UML Class Diagram Simplification
A Survey for Improving Reverse Engineered Class Diagram Comprehension

Hafeez Osman?, Arjan van Zadelhoff! and Michel R. V. Chaudron'?
ILeiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
2Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

Keywords:

Abstract:

Software Engineering, Reverse Engineering, UML, Class Diagram, Simplification.

Class diagrams may include an overwhelming amount of information. For a large and complex class diagrams

there is a possibility that not all information in the class diagram is important for understanding the system.
In this paper, we study how to identify essential and secondary information in class diagrams. To this end, we
performed a survey with professionals, academics and students to enquire information in class diagrams that
is considered important. In total, 25 complete responses were received with 76% of the respondents having
average or above skills with class diagrams. As the results, we discovered that the metric that counts the
number of public operations is the most important metric for indicating importance of a class in a diagram.
Also, we discovered that class names and coupling were influencing factors when it comes to excluding classes

from a class diagram.

1 INTRODUCTION

UML class diagrams are valuable artefacts in software
development and software maintenance. This dia-
gram is helpful for software developers and software
maintainers in order to understand architecture, de-
sign and implementation of a software system. UML
class diagrams describe the static structure of pro-
grams at a higher level of abstraction than source code
(Guéhéneuc, 2004). UML models, which are usu-
ally created during the design phase, are often poorly
kept up-to-date during the realization and mainte-
nance phase. As the implementation evolves, cor-
respondence between design and implementation de-
grades from its initial design (Nugroho and Chaudron,
2007).

Reverse engineering is the process of analyzing
the source code of a system to identify its compo-
nents and their interrelationships and create design
representations of the system at a higher level of ab-
straction (Chikofsky and Cross, 1990). In particular,
reverse engineered class diagrams are typically a de-
tailed representation of the underlying source code,
which makes it hard for the software engineer to
understand what are the key elements in the soft-
ware structure (Osman and Chaudron, 2011). Al-
though several Computer Aided Software Engineer-
ing (CASE) tools have options to leave out several

Osman H., van Zadelhoff A. and R. V. Chaudron M..

properties in a class diagram, they are unable to auto-
matically identify important classes.

Normally, to understand a software system, a pro-
grammer needs both source code and design. A
good representation of a class diagram by showing
the crucial information of a system is needed, es-
pecially when new programmers want to join a de-
velopment group; they need a starting point in or-
der to understand the whole project before they are
able to contribute. Tools that support maintenance,
re-engineering or re-architecting activities have be-
come important to decrease the time software person-
nel spend on manual source code analysis and help
to focus attention on important program understand-
ing issues (Bellay and Gall, 1997). This paper aims
at simplifying UML class diagrams by leaving out
unnecessary information without affecting the devel-
oper’s understanding of the entire system. To this
end, we have conducted a survey to gather informa-
tion from professionals, academics and students about
what type of information they focus on.

The paper is structured as follows : Section 2 dis-
cusses related work. Section 3 describes the examined
properties and tools for this research. Section 4 ex-
plains about the survey methodology while Section 5
presents the results and findings. We discuss our find-
ings in Section 6 and Section 7 suggests future work.
This is followed by our conclusion in Section 8.

2901

UML Class Diagram Simplification - A Survey for Improving Reverse Engineered Class Diagram Comprehension.

DOI: 10.5220/0004319902910296

In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 291-296

ISBN: 978-989-8565-42-6

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

2 RELATED WORK

In this section, we discuss several studies that are
slightly related to this study. Yusuf et al. (Yusuf
et al., 2007) performed a study about assessing the
comprehension of UML Class diagrams via eye track-
ing. They used eye-tracking equipment to collect a
subject’s activity data in a non-obtrusive way as the
subjects are interacting with the class diagram in per-
forming a given task. They concluded that experts
tend to use such things as stereotype information,
colouring, and layout to facilitate more efficient ex-
ploration and navigation of class diagrams. Also, ex-
perts tend to navigate/explore from the center of the
diagram to the edges whereas novices tend to navi-
gate/explore from top-to-bottom and left-to-right.

Egyed (Egyed, 2002) presents an approach for au-
tomated abstraction that allows designers to zoom out
of class diagrams to investigate and reason about the
bigger picture. This approach was based on a large
number of abstraction rules and, when used together,
it can abstract complex class structures quickly. In to-
tal, the article provides 121 rules to abstract a class di-
agram. They showed that their technique scales, pro-
duces correct results most of the time, and addresses
issues such as model ambiguities that are inherently
part of many (UML) diagrams.

Table 1: The Chosen Software Design Metrics.

No | Metrics Category | Description

1. | NumAttr Size The number of attributes in a class

2. | NumOps Size The number of operations in a class

3. | NumPubOps Size The number of public operations in a
class

4. | Setters Size The number of operations with a name
starting with ‘set’.

5. Getters Size The number of operations with a name
starting with ‘get’, ‘is’, or ‘has’.

6. | NOC Inheritance | The number of immediate subclasses
subordinated to a class in the class
hierarchy.

7. | DIT Inheritance | DIT is calculated as the longest path
from the class to the root of the
inheritance tree.

8. | CLD Inheritance | The longest path from the class to a

leaf node in the inheritance hierarchy
below the class.

Coupling | The number of dependencies where
(import) the class is the client

9. Dep_Out

10. | Dep_In Coupling | The number of dependencies where
(export) | the class is the supplier
I1. [EC_Attr Coupling | The number of times the class is
(export) externally used at attribute type
12. [IC_Attr Coupling | The number of attributes in the class
(import) | having another class or interface as
their type
13. | EC_Par Coupling | The number of times the class is
(export) externally used as para
14. | IC_Par Coupling | The number of
(import) having another class or interface as
their type

3 EXAMINED PROPERTIES AND
TOOLS

In this section we describe the design metrics and the
tools used for this research.

292

3.1 Examined Properties

We study 14 metrics from the categories Size, Cou-
pling and Inheritance. The metrics that we use are
listed in Table 1.

3.2 Tools

SDMetrics! is used to measure the structural prop-
erties of object oriented design. SDMetrics version
2.11 (academic license) is used for this purpose. We
chose Enterprise Architect? for design and reverse en-
gineered UML class diagrams in this survey.

4 SURVEY METHODOLOGY

In this section, we explain how the questionnaire was
designed and why.

4.1 Questionnaire Design

The questionnaire consisted out of 3 parts. A print-
able version is available at (van Zadelhoff, 2012).

4.1.1 Part A: Background of the Respondents

Part A consisted of 4 questions. We asked about the
respondent’s background: occupation, location, years
of experience with class diagrams and skills in creat-
ing, modifying and understanding class diagrams.

4.1.2 Part B: Class Diagram Indicators for Class
Inclusion /Exclusion

The first 13 questions asked which metrics of a class
diagram based on indicator for including/excluding a
class. In each of these 13 questions, we briefly ex-
plained the metrics and a choise of 5 multiple choises
were offered are shown in Table 2. In the last question
of part B (i.e. question 14), we tried to discover the
reasons of the respondents for including and exclud-
ing a class in a class diagram.

Table 2: Answers Multiple Choice Questions.

Multiple Answers Score
Choice Letter
A Class(es) Definitely Should Not be Included | -2
B Class(es) Probably Should Not be Included | -1
C Class(es) Sometimes be Included 0
D Class(es) Probably Should be Included 1
E Class(es) Definitely Should be Included 2

http://www.sdmetrics.com/
2http:/Awww.sparxsystems.com.au

UML Class Diagram Simplification - A Survey for Improving Reverse Engineered Class Diagram Comprehension

4.1.3 Part C: Commenting UML Diagrams

In this part, we tried to simulate actual problem by
providing several class diagrams. Participants had to
indicate which class or information of a class to in-
clude/exclude. The following class diagrams were in-
volved in this survey:

1. ATM simulation system: This class diagram
is developed by the Department of Mathematics
and Computer Science, Gordon College (Bjork,
2004).

2. Library System: This system is taken from
(Eriksson et al., 2004). The reverse engineered
design was used for this questionnaire.

3. Pacman Game: This project is found at (Craig
et al., 2009). We used the forward design and the
reverse engineered design of this system

We also tried to simulate the various flavours of
class diagrams from the software industry by provid-
ing different Levels of Detail (LoD) of class diagrams
and the sources of class diagrams. The information
about the class diagrams that we used in question
number 1, 2, 3 and 5 in part C is shown in Table 3.
Other than these 4 questions, we have made 2 more
questions in which we asked the respondents which
flavour of class diagram they prefer.

Table 3: Description of Design Models used in the Ques-
tions.

Question | System Source of Diagram Level of Detail (LoD)

1 ATM Machine Forward Design Low
2 Library System Reverse Engineered High
3 Pacman Game Forward Design High
5 Pacman Game Reverse Engineered High

4.2 Experiment Description

The questionnaire was published online for two
months. The total respondents that started this ques-
tionnaire were 98. However, only 25 respondents
completed this questionnaire. Most of the incomplete
responses stopped after the questions in Part A.

5 RESULTS AND FINDINGS

In this section we present our results and findings
from this survey. The responses for this survey are
available at (Osman and van Zadelhoff, 2012).

5.1 Background of the Respondents

In this subsection we present the results of part A of
the questionnaire.

5.1.1 Roles and Locations

For the respondents’ role, 40% of the respon-
dents mentioned that their current status is Re-
searcher/Academic while 32% of the respondents are
IT Professionals. 28% of the respondents answered
Student. For the respondents’ location, 45% of the
respondents stated that they were from in The Nether-
lands. 32% of the respondents are from Malaysia.

5.1.2 Skills and Experience with Class Diagrams

24% of the respondents mentioned that their experi-
ence with class diagrams is between 1 and 3 years
while 16% of the respondents answered this question
with “3 - 7 Years”. 12% of the respondents answered
“7 - 10 Years” and 20% of the respondents mentioned
that they have more than 10 years of experience with
class diagrams. In terms of the respondents skills
on creating, modifying and understanding class dia-
grams. 40% of the respondents stated that their skill
is Average, while 20% answered “Good”. 16% of the
respondents rated their skill Excellent.

5.2 Indicator for Class Inclusion

In this subsection we present our result of part B. For
question B1 to B13, the respondents were provided 5
choises of answers. We analysed these 13 questions
by using a score-system as shown in Table 2.

In the Size category, the highest score is NumPub-
Ops with 25 points. NumOps has 18 points while Nu-
mAttr has 17 points. The Setters/Getters metric has
13 points. From these results we can consider that the
respondents found operations are important in a class
diagram, specifically operations that are public.

For the Coupling category, Dep_Out and Dep_In
have 17 and 16 points, respectively. EC_Attr has 15
points while IC_Attr has 17 points. If we compare
the points between these two metrics and EC_Par (11
points) and 1C_Par (9 points), there is a huge differ-
ence. This indicates that the classes that are declared
and are used as an attribute are more important than
the classes that are declared and are used as a param-
eter in class operations.

For the Inheritance category, the results indicate
that NOC has the most points in this category which
is 20 points. DIT and CLD have 7 points and 5 points,
respectively. With these results we can suggest that

293

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

the respondents only need a part of the inheritance
tree.

In term of class inclusion/exclusion, the answers
are analyzed by creating several keywords that are re-
lated to the given answers An answer in this open-
ended question could contain multiple keywords. We
understand that the “Important/Relevant class” is a
very broad term but that is basically what the re-
spondents answered. The answers also show that
there are three keywords that are being related to
the answers the most. These are Important/Relevant
Class (29.6%), Coupling (18.5%), and Domain Re-
lated (25.9%).

5.3 Practical Problems

In this part, we tried to access the information about
the classes that should not be included in a class dia-
gram.

5.3.1 Coupling

In question C1, the ATM System class diagram was
presented without attributes and operations. As a re-
sult, 48% of the respondents chose to exclude the
class Money and 36% of the respondents chose to not
include the OperatorPanel and Status class in a class
diagram. From our observation, those 3 classes have
the number of coupling (e.g. Dep_In,Dep _Out) <=2.
32% of the respondents chose to exclude the classes
Deposit, EnvelopeAcceptor, ReceiptPrinter, Transfer
and Withdrawal. The coupling for those classes is =2.
This shows that the amount of coupling plays a major
role in selecting the classes that should or should not
be included in a class diagram.

5.3.2 Meaningful Class Names

A reverse engineered class diagram from a Library
System was used for question C2 an all elements were
presented in High Level of Detail (HLoD). We were
expected to discover the elements that influence in se-
lecting the classes that should not be included.

From the results, it is shown that most of the re-
spondents chose not to include the classes that have
no relationship. In this question, we found that class
names also play a major role in determining whether
a class should be included or excluded. AboutDia-
log, MessageBox and QuitDialog clearly mentioned
the functionality of the classes that are used to display
the information. Borrower, Reservation, Loan, Item
and Title are classes that have a meaningful name that
might indicate the functionality of the classes and also
closely relate to the domain i.e. Library System.

294

5.3.3 Level of Detail

In Question C4, by referring to the class diagrams in
C1, C2 and C3, the respondents were asked which
flavour of class diagram they preferred.

The results show that almost half of the respon-
dents preferred working with class diagram C3. 48%
of the respondents preferred diagram C3 because they
mentioned that the class diagram is clear, the neces-
sary information is provided e.g. attributes and op-
erations and most of the classes that are presented
are important. 20% of the respondents preferred to
use class diagram C1. Most of the respondents that
chose this diagram were Researchers/Academic and
IT Professionals with the skill in class diagram rang-
ing from Average to Excellent. It seems that most
of the respondents that have a good skill and expe-
rience in class diagrams prefer to use this diagram.
12% of the respondents mentioned that it did not mat-
ter which diagram they get, 8% of the respondents
preferred class diagram C2 and 8% did not prefer any
of the presented class diagrams.

5.3.4 Reverse Engineered Class Diagram which
Conformed to Forward Design

In question C5, the class diagram used was slightly
different from the class diagram presented in question
C3 because this class diagram was constructed by us-
ing a reverse engineering technique. In this question,
we tried to discover if there was any difference of se-
lecting the classes that should not be included in a
class diagram in a reverse engineered class diagram
that is close or almost similar with the forward design
class.

The result shows that the class Direction and Pac-
Shell were selected by 72% of the respondents to be
left out from the class diagram. Compared to the
question C3, the Iterator and Iterable classes were dif-
ferently presented in this reverse engineered diagram.
The interface class is automatically presented in the
class that is connected to the interface class.

5.3.5 Reverse Engineered vs. Forward Engineer
Class Diagram

Question C6 tried to discover which type of class dia-
gram was preferred by the respondents i.e. between
the reverse engineered and the forward engineered
class diagrams. The reverse engineered class diagram
used was different with the reverse engineered class
diagram in question C2 because this class diagram
was derived from a system that was implemented (or
coded) closely with the forward design.

UML Class Diagram Simplification - A Survey for Improving Reverse Engineered Class Diagram Comprehension

The results show that most of the respondents
(mainly researcher) preferred to use the reverse engi-
neered class diagram (Class Diagram C5). 40% of the
respondents chose this diagram because it is more de-
tailed, clear, there is no interface class and it is easier
to understand. 20% of the respondents did not choose
any of the two class diagrams because for them it does
not matter which one. On the other hand, 16% of the
respondents preferred forward engineered class dia-
gram (class diagram C3).

6 DISCUSSION

In this section we discuss the results and findings pre-
sented in the previous section.

6.1 Respondents’ Background

In Part A, the respondent’s status in this questionnaire
was quite evenly distributed and the location of the
respondents showed that most of the respondents are
from The Netherlands and Malaysia.

In terms of the respondent’s skill and experience
with class diagrams, we found that 72% of the respon-
dents have more than 1 year of experience and that
76% of the respondents have rated themselves aver-
age or above if it comes to creating, modifying and
understanding class diagrams. Even though 28% of
the respondents said that they have less than one year
of experience, we can still state that all the respon-
dents have knowledge about class diagrams.

6.2 Software Design Metrics

In the Size category, we found that the higher the
number of public operation, is the more people pre-
fer this class. Public operations are not restricted to
be accessed internally but they also can be accessed
publicly from other classes. This might be the reason
why the respondents found public operations.

In the Coupling category, we have discovered that
classes that have many incoming and outgoing de-
pendencies are important. We found that IC_Attr and
EC_Attr have higher points than EC_Par and IC_Par.
The reason might be that the class(that is declared as
an attribute) is more important because it could be
used for every operation in the class. In the Inheri-
tance category, we discovered that for a class that has
a high NOC, the class should be included in a class
diagram. This parent class is helpful to show the ab-
straction of a group of classes. For DIT, the higher
number of DIT does not indicate it is an important
class because it basically means that this particular

class is located very low in the inheritance hierarchy
which means that this class is too detailed and most
of the times not needed. For CLD, if a class has
a high frequency of this metric means this class is
very abstract, meaning that this class alone will not
be enough to understand the whole hierarchy.

As for the complete results, we found that
NumPubOps has the highest points of all the metrics.
Also all the metrics have a positive score. The overall
ranking of the score is shown in Table 4. This result
could be applied for a software designer to simplify a
class diagram during the documentation phase.

Table 4: Overall Score for Software Design Metrics.

No. | Software Metrics | Score
1 NumPubOps 25
2 NOC 20
3 NumOps 18
4 NumAttr 17
5 Dep_Out 17
6 IC_Attr 17
7 Dep_In 16
8 EC_Attr 15
9 Setters/Getters 13
10 | EC_Par 11
11 | IC_Par 9
12 | DIT 7
13 | CLD 5

6.3 Class Names and Coupling

Based on the results in Part C, we discovered that a
highly influential factor when we are trying to ex-
clude classes from a class diagram is coupling. An-
other influencing factor is the class name. Many re-
spondents excluded Graphical User Interface (GUI)
related classes in the Library system because of the
class name and coupling. However, sometimes this
element is not an influencing factor as we have seen in
the ATM system because many respondents excluded
domain related classes, classes that are needed for the
functionality of the ATM system.

6.4 Class Diagram Preferences

In question C4, we discovered that most of the re-
spondents preferred to use HLoD of the forward de-
sign. The reasons the respondents gave was that this
class diagram is clearer and the necessary information
is provided in this class diagram. This result seems to
indicate that the forward design with High Level of
Detail was preferred by the respondents. Meanwhile,
in question C6, most of the respondents had chosen
the reverse engineered design (HLoD). The reason

295

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

might be that the reverse engineered design that was
provided has few differences from the forward design.
The respondent stated that they preferred this diagram
because they find it more detailed, clear, and it is eas-
ier to understand. Some of the respondents also men-
tioned that the interface classes are removed and is
thus a better class diagram.

6.5 Threats to Validity

Although the respondents of this survey was quite
well distributed between the status roles (Student, Re-
searcher/Academic and IT Professional), we consider
that the amount of full responses were not enough.
The locations of the respondents were biased to The
Netherlands and Malaysia. Most of the questions in
this study require the respondent to choose the best
answers. We needed to do several assumptions on
why the respondents chose these answers and this as-
sumptions may not be accurate.

7 FUTURE WORK

This study was an early experiment on how to sim-
plify class diagrams and we see a number of ways to
extend this work. We propose to validate the result-
ing class diagram by using an industrial case study
and discover the suitability of the simplified class dia-
gram for the practical usage. 1t would also be interest-
ing to include other metrics that we have not chosen
and check whether they are important or not and ask
why the respondent chose the answer to get the rea-
son.

From the results, we found that class role and re-
sponsibility are one of the important indicators in a
class diagram. We would like to suggest a study on
names (class, operation and attribute) that the soft-
ware developers find important or meaningful in order
to understand a system. We discovered some weak-
ness in the questionnaire and our suggestion is to im-
prove this questionnaire by increasing the amount of
responses. It would be interesting to see what the re-
sults are with a larger group of respondents.

8 CONCLUSIONS

In this survey we have discovered the most important
elements in a class design. We also discovered what
flavour of class diagrams is preferred to work with.
From the results, we discovered that the most impor-
tant software design metric is the Number of Public

296

Operations. This means that if a class has a high num-
ber of public operations then this indicates that this
class is important and should be included in a class di-
agram. In this survey we also discovered that the class
names and coupling are influencing factors when se-
lecting a class to be excluded from a class diagram.
With these results we can highlight which classes
should be included or excluded in a reverse engi-
neered class diagrams based on our results and anal-
ysis by looking at the metrics and behaviour the re-
spondents had in Part C. Although the number of re-
sponses of this questionnaire is not that high, we still
managed to find some influencing factors for deciding
a class to be included or excluded in a class diagram.

REFERENCES

Bellay, B. and Gall, H. (1997). A Comparison of Four Re-
verse Engineering Tools, pages 2-11. IEEE Computer
Society Press.

Bjork, R. C. (2004). Atm system. _http://www.math-
cs.gordon.edu/courses/cs211/ATMExample/ .

Chikofsky, E. J. and Cross, J. H. (1990). Reverse engineer-
ing and design recovery: A taxonomy. IEEE Software,
7(1):13-17.

Craig, A., Dinardo, A., and Gillespie, R. (2009). Pacman
game. http://code.google.com/p/tb-pacman/ .

Egyed, A. (2002). Automated abstraction of class diagrams.
ACM Trans. Softw. Eng. Methodol, 11(4):449-491.

Eriksson, H.-E., Penker, M., Lyons, B., and Fado, D.
(2004). UML 2 Toolkit. Wiley.

Guéhéneuc, Y.-G. (2004). A Systematic Study of UML Class
Diagram Constituents for their Abstract and Precise
Recovery, pages 265-274. |EEE.

Nugroho, A. and Chaudron, M. R. V. (September 20-21,
2007). A Survey of the Practice of Design - Code
Correspondence amongst Professional Software En-
gineers, pages 467-469. Proceedings of the First In-
ternational Symposium on Empirical Software Engi-
neering and Measurement.

Osman, H. and Chaudron, M. R. V. (September 12-13,
2011). An Assessment of Reverse Engineering Capa-
bilities of UML CASE Tools, pages 7-12. 2nd An-
nual International Conference Proceedings on Soft-
ware Engineering Application (SEA 2011).

Osman, H. and van Zadelhoff, A. (2012). Structured ques-
tionnaire responses. http://www.liacs.nl/ hosman/
Complete_Results_Structural _Survey.rar.

van Zadelhoff, A. (2012). Structured ques-
tionnaire. http://lwww.liacs.nl/ hosman/
The_Presence_of_Classes_in_Class_Diagrams.pdf.

Yusuf, S., Kagdi, H., and Maletic, J. 1. (2007). Assessing
the Comprehension of UML Class Diagrams via Eye
Tracking. pages 113-122. 15th IEEE International
Conference on Program Comprehension ICPC ’07.

