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Abstract: For disaster recovery, many database systems with valuable data have been designed with database 
synchronization between main and backup sites. The data synchronization interval affects the performability 
of system which is a combined measure of performance and availability. It is important to determine the 
optimal synchronization interval in terms of performability so as to satisfy customers' requirements. 
However, existing techniques to identify the optimal synchronization interval do not consider the 
performability impacts of time-consuming manual resolution task for inconsistent data. To address this issue, 
this paper proposes a method to identify the data synchronization interval which optimizes performability 
by solving a stochastic reward net model describing the manual and automatic failure-recovery behavior of 
a database system. Several numerical examples are given to demonstrate the proposed method and its 
potential practical applicability. 

1 INTRODUCTION 

For disaster recovery, many database systems with 
valuable data have been designed with database 
synchronization between main and backup sites.  A 
system designer needs to select a proper database 
synchronization method so as to satisfy customer’s 
requirements such as performance, availability, 
recovery point objective (RPO) and recovery time 
objective (RTO). Hereafter, a system which 
synchronizes databases for backup and fast failover 
is called a database synchronization system, or 
shortly DB system.  

In general, the system designer needs to 
determine a synchronization interval for the DB 
system by considering both of performance and 
availability, i.e., performability. For example, if high 
performance of processing requests from users is 
required, a primary server which processes the 
requests in the main site often needs to commit 
transactions without synchronization (writing the 
transactions in a disk of a secondary server in the 
backup site) for a relatively long time (some widely-
used commercial relational database management 
systems, such as Microsoft SQL Server 2008 with 
high performance mode, exhibit this behavior.). In 
this case, as the synchronization interval becomes 

longer, the performance of the DB system increases 
at the cost of that the probability of occurrence of 
data inconsistencies between the primary and 
secondary servers also increases. This is because 
that the transaction logs in the primary server are 
sent to the secondary server after a certain amount of 
transaction logs are accumulated, and the 
accumulated unsent transaction logs are at risk of  
lost due to DB system failure.  On the other hand, if 
the system designer shortens the synchronization 
interval for higher availability, the primary server 
has to wait for the synchronization more frequently. 
This may result in lower performance, but the 
possibility of occurrence of data inconsistencies may 
decrease.  

When the DB system fails, if data inconsistencies 
caused by the lost transaction logs are unacceptable 
in terms of RPO, a system operator needs to resolve 
data inconsistencies so as to satisfy the RPO before 
the DB system resumes its services. RPO is used to 
represent the maximum tolerable time interval in 
which data might be lost when system failure occurs. 
However, it is generally difficult to resolve data 
inconsistencies especially in large-scale enterprise 
DB systems. The system operator needs to 
determine and resolve data inconsistencies in order 
to resume services of the DB system. Since the 
determination and resolution of data inconsistencies 
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require manual system operations by the system 
operator, it takes long time to recover from the 
system failure. This long downtime of the DB 
system results in low system availability. 
Consequently, the probability of that the time 
interval in which data might be lost is within RPO is 
highly affected by the synchronization interval. The 
probability increases as the ratio of RPO to the 
synchronization interval increases. Meanwhile, as 
mentioned previously, the shorter synchronization 
interval leads to lower performance of the DB 
system. 

In order to handle the trade-off between 
performance and availability, many techniques to 
determine the optimal checkpoint interval in terms 
of performance, availability and reliability have been 
studied. Many researchers proposed performance 
models based on periodic checkpoint (e.g., (Dohi, 
Ozaki and Kaio, 2002), (Young, 1974), (Chandy, 
1975), (Baccelli, 1981), and (Gelenbe and 
Hernandez, 1990)). The aperiodic checkpoint 
placement methods to minimize execution time of 
programs or tasks were proposed in the literatures 
such as (Duda, 1983) and (Toueg and Babaoglu, 
1984), and the methods to identify the optimal 
checkpoint placement in terms of cost could be 
found in (Fukumoto et al., 1992), (Ling et al., 2001), 
(Dohi et al., 2002), (Ozaki et al., 2004), and (Ozaki 
et al., 2006). However, these existing works do not 
consider the effect of the time-consuming manual 
resolution of data inconsistencies on performability. 

To address this issue, we propose a method to 
identify a synchronization interval which optimizes 
performability by taking into account the effect of 
the time-consuming manual resolution of data 
inconsistencies on performability. The proposed 
method identifies the optimal synchronization 
interval by solving a stochastic reward nets (SRNs) 
model (Trivedi, 2001) describing manual and 
automatic failure-recovery behaviors of the DB 
system with a given RPO. The proposed method is 
quantitatively investigated in numerical examples of 
identification of the optimal synchronization interval 
in terms of performability. The proposed method 
was studied as a part of a development project of an 
in-house model-based system design and non-
functional property evaluation environment called 
CASSI (Izukura et al., 2011). In design phase of a 
system, CASSI predicts performance and 
availability based on analytic models which are 
automatically synthesized from system design in the 
form of Systems Modeling Language (SysML). We 
proposed several techniques for the automatic model 
synthesis (e.g., (Machida et al., 2011) and (Tadano 

et al., 2012)) and proposed model in this paper is 
studied as an analytic model to improve the 
prediction for DB systems.  

This paper is organized as follows. Section 2 
proposes performability optimization method. 
Section 3 shows some numerical examples of the 
proposed method. Section 4 gives summary and 
future directions.  

2 OPTIMAL 
SYNCHRONIZATION 
INTERVAL IDENTIFICATION 
METHOD 

This section describes the proposed method to 
identify the optimal synchronization interval in 
terms of performability. In order to identify the 
optimal synchronization interval by taking into 
account the effect of the time-consuming manual 
resolution of data inconsistencies on performability, 
a performability model for representing the behavior 
of manual and automatic failure-recovery of the DB 
system is introduced. 

2.1 Overview 

The proposed method identifies the optimal 
synchronization interval based on the performability 
model. As shown in Figure 1, in the proposed 
method, the following steps are performed:  

1. Input of parameters’ values of the 
performability model 

2. Performability model analysis 
3. Identification of the optimal 

synchronization interval 
4. Modification of design of the DB system 

In Step 1, the system designer inputs parameters 
of the performability model according to the current 
design of the DB system.  

In Step 2, the proposed method analyzes the 
performability based on the performability model 
with the input parameter values.  

In Step 3, based on the analysis results, the 
proposed method identifies the optimal 
synchronization interval which maximizes 
performability.  

In Step 4, the system designer modifies the 
design of the DB system based on the identified 
optimal synchronization interval. 
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Figure 1: Overview of the proposed optimal 
synchronization interval identification method. 

2.2 Target DB Systems 

Figure 2 shows our target DB system including the 
primary and secondary servers in the main and 
backup sites. In the DB system, we assume the 
following four conditions.  

1. When the DB system failed, if the time interval 
in which data might be lost is more than RPO, 
the system operator resolves data inconsistencies 
with the manual system operations. Otherwise, 
automatic failover to the secondary server is 
performed in time much shorter than that 
required for the manual resolution of data 
inconsistencies. In this case, the DB system 
automatically performs roll-forward of the 
database, system reconfiguration to resume its 
services and roll-back in the background (Such 
automatic recovery of database systems is 
performed in Microsoft SQL Server 2012 for 
example).  

2. The time to resolve data inconsistencies caused 
by system failure increases, as the database 
synchronization interval increases. This is 
because the longer synchronization interval leads 
to the larger amount of the unsent, remaining 
transaction logs in the primary server.  

3. Database synchronization always succeeds, and 
the DB system with a synchronization interval 
smaller than RPO always satisfies RPO. 
Therefore, in this paper we consider the 
synchronization interval larger than RPO only.  

4. As the ratio of RPO to the synchronization 
interval increases, the probability at which the 
time interval in which data might be lost is 
within RPO increases, as mentioned in Section 1.  

 

Figure 2: Target DB system. 

2.3 Performability Model 

To characterize the behavior of the DB system in 
terms of performability, we introduce a 
performability model in the form of stochastic 
reward nets (SRNs) which represents the behavior of 
occurrence of software failure, detection of the 
failure, and manual and automatic recovery from the 
failure in a DB system. In this paper, we define 
performability as average throughput over both up 
time and down time of the DB system.  

Figure 3 shows the performability model of the 
DB system. In the performability model, each state 
of the DB system is described as a place represented 
by a circle as shown in Table 1. The performability 
model contains seven places: Pu, Pf, Pd, Prf, Prc, Prb 
and Pdr. The current state of the DB system is 
represented by a place which has a token. Each 
transition from one state to another state is 
represented by firing of a transition, with transition 
rates/probabilities as shown in Table 2. Performance 
is defined as throughput of the DB system per unit 
time. Performance in each state is represented by a 
reward rate ri associated with a place Pi (i=u, f, d, dr, 
rf, rc or rb), as shown in Table 3. The performability 
model includes the following parameter values: six 
transition rates (tf, td, trf, trc, trb and tdr), seven reward 
rates (ru, rf, rd, rrf, rrc, rrb and rdr), a value of RPO 
(trpo) and a range of a value of a synchronization 
interval (ts). We define a as probability at which the 
target system satisfies the RPO (i.e., the time 
interval in which data might be lost is within RPO) 
when the system failed. Based on the assumptions 
mentioned in the previous subsection, the value of a 
is calculated by “RPO (trpo) / synchronization 
interval (ts)”. Since we assume that roll-back can be 
performed in the background, the value of rrb is set 
to non-zero value smaller than ru. The reward rates 
other than ru and rrb are considered to be zero, 
because the DB system usually cannot process 
requests from users. As described earlier in the 
assumptions, tdr increases as ts increases. The values 
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of these parameters vary depending on the systems. 
These parameters’ values are input by the system 
designer.  

The behavior of the performability model is as 
follows. Initial marking in Figure 3 means that the 
DB system starts from a properly-functioning state, 
which is represented by the token in the place Pu. 
After a certain time interval, the DB system goes to 
a failure state, which is represented by firing of a 
timed transition Tf, and the token goes from Pu to Pf 
at a transition rate 1/tf. After a certain time interval 
(e.g. an interval of heartbeat or health check query), 
the token goes to a detected state represented by the 
place Pd. Immediately after that, the token goes to 
the place Pdr at a transition probability a, which 
represents a manual recovery state in which 
unacceptable data inconsistencies in terms of RPO 
are caused by the system failure and the system 
operator resolves it manually. Then the token finally 
returns to its initial place Pu at a transition rate 1/tdr. 
The value of tdr depends on the size of the remaining 
logs in the primary server which could not send to 
the secondary server, and the system operator’s skill. 
Otherwise, the system failed but data inconsistencies 
are small enough to be ignored and automatic 
recovery can be performed. In this case the token 
goes to the place Prf for roll-forward, at a transition 
probability 1-a. Then the token goes to the place Prc 
for system reconfiguration, at a transition rate 1/trf. 
Then the token moves to the place Prb for roll-back, 
at a transition rate 1/trc. Then the token finally 
returns to its initial place Pu at a transition rate 1/trb. 
The values of transition rates and trpo vary depending 
on the systems. 

The proposed method analyzes the 
performability based on the model by varying the 
value of ts in the range specified by the system 
designer. Based on the analysis results, 
performability of the DB system is calculated. Let p 
be performability of the DB system, let ri be a 
reward rate assigned to a place Pi (i=u, f, d, dr, rf, rc 
or rb), and let i be the expected number of tokens in 
Pi in steady-state. p is calculated using the following 
formula: 

 

 ൌݎ ∙ ߨ


. (1)

 

The optimal synchronization interval is identified 
as the value of ts which achieves the largest value of 
performability. Based on the identified optimal 
synchronization interval, the system designer 
improves the design of the DB system to achieve 
higher system performability. 
 

 

Figure 3: Performability model capturing the behavior of 
failure-recovery of DB system including manual 
resolution of data inconsistencies. 

Table 1: Places of the Performability Model. 

Place Description 

Pu The DB system is properly-functioning 

Pf The DB system failed and the failure is not detected yet 

Pd The failure of the DB system is detected 

Prf The DB system is performing roll-forward 

Prc The DB system is performing reconfiguration 

Prb 
The DB system resumed its service and is performing 
roll-back 

Pdr 
System operator is resolving data inconsistencies caused 
by the failure with the manual system operations 

Table 2: Parameters of the performability model. 

Parameter Description 

ts Synchronization interval of the DB system 

trpo Recovery point objective (RPO) 

a 
Probability at which the DB system does not satisfy 
the RPO when the DB system failed (=trpo / ts) 

tdr 
Time to resolve data inconsistencies caused by the 
failure of the DB system 

tf Time to failure of the DB system 

td Time to detect the failure of the DB system 

trf 
Time to finish roll-forward of database of the DB 
system 

trc Time to re-configure the DB system 

trb 
Time to finish roll-back of the database of the DB 
system 

Table 3: Reward rates of the performability model. 

Reward 
rate 

Description 

ru 
Performance of the DB system per unit time during
properly-functioning 

rf 
Performance of the DB system per unit time from when
the system failed to when the system failure is detected 

rd 
Performance of the DB system per unit time from when
the system failure is detected to when the recovery
operation is started 

rrf 
Performance of the DB system per unit time during
rolling forward 

rrc 
Performance of the DB system per unit time during
reconfiguration of the system 

rrb
Performance of the DB system per unit time during
rolling back 

rdr 
Performance of the DB system per unit time during
manual resolution of data inconsistencies by the system
operator 

a

1‐a

1/tdPf

Pd

PrcPrf

Pdr

1/tf

Pu

Prb1/trf 1/trc

1/trb

1/tdr
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3 NUMERICAL EXAMPLES 

We analyze performability by solving the 
performability model of the DB system with given 
parameter values under several assumptions using 
SPNP (Hirel et al, 2000).  

3.1 Assumptions 

We computed performability under the following 
assumptions. Performance of the DB system in 
properly-functioning state decreases as the data 
synchronization interval increases. Roll-back is 
performed as background process after the failed DB 
system resumes its services. When performing roll-
back, the performance decreases to a half of the 
performance when the system is properly-
functioning. The transition rates are exponentially 
distributed. 

3.2 Parameters Settings 

The parameters’ values are as follows. We set trpo, tf, 
td, trf, trc, and trb to 1[h], 1440[h], 40[sec], 1[min], 
1[min], and 2[min], respectively. Note that the 
parameters’ values may vary with system 
configuration. For td and trf, we used default values 
of SQL server 2012. For other parameters, we used 
arbitrary but reasonably set parameters’ values under 
the mentioned assumptions. Since the value of tdr 
highly depends on systems (e.g., the ratio of RPO to 
ts, frequency of data updates by users and 
complexity of data structure), we set tdr to 1, 12, and 
24 [h]. Since throughput during properly-functioning 
state decreases as the ts increases, ru is set to 1-c/ts 
where c is a parameter representing the size of 
contribution of ts to performance in the properly-
functioning state. rrb is set to ru/2. Other reward rates 
are set to 0. 

3.3 Analysis Results 

Based on the parameters’ values, we calculate 
performability, by varying the value of ts in the 
range of [1.0-50.0] at a step 0.1. The details of the 
analysis results are as follows. 

Figures 4, 5 and 6 show the analysis results 
where tdr is 24, 12 and 1, respectively. The 
horizontal axis represents the synchronization 
interval ts, and the vertical axis represents 
performability. The results indicate that with 
increasing c, performability decreases and the value 
of ts which maximizes performability increases. 
Differences in performability for different values of 

c decreases with an increase in ts. When the value of 
ts is infinity, theoretically performability for all 
values of c becomes the same, since no 
synchronization occurs in this condition.  When ts is 
smaller than the value which maximizes 
performability, performability sharply rises with an 
increase of ts. Meanwhile, when ts is larger than the 
value, change in performability becomes smaller. 

Figures 7 through 11 show analysis results where 
c is 0.1, 0.3, 0.5, 0.7 and 0.9, respectively. The 
results indicate that the value of ts which maximizes 
performability increases as tdr increases.  The larger 
value of tdr leads to greater change in performability.  

Table 4 summarizes the value of ts which 
maximize performability and the maximum value of 
performability, for each value of tdr and c. The 
results clearly indicate that as tdr increases, the 
values of ts which maximize performability decrease 
and the maximum values of performability also 
decrease, for all values of c. 

In summary, the analysis results show that the 
value of tdr is highly influential to performability. By 
taking into account the effect of tdr on performability, 
the proposed method enables the system designer to 
identify the optimal synchronization interval in 
terms of performability. The identification would be 
useful for design improvement of the DB systems. 

 

Figure 4: The relationship between performability and 
synchronization interval at tdr = 24. 

 

Figure 5: The relationship between performability and 
synchronization interval at tdr = 12. 
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Figure 6: The relationship between performability and 
synchronization interval at tdr = 1. 

3.4 Discussion 

In this section, we have solved the performability 
model capturing the time-consuming resolution of 
data inconsistencies. The analysis results indicate 
that with increasing tdr, the values of ts which 
maximize performability decrease (i.e., overhead for 
synchronization increases) and the achievable values 
of performability decrease.  As can be seen in the 
numerical examples, the value of tdr has a large 
impact on performability. Therefore, for system 
design improvement, not only common methods to 
increase ru such as to utilize broader bandwidth 
network between the main and backup sites, to 
upgrade hardware to enhance performance, to add 
servers to distribute load for processing the request 
from the users, but also methods to reduce tdr such as 
to train the system operator for higher skill and to 
prepare scripts for various situations of failure-
recovery in advance are considered important. The 
value of tdr highly depends on the system operator’s 
skill. The value of tdr also would vary with many 
factors such as complexity of data stored in the DB 
system, system configuration, human errors under 
time pressure. We need to estimate the value of tdr 
by properly taking the factors into consideration. 

Although the proposed method is applicable to 
various DB systems, the limitation of the proposed 
method is that the value of ts needs to be variable. If 
it is difficult or impossible to set the value of ts to the 
optimal value obtained from the proposed method in 
the DB system (for instance, the synchronization 
interval cannot be reduced to the values less than a 
certain value because of limitation of network 
bandwidth in the DB system), the proposed method 
helps the system designer to determine the 
synchronization interval which maximizes 
performability within the allowable range of ts.  

In this paper, we focus on incorporating system 
designer’s behaviour into the performability model, 
by considering the time-consuming resolution of 
data inconsistencies. In contrast, we do not consider 
the behaviour of users (clients) such as temporal 
trend of incoming requests from the users. For 
example, many failed systems tend to have sharp 
increase in access from the users immediately after 
service resumption, which might make the system 
unstable.  Considering the trend of external load will 
be an issue in the future. 

 
Figure 7: The relationship between performability and 
synchronization interval at c = 0.1. 

 
Figure 8: The relationship between performability and 
synchronization interval at c = 0.3. 

 
Figure 9: The relationship between performability and 
synchronization interval at c = 0.5. 
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Figure 10: The relationship between performability and 
synchronization interval at c = 0.7. 

 

Figure 11: The relationship between performability and 
synchronization interval at c = 0.9. 

Table 4: The values of ts when the values of performability 
become largest. 

c tdr ts Performability 
0.1 24 2.5 0.936566 
 12 3.6 0.951588 
 1 12 0.984139 
0.3 24 4.5 0.881877 
 12 6.3 0.912085 
 1 21.1 0.972203 
0.5 24 6 0.846143 
 12 8.2 0.885862 
 1 27.3 0.964069 
0.7 24 7.2 0.818218 
 12 9.8 0.86512 
 1 32.4 0.957508 
0.9 24 8.2 0.794852 
 12 11.3 0.847593 
 1 36.8 0.951871 

4 SUMMARY AND FUTURE 
WORK 

In this paper, we have proposed a method to identify 
the synchronization interval that maximizes 
performability by taking into account the effect of 
the time-consuming manual resolution of data 
inconsistencies on performability. The proposed 
method identifies the optimal synchronization 
interval by solving a SRN describing manual and 
automatic failure-recovery behaviors of a DB system 
under a given RPO. Our numerical results show that 
the value of the time to resolve data inconsistencies 
has a significant impact on performability. The 
proposed method enables system designers to 
identify the optimal synchronization interval in 
terms of performability. 

We plan to improve the performability model by 
considering more human factors and external load, 
and to develop a method to obtain accurate values of 
the transition rates and the reward rates. 
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