case he/she prefers to take impaired people into ac-

Figure 3: Part of the listener task model in the design level.

count within the design. Briefly, (Zaki and Forbrig,
2011) suggests changing the modality of the informa-
tion from the initial one that the user cannot process
to a new one which can be handled by the impaired
user. This modality conversion is represented using a
task template which can be reused whenever we want
to model the case of a user suffering from the same
problem. Thus, it is possible to represent the user im-
pairment type criterium in the form of one or many
task templates. As an example, the task template to be
employed for replacing a task of type “user” in case
the user is receiving input (information) from the en-
vironment is depicted in Fig. 4.

Figure 4: user-input accessibility pattern.

Moreover, by applying this pattern on the task
model example in Fig. 3, we get the resulting model
in Fig. 5. It is noticeable that only the task “sit and
listen” has been changed while the other tasks remain
the same. This is due to the fact that a deaf user is
able to see the slides, take notes and even browse
the information provided by the assistive user inter-
face without any problems. However, he/she cannot
listen to the presentation and therefore a conversion
mechanism is needed to change the modality of the
information to text (using a software). To summarize,
whenever the developer wants to add a new user char-
acteristic to be considered, he/she will have to deter-
mine which task types (e.g. user, interaction, appli-
cation,...etc.) are affected by the changes and build
a generic task model (task template) to replace those
tasks.

As already mentioned, the main goal of defining
a corresponding task template to be employed for ev-
ery newly introduced user characteristic is to mini-
mize the time and the effort spent by the designer to
integrate a new characteristic. However, to achieve

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

70



Figure 5: Part of the listener task model in case of a deaf user.

this goal an automation of the transformation process
from task models to final user interfaces is manda-
tory. Such automation also guarantees that whenever
the application has to be adjusted to cope with a new
discovered task template or even user characteristic,
the designer will have to make changes only on the
task model level and then the application will be able
to adapt itself accordingly. To achieve the desired au-
tomation, more information about the nature of tasks
is required. (Paternò et al., 1997) categorizes the tasks
depending on the allocation of their performance. A
pre-requisite for our work is to have more informa-
tion about the tasks included within the task model
which is about to get transformed. The information
we mainly need is related to the effect of this task on
the environment. “Walking from door zone to pre-
sentation zone”, “give talk” and “listen to talk” are
three tasks of the same type “user”. Nevertheless, if
we want to automate the updating process of the ex-
isting task models according to the user impairment
type for example, we must be able to differentiate be-
tween those tasks. The reason is that when the user
walks in the room, only his/her location is changing
but no exchange of information with surrounding en-
vironment is taking place. On the other hand, the user
giving a talk is providing information to the listeners
which are resident entities in the environment. Also
the listeners are getting information from another en-
tity (the presenter) in the environment. Consequently,
if for example the user has some hearing problems,
only the task “listen to talk” has to be replaced by
the new template. As a result, we suggest to sub-
categorize the “user” task type to three distinguish-
able subcategories namely the user task (the one ex-
isting in CTT), the user output task and the user input
task. Similarly, we differentiate between the so-called
“display application task” which is an application task
displaying output to the user, and the “computational
application task” which is for internal processing and
computing. In Fig. 6, the new task types are pre-
sented. We built task models for the user’s activity
patterns we extracted in the analysis phase and we
used the new task types since that stage. In that way,
we are able to adapt our task models to any new in-

cident or criterium by just defining through a wizard
the task types that are affected by the changes and the
corresponding template to replace those tasks. After-
wards, the user interface is automatically adapted to
consider the desired case. An example of a task model
where the new suggested task types are employed is
presented in the context of the system’s application
example discussed in section 4.

Figure 6: Introduced CTT task types.

3.2 Making Dialog Graphs Suitable for
Implicit Interaction

As already discussed, dialog graphs (Schlungbaum
and Elwert, 1996) are an efficient way to illustrate
the logical flow of the application in an abstract way.
They give the developer an overview of the different
views which are about to be displayed to the user and
the way the transition between those views is going
to take place. Thus, the developer is provided with a
comprehensive idea about the user-application inter-
action means.

For the design of our application, such a graph is
of great interest. However, those dialog models have
been usually employed in the context of interactive
applications where the transition among the views is
supposed to occur due to an explicit intervention by
the user (e.g. pressing a button, asking for a ser-
vice,...etc.). Therefore, only two transition types exist
namely the “sequential transition” referring to a tran-
sition from one view to another, where the initial view
disappears, and the “concurrent transition” indicating
a transition from one view to another where the initial
view remains visible but inactive.

Since we want to make it feasible to automati-
cally change the views when the room infers that a

Making�Task�Models�and�Dialog�Graphs�Suitable�for�Generating�Assistive�and�Adaptable�User�Interfaces�for�Smart
Environments

71



given environmental condition is met (e.g. the user
changes his position), new transition types enabling
such an implicit migration between the views is re-
quired. Consequently, in addition to the already exist-
ing explicit transitions, namely “sequential transition”
and “concurrent transition”, we introduce two new
transition types namely the “implicit sequential tran-
sition” and the “implicit concurrent transition” which
are depicted in Fig. 7.

Figure 7: Implicit dialog graph transitions.

From the above figure, it is noticed that the “im-
plicit sequential transition” is identified by the empty
ellipse and coloured triangle, while the “implicit con-
current transition” is symbolized by an empty ellipse
and empty triangle. An example of a dialog graph
where the new suggested transition types are em-
ployed is presented in the context of the system’s ap-
plication example discussed in the next section.

Another pre-requisite for automating the whole
process is to automate the conversion of task mod-
els to dialog graphs. Nevertheless, this conversion
has to be guided by well-defined rules to guarantee an
optimal distribution of the tasks (extracted from the
task model) into the various dialog views construct-
ing the resulting dialog graph. For that purpose, we
take advantage of the heuristics provided by (Paterno
and Santoro, 2002) as well as new suggested guide-
lines in order to seamlessly derive the desired dialog
graphs out of the existing task models.

In a nutshell, we start by collecting the so-called
enabled task sets (ETS). An ETS is defined in (Pa-
terno, 2000) to be “ a set of tasks that are logically
enabled to start their performance during the same
period of time”.

Afterwards, heuristics are followed in order to
minimize the number of ETSs gathered. We accom-
plish that by merging some of the resulting ETSs
which are semantically related and thus can be pre-
sented together within the same dialog view. This
merging process forms sets of ETSs, namely Task
Sets (Paterno and Santoro, 2002). In the following,
the guidelines and heuristics controlling the conver-
sion process to the desired dialog graphs are provided
(From 1 to 4 are the heuristics adopted from (Paterno
and Santoro, 2002), while our new suggested heuris-
tics are from 5 to 9):

1. If two ETSs differ for only one element, and those
elements are at the same level connected with an

enabling operator, they could be joined together
with the ordering operator.

2. If an ETS is composed of just one element, it
should be joined with another ETS that shares
some semantic feature.

3. If some ETSs share most elements, they could be
unified.

4. If there is an exchange of information between
two tasks, they can be put in the same ETS in or-
der to highlight such data transfer.

5. The “user tasks” are not taken into account on
the views, as no visualization of such tasks is re-
quired.

6. Concerning the application tasks, the “display ap-
plication task” results in an object to be displayed,
and thus it should be considered in the view. How-
ever, a “computational application task” is ig-
nored and removed from the ETS.

7. In order to keep a view even after making a transi-
tion to a subsequent one, we have to use a concur-
rent transition and an “exit” task should be added
to the initial view in order to ensure a possible exit
out of that view.

8. If we have one of the enabled sets having only one
“user task”, then this means that this enable set
results in an implicit transition between the previ-
ous view and the next one and the transition takes
place at runtime whenever the post-condition of
the user task is realized.

9. If within the ETS there are redundant tasks, then
we represent the parent tasks within one view so
that the user chooses between the parent tasks and
get redirected to new views were no redundant
tasks exist.

4 APPLICATION EXAMPLE

In this section, we provide a very brief walkthrough
of our application where we highlight the contribution
of the extensions we made for task models and dialog
graphs. Let us assume we have a conference session
to be held in a smart meeting room. The conference
session case is one of the main cases we covered. We
extracted for that case the corresponding task patterns
for all roles which may take place. For the sake of
brevity, we only focus here on the role “presenter”.

After collecting the tasks a presenter has to per-
form in the context of a conference session, we itera-
tively refine this model until we reach the design level.
Due to the lack of space, only a part of the resulting

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

72



Figure 8: A part of the presenter task model in the design level.

model in the design level is illustrated in Fig.8. We
employ the editor developed by (Wolff et al., 2005)
to create the task models and dialog graphs presented
within the example. The figure above depicts only
two of the tasks which are carried out by a presenter.
If the user wants to give a talk, he/she will walk to the
presentation zone and then start to give the talk. In
the figure above, it is distinguished between the user
task “Walk to Presentation Zone” and the user output
tasks “explain slide” and “answer questions”. If the
developer then wants to take deaf (also not speaking)
users into account, then he/she has just to define the
task template (accessibility pattern) to be employed
and has to specify that only tasks of type “user out-
put” should be subject to those changes.

In that way, the task model will be adapted in a
successful way. Thus, the developer takes advantage
of the user task types categorization. Now, we investi-
gate in more details the abstract task “Walk to Stage”.
When the system infers through the ambient sensors
that the task “Walk to Presentation Zone” has already
been executed (presenter is now at presentation zone),
the assistive user interface should then start to dis-
play the presentation configuration settings as it is
shown in Fig.8. The presenter has thus the opportu-
nity to choose the number of projectors to be used and
also the preferred presentation style to present his/her
slides within the room.

Now let us assume we want to move to the next
step by converting the task model we have to a corre-
sponding dialog graph as a transitional step for deriv-
ing the final required user interface. The tasks within
the presenter’s task model should then be distributed
over the various views following the heuristics de-
fined in subsection 3.2. Fig.9 depicts a part of the
dialog graph for the role presenter. If we take a look at
the “Connection” view as an example, it contains the
tasks “Register”, “Identify Himself” and “Connect as
Default User” which are logically related as they all

aim to specify the user’s profile in order to adapt the
assistance according to it. The “Register” task has
an output port leading to the “Sign Up” view which
means that the user has to create his/her user profile,
while the “Identify Himself” task has an output port
leading to the “Sign In” view in order to load the exist-
ing user’s profile in case he/she is already registered.

Figure 9: Part of the dialog graph for the role presenter.

In Fig.9, one can additionally notice the implicit
sequential transition between the connection view and
the presentation styles view. This transition indicates
that the “presentation styles” view is not explicitly
achieved when the user presses a given button on
the “connection” view. Instead, the transition is tak-
ing place after a specific environmental precondition
is satisfied (presenter is at presentation zone in this
case). Thus, having those newly introduced implicit
transitions enables the developer to express an implic-
itly triggered transition which in the context of our ap-
plication is of high interest.

To make the idea of the assistive system more con-
crete to the reader, Fig.10 illustrates the supportive
user interface corresponding to the “Presentation

The window depicted in Fig.10 gives the presen-
ter the opportunity to upload his/her slides to be pre-
sented, to choose the number of canvases to be em-
ployed for the presentation and also the style in which
the slides should be visualized within the room. The
presenter can choose between the default presentation

Making�Task�Models�and�Dialog�Graphs�Suitable�for�Generating�Assistive�and�Adaptable�User�Interfaces�for�Smart
Environments

73



Figure 10: A screenshot of the resulting supportive user in-
terface.

mode, another mode where the outline is always dis-
played on one of the existing screens, the sliding win-
dow mode where the slides are turning in a circle be-
tween the various canvases or even a combination be-
tween two of the existing modes.

5 CONCLUSIONS

In this paper, we presented an attempt for extending
the CTT task model notation as well as dialog graphs
in order to make them suitable for the design of smart
environment applications. We started by giving an
overview of the domain of smart environments. Then,
we motivated our choice of a hybrid interaction tech-
nique to be adopted by the application operated in
such environments. We clarified that having an equi-
libration between the explicit and implicit interaction
paradigms leads to an optimal assistance provided by
the room, where the user can take benefit of the sup-
porting ability of the room without losing his/her con-
trol over it. Additionally, we justified the choice of
task models as a starting point for the development
of the desired application and we presented the devel-
opment flow we follow in order to achieve the final
user interfaces out of the task models we collected in
the analysis phase. Afterwards, we tackled another
crucial requirement to be satisfied, which is the ap-
plication’s adaptability and extensibility. We made it
clear that there may appear unforeseen requirements
of support for new user or device types, and there-
fore a well-defined methodology should exist in or-
der to minimize the effort and the time consumption
wasted by the developer to extend the application ac-
cording to the new requirement. Thus, we introduced
the idea of defining the influence of the new char-
acteristic on the models in the form of an adaptable
task template. After that, we justified the need for
extending dialog graphs with the possibility of hav-
ing implicit transitions between the different views,
as well as the need to extend the CTT notation with
some new types which are in fact subcategorization

of the already existing types. We made it clear that
those new types will enable automating the adapta-
tion of the application according to newly introduced
characteristics and corresponding templates provided
by the designer. The new dialog graph’s implicit tran-
sition types as well as the new CTT task types have
been presented. As we strive to automate the whole
task model to user interface transformation process,
we presented heuristics that have to be followed in
order to derive dialog graphs out of the fine-grained
task models. In order to highlight the contribution of
the suggested extensions, we provided a brief exam-
ple where we took benefit of the usage of the new
CTT task types and implicit transitions. Our ultimate
goal is to achieve individualized tailored user inter-
faces which serve every individual in the environment
depending on his/her own profile. An evaluation of
the resulting user interfaces is also planned.

REFERENCES

Alexander, C. (1977). A Pattern Language: Towns, Build-
ings, Construction. Center for Environmental Struc-
ture Series. Oxford University Press, USA.

Annett, J. and Duncan, K. (1967). Task analysis and train-
ing design, occupational psychology. volume 411,
pages 211–221.

Bergh, J. V. d. and Coninx, K. (2004). Contextual concur-
tasktrees: Integrating dynamic contexts in task based
design. In Proceedings of the Second IEEE An-
nual Conference on Pervasive Computing and Com-
munications Workshops, PERCOMW ’04, pages 13–,
Washington, DC, USA. IEEE Computer Society.

Bobick, A. F., Intille, S. S., Davis, J. W., Baird, F., Pinhanez,
C. S., Campbell, L. W., Ivanov, Y. A., Schtte, A.,
and Wilson, A. (1999). The kidsroom: Perceptually-
based interactive and immersive story environment. In
PRESENCE, pages 367–391.

Borchers, J. (2001). A Pattern Approach to Interaction De-
sign. John Wiley & Sons, Inc., New York, NY, USA.

Breedvelt-Schouten, I.M., P. F. and Severijns, C. (1997).
Reusable structures in task models. Proceedings of
DSV-IS.

Caffiau, S., Girard, P., Scapin, D., and Guittet, L. (2007).
Generating interactive applications from task mod-
els: a hard challenge. TAMODIA’07, pages 267–272,
Berlin, Heidelberg. Springer-Verlag.

Card, S. K., Newell, A., and Moran, T. P. (2000). The Psy-
chology of Human-Computer Interaction. L. Erlbaum
Associates Inc., Hillsdale, NJ, USA.

Cook, D. and Das, S. (2004). Smart Environments: Technol-
ogy, Protocols and Applications (Wiley Series on Par-
allel and Distributed Computing). Wiley-Interscience.

Das, S. K., Cook, D. J., Bhattacharya, A., Heierman, E. O.,
and yun Lin, T. (2002). The role of prediction algo-
rithms in the mavhome smart home architecture. IEEE
Wireless Communications, 9:77–84.

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

74



Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Hartson, H. R. and Gray, P. D. (1992). Temporal aspects
of tasks in the user action notation. Hum.-Comput.
Interact., 7(1):1–45.

Ju, W. and Leifer, L. (2008). The design of implicit interac-
tions: Making interactive systems less obnoxious.

Kato, K. and Ogawa, K. (1993). Task analysis method us-
ing the goms model with grouping. In Salvendy, G.
and Smith, M. J., editors, HCI (2), pages 891–896.
Elsevier.

Kirste, T., Aarts, E., and Encarnacao, J. L. (2001). Smart
kindergarten: sensor-based wireless networks for
smart developmental problem-solving environments.
In Proceedings of the 7th annual international confer-
ence on Mobile computing and networking, MobiCom
’01, pages 132–138. Springer.

Klug, T. and Kangasharju, J. (2005). Executable task mod-
els. In Proceedings of the 4th international workshop
on Task models and diagrams, TAMODIA ’05, pages
119–122, New York, NY, USA. ACM.

Limbourg, Q. and Vanderdonckt, J. (2003). Comparing
task models for user interface design. In The Hand-
book of Task Analysis for Human-Computer Interac-
tion. Lawrence Erlbaum Associates.

Luyten, K., Clerckx, T., Coninx, K., and Vanderdonckt,
J. (2003). Derivation of a dialog model from a task
model by activity chain extraction. volume 2844,
pages 203–217. DSV-IS 2003 : design, specification
and verification - interactive systems.

Nijholt, A., Akker, R. O. D., and Heylen, D. (2004). Meet-
ings and meeting modeling in smart surroundings. In
Social Intelligence Design. Proceedings Third Inter-
national Workshop, pages 145–158. ISBN.

Paterno, F. (2000). Model-based design of interactive appli-
cations. Intelligence, 11(4):26–38.

Paterno, F. (2001). Task models in interactive software sys-
tems. In In Handbook Of Software Engineering And
Knowledge. World Scientific Publishing Co.

Paternò, F., Mancini, C., and Meniconi, S. (1997). Con-
curtasktrees: A diagrammatic notation for specifying
task models. In Proceedings of the IFIP TC13 Interan-
tional Conference on Human-Computer Interaction,
INTERACT ’97, pages 362–369, London, UK, UK.
Chapman & Hall, Ltd.

Paterno, F. and Santoro, C. (2002). One model, many in-
terfaces. In Kolski, C. and Vanderdonckt, J., editors,
CADUI, pages 143–154. Kluwer.

Radeke, F. (2007). Pattern-driven model-based user-
interface development. Master Thesis, University of
Rostock.

Sara, B. (2009). Smart Sensors For Interoperable Smart
Environment. PhD thesis, University of Bologna.

Schlungbaum, E. and Elwert, T. (1996). Dialogue graphs- a
formal and visual specification technique for dialogue
modelling.

Schmidt, A. (2000). Implicit human computer interaction
through context. volume 4, pages 191–199. Springer-
Verlag.

Sousa, K., Mendonça, H., and Vanderdonckt, J. (2010). A
rule-based approach for model management in a user
interface &#8211; business alignment framework. In
Proceedings of the 8th international conference on
Task Models and Diagrams for User Interface De-
sign, TAMODIA’09, pages 1–14, Berlin, Heidelberg.
Springer-Verlag.

Srivastava, M., Muntz, R., and Potkonjak, M. (2001).
Smart kindergarten: sensor-based wireless networks
for smart developmental problem-solving environ-
ments. In Proceedings of the 7th annual interna-
tional conference on Mobile computing and network-
ing, MobiCom ’01, pages 132–138, New York, NY,
USA. ACM.

Waibel, A., Schultz, T., Bett, M., Denecke, M., Malkin,
R., Rogina, I., Stiefelhagen, R., and Yang, J. (2003).
Smart: The smart meeting room task at isl. In in
Acoustics, Speech, and Signal Processing (ICASSP
’03). 2003: IEEE, pages 752–755.

Weiser, M. (1999). The computer for the 21st century. SIG-
MOBILE Mob. Comput. Commun. Rev., 3(3):3–11.

Wolff, A. and Forbrig, P. (2009). Deriving user inter-
faces from task models. In Proceedings of the Model
Driven Development of Advanced User Interfaces,
MDDAUI’09.

Wolff, A., Forbrig, P., and Reichart, D. (2005). Tool sup-
port for model-based generation of advanced user in-
terfaces. In The Unified Modeling Language.

Wurdel, M., Forbrig, P., Radhakrishnan, T., and Sinnig, D.
(2007). Patterns for task- and dialog-modeling.

Wurdel, M., Sinnig, D., and Forbrig, P. (2008a). Ctml:
Domain and task modeling for collaborative environ-
ments.

Wurdel, M., Sinnig, D., and Forbrig, P. (2008b). Interac-
tive systems. design, specification, and verification.
chapter Task Model Refinement with Meta Operators,
pages 300–305. Springer-Verlag.

Zaki, M., Bruening, J., and Forbrig, P. (2011). Towards
contextual task patterns for smart meeting rooms. In
Pervasive and Embedded Computing and Communi-
cation Systems.

Zaki, M. and Forbrig, P. (2011). User-oriented accessibility
patterns for smart environments. In Proceedings of the
14th international conference on Human-computer in-
teraction: design and development approaches - Vol-
ume Part I, HCII’11, pages 319–327. Springer-Verlag.

Making�Task�Models�and�Dialog�Graphs�Suitable�for�Generating�Assistive�and�Adaptable�User�Interfaces�for�Smart
Environments

75


