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Abstract: This paper deals with model transformations based on attributed graphs transformation. Our approach is
based on the categorical approach called Single Pushout. The principal goal being to strengthen the attribute
computation part, we generalize our earlier approach based on the use of typed lambda-terms with inductive
types and recursion to represent attributes and computation functions. The generalized approach takes terms in
variable context as attributes and partial proofs as computation functions that permit to combine computation
with proof development and verification. The intended domains of application are the development of cerified
software models and semantics models for interactive proof development and verification.

1 INTRODUCTION tribute computations. Most of the existing systems

based on category theory adopt the standard algebraic
In Model Driven Engineering (abbreviated MDE), approach where graphs are attributed using algebraic
models are mostly described using a graphical syntaxdata types represented @yalgebras (Ehrig et al.,
(UML, SDL, etc.). Models are composed of a struc- 2006b), (Orejas, 2011). However, the computation
tural part which can be represented as a graph and ofwith algebraic data types does not permit to repre-
attributes which are informations attached to vertices sent certain computations (like computation of recur-
or edges of the graph. Thus, models can be formal- sive functions or term matching), and meets efficiency
ized as attributed graphs and model transformation asproblems when implemented.

attributed graph transformations. An attributed graph In our earlier work, see (Reboutetal., 2011), (Re-
transformation is composed of a rewrite of the struc- pouyt et al., 2008), (Tran et al., 2010) we suggested
tural part and of Computations on its attributes. to use inductive types and lambda terms in com-
When considering graph transformations, it can be pination with a modification of the double pushout
noticed that a lot of them deal only with structures and approach (Rozenberg, 1997) called DPoPb (“double
not with attributes. For instance transforming UML  pushout-pullback” approach). As stated above, our
class diagrams to relational models or UML aCtiVity goa| was to use a well deve|0ped approach to imp|e_
diagrams to Petri nets require few attribute compu- ment rewriting of the structural part of graphs and
tations. In contrast, when dealing with formalisms to use the expressive power Afterms and induc-
such as timed automata, complex Petri nets (predicateive types to describe and facilitate attribute compu-
Petri nets, Object Petri nets, colored Petri nets), in- tations. But the construction of the double pushout
ternal program representation leads to sophisticatedimposed strong constraints on computation functions
attribute computations. In our previous and current mostly due to the usage of total maps and the obli-
works we decided to focus on graph transformations gation to split all the computations into two parts.
requiring complex computations. So we developped That is why later we presented a new approach based

a first approach based on a typedalculus and now  on single pushout and-terms as computation func-
we moved a step further considering inference rules tions (Boisvert et al., 2011a).

as a way to make attribute computations.
One of the challenges of attributed graph transfor-
mation systems concerns the implementation of at-

In this paper, we generalize this approach towards
models incorporating proofs. Instead dfterms in
the same fixed context we consider full typing judge-

*Part of this research has been supported by the Climt ments of the fornt” -t : Awhererl is a contextt is
project, ANR-11-BS02-016-02 a term andA is a type. Instead ok-terms as com-
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putation functions we take partial proofs in the corre- ones who are not in the imageldfand the morphism
sponding system of type theory. As aresult, the scoper indicates what vertices or edges should be trans-
of the approach is considerably extended. It can be formed (those who are iK), and added (those who
used now not only to support attribute computations are not in the image af). The application of the rule
in graph transformation systems but also in computer- is done by a computation of a pushout-complement

assisted verification and proof-development. (adding the arrows 4D andD s G and then a
The next section of this paper introduces the main h h 8 H andD " H). Cf i
approaches of graph rewriting based on category the—g‘(J:) out (the arrowR — H andD — H). 'gure

ory, and particularly the single pushout approach on ) i
which our approach is based. Afterwards we define !N the SPo arlpproach, arule is defined by one par-
our category of attributed graphs, and then explain tial morphimL — R. Vertices and edges not included
how to apply a rewrite rule by the computation of in the domain of will be deleted, the ones in the do-
a weak pushout. Proofs are based on the ideas premain ofr will be transformed and those which are not
sented in (Boisvert et al., 2011a) but applied in more in the image ofr will be added. The application of
general setting. In section 5 we present examples.the rule‘is done by the computation of one pushout
Section 6 contains an outline of future work. The pa- (adding the arrow& > H andR > H). Cf Figure

per is completed by an appendix that contains a brief 1(b)

description of the system of typ@dcalculus with in-

ductive types used for presentation and examples as L ! K ! R

well as necessary notions of proof theory.

2 CATEGORICAL GRAPH
REWRITING G D H

r
(a) DPo approach

In graph rewriting systems based on category the- .

L R
ory, we usualy define a category whose objects are

.l (PO) l

G

graphs and morphisms are graph homomorphisms.
A transformation rule is composed of at least two
graphs called the left-hand side (usually not¢end
right-hand side (usually note®). The left-hand side
describes which subgraph a graghmust contain -

in order that the transformation could be applied to (b) SPo approach
it, and the right-hand side describes how this part
will look like after the transformation. Morphisms
between left-hand side and right-hand side describe
which parts of graphs will be deleted, transformed or
added. To apply a rule to some subgraph of a larger
graphG, we need first to embed the left-hand side as
a subgraph o6. The embedding is represented by an

- H

Figure 1: Classical categorical graph rewriting approache

Because not all pushout-complements necessarily
exist in the categories of graphs, there exist “applica-
tion conditions” in DPo approach. As a consequence,
rules that create dangling edges are forbidden in the
, - i ) DPo approach while in SPo approach dangling edges
inclusionL = G. Cf Figure 1(a) and 1(b). are removed when the rule is applied. If necessary, it

There are two principal categorical approaches to 5 possible to add application conditions in the SPo
graph rewriting: double pushout (abbreviated DPo, approach as well. Thus the SPo approach is more
concieved by H. Ehrig and his colleagues (Ehrig, general than the DPo approach, but SPo approach re-
1978), (Rozenberg, 1997)) and single pushout (ab- majned less developed due, in our opinion, mostly to
breviated SPo, mainly developped by Lowe (Lowe, hjstorical reasons and to the fact that computation of
1993), (Rozenberg, 1997)). The main difference is pyshout in categories of partial maps is more difficult
thatin DPo morphisms are total maps and in SPo mor- than, in categories of total maps.
phisms are partial maps. This implies different forms Both approaches met many difficulties on the level

of rules. _ _ of attribute computations. Our experience with the
In the DPo approach a rule is defined by 3 graphs ppopp approach, see (Rebout et al., 2008), (Rebout

and 2 total morphismg: L KSR The morphisn etal., 2011), (Tran et al., 2010) and the usa-¢érms

indicates what vertices or edges should be erased (thefor attributes was encouraging but the construction of
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a double pushout still imposed some constraints dueand partial typing proofs are considered. The result-
to the use of total maps and the obligation to split ing category of attributed graphs will be denoted by
computation into two parts. The approach based on Gr'P. (For all notions that are not explained in the
single pushout construction wiktiterms as attributes  main part of our paper please see Appendix.)

that we pursued afterwards (Boisvert et al., 2011a)

was more direct and natural, free of application condi- To have better idea of the power®f let us recall
tions and no specific constraints on the computational that it is a system of simply typedcalculus with sur-
level. It permitted to strengthen attribute computa- jective pairing, terminal object and inductive types.
tions and lighten the structure rewrite. At the same Type constructors includes for functional typesx
time, while the relationship betweencalculus and  for product (pairing) ant¢hd for inductive types. Pair-
proof theory is well known (one may mention famous ing may be used to represent records, i.e., to “pack”
Curry-Howard isomorphism), the early version of our multiple attributes into one. The presence of inductive
system could not be used directly in proof develop- types permits to define all ordinary types of attributes,
ment and verification. In this paper, we generalize it like Bool, Nat, etc., as well as more complex types
in this direction. like lists, binary treese-trees, etc. Definition of in-
ductive types includes structural recursion over each
inductive type, this explains their particular interestin
modeling computations.

Below @ is the set of all typing judgements ot
Objects. Objects of Gr'P are attributed graphs.

) N An attributed graph is defined as 5-tupe =<

To develop a categorical graph rewriting system we Ve, Ee,Sfe, tgs, atte >, where the structural part (first
must define a category (objects and morphisms) and4 jtems) consists of the set of verticgs, the set of
then explain how to apply a rule (in our case by the edgesEs and two functions sourcgs : Eg — Vg and
computation of a pushout). targettg : Eg — Vi to connect edges to vertices. The

Let us recall that a pushout of two morphistns% elements of the sé&fg U Eg are called “elements of
R L - Gis a couple of morphisms{- H, R H)  the graph”. ‘In this paper, we assume tNatU Ec
such that: is fully ordered (Iexmographlcallﬁ) The funcuon
attg : Vo UEg — © associates exactly the judgement
I = M : Awith each element of the graph.

To represent multiple attributes of a structural el-
ement, we use pairing to “pack” different data into
oneA-term. So each attribute can be seen as an n-
tuple containing all information attached to an ele-

3 CATEGORY OF ATTRIBUTED
GRAPHS

o i'or=roi

o for every other couple of morphist@ H’,

G2 H’) such thathor = goi it exists a unique
morphismc such that the diagram below com-

mutes: ; ment. The n-tuplec My, ...,M;, > is considered as an
L—R abbreviation of the terma ... < My, Mz >, ..., M >.
il Certain inductive type(s) can be reserved to rep-
, resent labels in ordinary sense.E.g, let Fy, =
G—— Ind(a){cy : a|...|cn : a} be a finite type. InT, we

have typing judgementst ¢; : F, in any contexf . If
we want to use; in combination with other attribute
M : A, we may use< M, ¢ > of type Ax F,. The
“absence of attributes” is represented byT0.:
Morphisms. Let G,H be two attributed graphs. A
morphismf : G — H is defined in three parts:

H/

As a consequence, the existence of pushout im-
plies the uniqueness of the objdadtup to isomor-
phism (cf. (Ehrig et al., 2006a), (Lowe, 1993)). If we
have the two properties in the definition of pushout 1. The “structural part” noteds is a partial graph
but not the unicity ofc, the construction is called a homomorphism (Rozenberg, 1997) from the stuc-
weak pushout. tural part ofG to the structural part afl (cf. Fig.

As in our previous work (Boisvert et al., 2011a), 2).For eaclv € Vi UER, its pre-imageie. the set
the systenT of A-calculus is used to define attributes of all its antecedents) is notéd 1, € Ve UEG.

and computation functions, but now we generalize 5 The “attribute dependency relatiofy, is a rela-
both the notion of an attribute and of a computation

function: instead of\-terms in a fixed context, full
typing judgement§ - M : A with arbitrary context”
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tion between the seds UEg andVy UEy. For
eachv € V4 UER, its pre-image is notef],, C

Ve UEg. Applying to its elementsatts, all at-
tributes of graphs which are used to compute
can be obtained.

3. The “computational partfemp(V) is represented
by a partial proof. The partial proofgm(v) have
to be “matched” with the attributes & andH in
the following sense.

Letve V4 UEH. Letatt(v) =T+ M:A Let
Mty = {U1, ..., Uk}, U1 < ... < U (as before, we
use the ordering on elements®f and

att(u) =1 Mg Ag, ... att(ug) =T Mg A

system we describe is intended to study the properties
of deductions, models etc. represented by attributed
graphs. So itis more natural to impose an equivalence
relation on attributes and attributed graphs as needed.

4 RULE APPLICATION BY A
WEAK PUSHOUT
COMPUTATION

As in the SPo approach, in our approach each mor-
phismr : L — R defines a transformation rule. The
auxilliary notion of an embedding is necessary to in-
dicate a “redex” - the part of the host graph to which

The partial proof tregp = femp(Vv) should have the plle can be apPhed,

exactlyk a}ctlve leaves \_N'th labely that.are (_equal Injective Attributed Graph Morphism. Letf:G—
to the atiributed 1 - My : Ag,...,Fich My 2 A (in H be an attributed graph morphisthis injective if:
the order defined by the order of the leaves of the _ | g p _ P I -
tree). The root of the tree should have a label that 1. fsi is an injective partial graph homomorphism

is equal to the attributetty (v). Parameter leaves
are not matched to anything. (See Fig. 2.)

Equality of Objects and Morphisms. For objects,
we use identity on structural part afidi-equality of
judgements of for attributes. For morphism$,= g
requires the identity ofs;y anddstr, fagr andgagr; for
computation functions, for ail the equality offemp
andgemp(V) W.r.t. ni-equality is required (see defi-
nition 6.5 of the Appendix).

Categorical Structure on Gr'P. The identityidg is
defined using identity graph homomorphism fag,
identity relation asfygr and canonical identity par-
tial proofs asfemp(Vv). The composition of morphisms
(only the level of partial proof trees is non-trivial) is

(i.e.W1,v2 € V(G)UE(G).(fetr (V1) = ferr(V2) =
V1 =V2));

2. fadr = fatr;
3. foreachv/ e V(H)UE(H):

o if [V]t,,, is empty, thenfcmp(V) is the partial
proof tree (cf. appendix) that has one node with
the labelatt(v'). It is at the same time its root
and its only leaf, which is not active.

o if [V]t,,, is not empty (thugv]s,, is a single-
ton becausd,g, is injective) thenfemp(V) is
canonical identity partial proof for the attribute
att(v).

We shall call anembeddinga total injective at-

defined using composition of partial proof trees, defi- tributed graph morphism.

nition 6.6 of the Appendix.
Theorem 3.1. Gr'P defined above is a category.

Proof. Composition is associative due to associativ-

Canonical Retraction of an Embedding. Let f :
G — H be an embedding. A retraction 6f(or a left
inverse) is an attributed graph morphidmH — G

ity of the composition of graph homomorphisms, and b
associativity of the composition of relations. For par- Such thatf o f = ldg.

tial proofs composition is associative too because of _  With this definition, we have not necessariiy
confluence and the fact thatis strongly normaliz- | = !dn, andf is not unique in general. That's why
able. Thus any evaluation strategy will terminate on a We give a canonical construction to obtain a retraction
same simply typed-term. It is easy to verify that for  ©f f- This construction is defined by:

every morphismf : G — H we havef oldg = f and 1. forevery e V(H)UE(H) if [V]t, is emptyi.e,
Idyof=f. V' does not belong to the image &f;, thenv
Remarks. This notion of equality is discussed in does not belong to the domain b, (V'); if [V]1,
detail in (Boisvert et al., 2011a). Here we would like is not empty therV'],, = {v} for somev because

to remark that there is no reason to impose equiva-  of injectivity and we posd, (V) = v. Notice that
lence relation on partial proofs themselves since the M = {V} by this definition.
- str

3We may obtain other interesting categorical structures 2 F.. =T
with different kinds of equality of judgements and partial adr = “str _ _
proofs, for example syntactic (graphical) equality of judg 3. for eachv € V(G) UE(G) fcmp(V) is canonical
ments. identity partial proof for the attributatt(v).

65



MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

77777 »  graph morphism
,,,,, »  (structural part)
attribute

dependency relation

computation functions
(partial proof)

%
¢ =F<" Key”,1 >: Str x Nat

M = Az : NatxNat.\y : StrxNat. < prx, prx+p2y > Natx Nat — Strx Nat — NatxNat

F M : Nat x Nat s Str x Nat — Nat x Nat < 1,2 >: Nat x Nat

k<" Key”,1 >: Str x Nat

M<(1,2 >: Str x Nat = Nat x Nat

Y=

F(@M<1,2>) <" Key"”,1 >: Nat x Nat

Figure 2: Attibuted
With this definition, it is easy to see théb f = Idg.

Construction of a Weak Pushout. The construction

of a (weak) pushout in case of application of a rule

is inspired by the paper by Lowe and others (Rozen-

berg, 1997), but there will be differences due to our

definition of attributed graphs and graph morphisms.
The “starting point” is the pair of morphismis &

R, L -5 G) wherei is an embedding as definded above.

We want to compute the weak pushoBt{'/» H,G 3
H) of this pair.

The first step to define a pushout would be to
take the coprodudg + R of G andR (coproduct be-
ing here just the disjoint union). Next step would be
to factorize it by certain equivalence relation (creat-
ing (G+ R)" which contains equivalence classes), and
then to complete the construction using composition
with certain morphisnp from factor object to pushout
objectH.

We shall define each of the morphismandi’ as
a composition of three morphisms (Cf. figure 3) in
order to have

=G (G+R 5 (G+R/ 2 H

and i "
" =RL (G+R 5 (G+R/ B H

The objects and morphisms in these diagrams are

defined in several steps.

e On the level of structur& + Ris disjoint union of
the graph$s andR;

66

graph morphism.

"R

G

®

+

G+R) ———H
p

Figure 3: Construction of weak pushout.

e on the level of attributes each element®andR
in G+ R has the same attribute as@andR;

e | andj” are inclusions respectively @& andR
into G+ R, thus they are total injective attributed
graph morphisms.

To continue, we define first the equivalence rela-
tion ~1 on the elements of the graph struct@e- R.

o lets put a ~y b for abe G+ R if Ix €
L.(i"(i(x)) =aA j"(r(x)) = b)

e then the relation~ is defined as reflexive, sym-
metric and transitive closure oef;.

e notice that the elements G+ Rwhich are not the
images of elements @ —i(dom(r)) form equiva-
lence classes consisting of single element (itself).

The elements ofG + R)’ are defined as equiva-
lence classes of elements®#-R. Itis easily checked
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that this definition is consistent with the incidence re-
lation and the map sending each elemenCof R

to its equivalence class is a (total) graph homomor-
phism. This map will be structural part 6f and f”.

Moreover, each equivalence class with respect to
~ containing an image of an elementdmay be seen
as a “span”, consisting of the image of this element
of R underj” and the images of its antecedent via
r underj’ oi. In particular, each equivalence class
contains exactly one image of an elemenRofAs a
consequence, the compositié o j%, is injective.

It permits also to define the attribute part(& -+
R).
of an element oR has the same attribute as this ele-
ment has inR. Other equivalence classes (that have
the form{j'(y)},y € G,y # i(x) for somex € L) keep
the same attribute as (@&.

The definitions of relational part and computation
functions off’ and f” are different.

For f” the relationf,, connects the elements Bf
with corresponding equivalence classes (it is bijective
on theR-part). There is no connections on tGepart.
The computation functions are identities.

Remark. The compositiorf” o j” is injective, in par-
ticular (f” o j")s is an injective total graph homo-
morphism,f” o j")adr = (f” 0 j")str and computation
functions are identities.

Now we may defind’ as follows:

e YWeimg(j'oi):
f=G+RLGLHLSRLGHRE (GLR).

o forthe elements 0B —i(L), f’is like the identity.

As usual (cf. (Rozenberg, 199'H)is defined now
as for coequalizer construction. Ueg = dom(r). In
our caseH will be a subgraph ofG+ R)’. The inci-
dence relation ifG + R)’ is inherited fromR andG.
The elements on H (on the level of graph structure)
are:

1. all the equivalence classes of the form
{X1, -y X, 2} (X1, .., X € J'(i(Lo)),z€ j"(r(L));

2. all the equivalence classes of the fofm}, z €
I"(R=r(L));

3. all the equivalence classes of the fofm}, x €
j’'(G—i(L)) that are not dangling edges (Rozen-
berg, 1997).

The attributes for the equivalence classes of the
first two types are inherited frofR and for the third
from G.

The morphismp is defined as follows. Its struc-
tural part is identity on all elements ¢6 + R)’ that
remain inH. We have als@aqr = pstr, and all com-
putation functions are identities.

Each equivalence class that contains an image

Nowi’, r’ andH are defined such thétor =r’oi.

Leth: R— H’ andg: G — H’ be two other mor-
phisms such thaior = goi. Asi’ is injective, we
can use the canonical retractiBrand take forc ho i’
and for elements who are not in the domain’ofe
extendc in order to make it in accord witly. The
commutativity on the level of computation functions
follows from the definition of equality of attributed
graph morphisms (cf section 3). Thus the diagram
commutes but in general the unicity ofs not guar-
anteed, so we have a weak pushout.

This is summarised in the following theorem.

Theorem 4.1. Let L X R be an attributed graph
morphism and L' G be an embedding in GP.

There exists weak pushout ofk R and L G.
Moreover, it may be assumed that the morphisin i
the (weak) pushout diagram is also an embedding.

Composite Rules. = The proof of the theorem
above provides a canonical construction of the weak
pushout, in particular the vertical arralvis an em-
bedding likei. Such weak pushouts are sometimes
called specific weak pushouts because in the proof we
used the property that one of the two morphisms is an
embedding.
This construction of specific weak pushout per-

mits to compose the rules. Take two morphisms

L5 RandRS R. We have also their composition

" R, The fact that’ in the specific weak pushout
above is also an embedding permits to construct the
second weak pushout representing an application of

the rule given byR%l R. It may be verified that the
construction of specific weak pushout applied directly
tor’ or gives the same gragtt’ after transformation.
Possible Generalizations: Schematic Morphisms
and Rule Schemas.The idea to use metavariables
in the definitions of graph transformation rules is sup-
ported by the practice of proof theory. Various ex-
amples are possible, e.g., one may define the disjoint
union of graphs using a rule schema (Boisvert et al.,
2011b). We shall use below only a restricted case of
rule schema based on the notion of schematic mor-
phism which we shall define precisely. For definitions
of partial proofs and schemas see Appendix, defin-
tions 6.4 and 6.8.

Definition 4.1. A schematic morphism is obtained
if we replace partial proofs in the definition of mor-
phism in GF by partial proof schemas. An instance
of schematic morphism is any morphism in"Gob-
tained by instantiation of metavariables. Letir— R
be a schematic morphism. The rule schema ihfGr
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is the family of graph transformation rules defined by
all instances of . L — R.

5 EXAMPLES

To illustrate our transformation approach we present
in this section two detailed examples that may be of
interest from the point of view of model transforma-
tions. The first one presents computation on attributes
representing infinite trees. This can not be done us-
ing Z-algebras. Possible applications include trans-
formations of infinite models. The interest of dealing
with infinite models is now taken into consideration
(Combemale et al., 2012). A model can be infinite
according to the width or the depth of the graph. In
the example, we show how to deal with infinite width
trees. Another example concerns coercive subtyp-
ing, that has important uses in software modeling and
reuse (Soloviev and Luo, 2001).

Let us mention also some examples not devel-
oped in this paper that can be easily treated using
our approach: (i) graph cloning, cf. (Boisvert et al.,
2011Db); (ii) generation and transformation of proofs
in deductive systems, cf. (Boisvert et al., 2012) (e.qg.,
Kleene-style premutations of rules (Kleene, 1952));
(i) information transfer between attributes and struc-
ture; (iv) transformations of UML diagrams to rela-
tional models; (v) term graph rewriting (cf. (Baren-
dregt et al., 1997)).

5.1 UML Diagram to Database
Relational Model

Our approach permits to manage classical graph
transformation problems like UML diagram to
database relational model transformation. This prob-

ven Engineering and Software Development

o the typeConnectoiis also defined as a finite type
representing all temporary nodes that permit to
connect elements of the class diagram to elements
of the relational database model (see (Taentzer
et al., 2005)):

Connector= Ind(a){C2T : a|A2C: a|A2F : a|...}

o the typeNameis the type describing the Name of

the classes or tables. It is more or less like String.

o the type Bool is used as the value of the attribute
is_persistentof a node ofType Clas$

We do not describe only one rule of this problem
here because it would take several pages to write them
all, and there is no complex attribute computation in
these rules. Thus our approach has no advantage on
other approach to manage this example. It is possi-
ble to define all the other rules presented in (Taentzer
et al., 2005) in the same way.

5.2 Managing Infinity with Functional
Attributes

The use ofA-terms as attributes permits to manage
complex data structures that can represent infinity.
As an example, the typR, which represents trees
with infinite branchind can be defined as follows:
Tw=Indo{0:a,
S:a—aq,
L:(Nat—a)—a}

Using the standard recursion operators on in-
ductive types (see appendix), we can define com-
plex w-trees and computations on these infi-
nite tree structures. The figure 5 presents a
simple example ofw-tree defined by the term
L(Re®atT, (0) (AXN¥AyTe S(y))). It is also possible
to define computations that transform these terms.

It is possible to write a function that takes as ar-

lem is described in (). In (Taentzer et al., 2005) the gument an infinite_tree, _and give as results the_tr_ees
transformation using the the DPo approach ... In our Whith branches with pair numbers at every infinite
approach it is possible to manage this classical prob-Pranching:

lem. In this paper we present only an example of Rea, 1, (0)(Ax™.S)(AUAV.(vod))

rule because it would take several pages to present

them all. The figure 4 presents the rule “Class2Table” 5.3 Coercive Subtyping

(Taentzer et al., 2005). As we use typedalculus, it

necessary to define the types used in this example:  The notion of coercion was introduced to represent

o the typeTypeis defined as a finite type (see ap- explicitly the transformation of the elements of the

pendix 6) representing all “classes” of objects ma-

) c 5In this example the attributes of a node have no “hame”,
nipulated by the transformation:

because they are stored in a tuple, and the position in the tu-

ple permits to identify the different attributes. We do like

this because we respect strictly on formalism, but in prin-

- ciple it would be possible to add names for the different
4the constant Column and other constants are used inelements of a tuple

other rules that are not described in this paper 5nodes have an infinite number of subtrees

Type=Ind(a){Class: a|Table: a|Column: a|...}*
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¢ =x: Name F< Class,z,true >: T'ype x Name x Bool

M = Au: Name. < Table, (p2(p1u)) >: Type x Name x Bool — Type x Name

_x: Namebk M : Type x Name x Bool = Type x Name  x: Name =< Class, z, True >

¥ z: Namel M < Class,x, True >: Type x Name

Figure 4: Example of a rule.

we may use free variables, e.g., to represent the type
A we take the axiomt: A x: A as the attribute. Two
nodes corresponding to the typAsand B are con-
nected by an arc if the types are in subtyping relation,
and the attribute of this arc is the coercion: A— B
(coercion terms representing basic coercions have no
free variables).
! The set of coercions is coherent if composition of
! coercion terms along two paths with the same source
Figure 5: Example ofwtree defined by the term and targetis equal. The graph is completed to transi-
L(RematT,(0)(MNay™.S(y))). The length of the n-th tive closure (concerning the attributes, coherence per-
branch is n. mits to do it without contradiction). Practical useful-

) ) ness of this is clear, since the coercions “implement-
subtype into the elements of the supertype. Itis cOm- ¢~ the subtyping relation can be directly taken from
mon knowledge that.the representation of the ele- {he graph.
ments of a datatype is often changed when we pass  ope of the main results obtained in (Soloviev and
to a larger datatype, even if from mathematical point | 5, 2001) was that coherence of the set basic coer-
of view itis merely an inclusion. _ cions implies coherence of the set of all derived coer-

In coercive subtyping the subtyping relatién< cions. The main consequence was that the subtyping
B is interpreted as existence of a certain definable gxtension of the consistent type theory without sub-
termc: A — B, with motivation of giving operational typing remains consistent.
semantics to calculi with subtyping and inheritance Here we shall consider as an example two graph-
(see, e.g., (Breazu-Tannen et al., 1991)). rewriting rules (besides already mentioned transitiv-
In practice, certain “basic coercions” are defined ity) that may be used to extend already obtained co-

and other coercions are derived using appropriateercion graph. They include the following derivations
rules. For example, to the transitivity of subtyping ysed to define new coercions.

relation corresponds composition of coercions, from

two subtyping relationé < B andC < D one can de- X: Aﬁ XA
rive B— C < A— D, respectively, from the coercions X:AZ.CFx:A
¢1:A— Bandcy: C— D one may derive a coercion d= X AFAZ CX CoA

c:(B—C)—(A—D).

In the calculus with inductive types basic coer- FACAAZICXCAS (C— A)

cions are usually certain coercions between inductive FeiAoB

types, for example the typg@ool = Ind(a){T : a|F : 2.CFc:A>B f:C5AZICHf:CoA f:CAZICHZIC
a} is the subtype oNat = Ind(@){0: a|S:a — a} ~ o-HEZAZCEEARE o o grenimA

(with coercionc(T) = S(0) : Nat,c(F) = 0 : Nat). f:C>AFAz:C(c(f2):C—B

The set of coercions may be represented by an FAT:CoANZC(d(12): (C~ A = (C~B)

acyclic attributed graph where attributes of the nodes  Here in factd is an ordinary derivation andl is a
represent corresponding inductive types. To do that partial derivation, active leaves (we refer to Ap-
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Figure 7: Rule 2.

incorporates botf-calculus and reductions as com-
putational mechanism, and has at the same time de-

A XA A AYCxXA 2 (C oA duction rules for typing. The use of inductive types
& 0—-0 permits to include user-defined datatypes, as in many
XA XA fUC A FuC_ Al modern programming languages, and recursion over
Figure 6: Rule 1. these types.

That gives to our approach a great expressive
pendix) are labeled by. If A,B,C are considered = Power that permitto manage classical model transfor-
as the metavariables for arbitrary types ands a  mations like UML to Relational database model trans-
metavariable for arbitrary coercions, then we have formation, and also more sophisticated examples like
schemas of (partial) derivations instead of concrete COmputationon functions, on infinite data structures,
(partial) derivations. The instances will be obtained if OF On proofs.

we take, e.g.Bool instead ofA, Nat instead o8 and Atthe same time, the presence of proofs permits to
C, and concrete coercian: Bool — Nat mentioned  €stablish connection between development and trans-
above. formation of software models and software certifica-

Of course, other rules to introduce new coercions tion and verification.
are possible, for example, a “contravariant” rule to 1 heoretically speaking, the SPo approach neces-
pass fromA < Bto B — C < A — C and the rules sitates the definition and the construction of a weak

for product types A B. pushout when dealing with attributes. A solution is

Below we give an example of graph transforma- p_resented in this paper. In comparison with our pre-
tions usingd andd’ to define computation functions. ~ VI0US papers, we presented a more powerful way to
The rules are given in Fig. 6 and 7. In Fig. 7, describe ftransformatlon of attrlbute.s, using not only
IA] denotesx: A+ x: A, [B] denotes< : BF X : B computation _\Nltm-term.s but dedu_ctlop rules.
etc., c; denotes some coercione : A —s B, ¢, de- The po_SS|b_Ie domains of appllcatlons include all
notes- Ax: AAy: Cx: A — (C — A), cs denotes _u_sua_l applications of graph tran_sformanons, e.g., ver-
AX :BAY :CxX : B — (C — B), andcs denotes ification and model transformations in software engi-

FAf:C 5 ANZ:C.(c(f2) : (C— A) — (C — B). neering. Note that thanks to the approach described

In Fig. 7 the left side may be assumed to be already above it is now possible to deal with certain infinite
obtaiﬁed by applications of the first rdle models. More “tight” relationship between computa-

tion, graph structure and proofs will permit also the
pursuit of much more specific goals, in particular in
the domain of computer-assisted reasoning and veri-
6 CONCLUSIONS fication (Luo, 1994),(Soloviev and Luo, 2001).

As a principal example of deductive system based

The aim of this paper was to generalize our previously ©" type theory we considered in this paper the sim-
defined graph transformation system . As in (Boisvert PIY typedA-calculus with inductive types and pairing.
etal., 2011a), it is based on the SPo approach and its?!l the constructions, though, can be easily modified
main originality concerns the use of a partial deduc- t© P€ used in case of higher order and dependent type

tions to express attribute computations. Type theory SYStems in proof assistants, as well as for purely logi-
cal systems and applications.

"The labels added using pairing may be used to avoid A former experiment (Tran et al., 2010) of imple-
repeated application of transformation rules to the same ar mentation in Haskell language constitutes the basis
guments. for building a sofware environment devoted to model
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transformations using our new approach. This is a Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006a).

natural practical extension of our current work.
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APPENDIX

Typed A-Calculus with Inductive Types

The system of-calculus in this paper is the simply
typed A-calculus with surjective pairing, terminal

where x€ v, c € ¢, B and D are arbitraty types, and
®pp is the standard recursion operator (for details,
see (Luo, 1994), (Chemouil, 2005)).

All terms and types are considered up @
conversionj.e., renaming of bound variables. Con-

object and inductive types. For details see (Chemouil, text I' is a set of term variables with types :

2005), here we recall the principal definitions con-

cerning this system that will be namé&dn the other
sections of this paper.

Definition 6.1. Types are either atomic types or de-
fined by using a type constructor.
Atomic types are:

e the constant typé;

¢ afinite or infinite sets = {a,B,...} of type vari-
ables

Type constructors are:

— for functional types, which constructs-A B
for any types A and B

x for product types, which constructs>AB for
any types A and B

e Ind, defined as follows: let be an infinite set of
introduction operatoré constructors ofelements
of inductive types), witlt N$s = @. an inductive
type with n constructorsi¢ ..., G € ¢, each of
them having the arityjiwith 1 <i < n), has the
form:

Ind(a){cy: At — ... » A S q;

ciAl s s AN al,

Here, every A= Al — ... — AN — o is an induc-
tive schema, i.e.,iins:
— either a type not containing;
- oratypeoftheformhzcle ... > Cn—aq,
wherea does not appear in any/&;. m (such
Aij are calledstrictly positive operatojs
Here Ind(a) bindsthe variablea.
Example 6.1. (Definition of types Bool, Nat and,T
the type ofo-trees.)
Fn=Ind(a){ci:a]...|ch:a}
Bool=Ind(a){T :a|F :a}
Nat=Ind(a){0:a|S:a —a}

Two=Ind(0){0y:0|S:a—a|Ly,: (Nat—a) — a}.

Definition 6.2. Let % be an infinite set of variables
(with ¥ Ns N¢ = @). The set o\-termsis generated
by the following grammar rules:

M :=c|Rep |X|(AX:B-M)|[(MM)| <M M >
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A1, ... Xn  An (X1,...,%n distinct). ;A denotes the
union of contextd™,A (we assume thdt,A have no
common term variables). The expression M : Ais
called typing judgement (or sequent). Its meaning is
“term M has typeA in the contex{”.

Definition 6.3. Here are the following typing axioms
and rules for the terms defined above BAD denote
arbitrary types [ arbitrary context).
Axioms.
o [ X:AEX:A THO:T;
e For each inductive type C= Ind(a){ci :
Ail...|ch:iAnlandl<i<n
ke :A[B/a]
(for example, if C= Nat, we shall havé I~ 0 : Nat
andl - S: Nat— Nat);
e For C as above and any type D the axfom
M= Rep: Yc(Al, D) — . YC(An, D) —C—D.
Typing Rules.
Fr’-M:A TEN:B
INF<MN>:AxB
FI—M:AXB( ) F}—M:AXB/ )
FEpM:A PY Trpm B P
MNx:AFM:B )
FrE(A:A-M):A—=B
r’-M:A—B I‘FN:A(a )
r’-(MN):B PP
Remark 6.1. (i) The constanikc p is called there-
cursorfrom C to D. Notice that applying it (using
the rule app) to the terms M Yc(Ag1,D),...,Mp :
Yc(An,D) we define the functioRc pM;...M;, : C —
D. The following derived rule is often included:
i i <i<
MEMi:Ye(A,D)(1<i< n)(elim)
N-(®cpM1...Mp):C—D
(ii) Usually the followingstructural rules are in-
cluded in T (they are admissible w.r.t. other rules):
r’-M:B rx:Ax:AFM:B
(wkn)
MNx:AFM:B IM,x:AkF[X/X]M:B

(pair)

(contr)

8Y¢(A, D) are certain auxilliary types used to define re-
cursion fromC to D. They correspond to the types of func-
tions that appear in standard recursive equations@vEor
example, ifC = D = Nat andA = Nat — Nat (the type of
successoB), thenYnat(A,Nat) = Nat — Nat — Nat.
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MFNEN:A F,x:AI—M:B(Su
M=[N/XM: B

Here [N/x] denotes substitution with renaming of
bound variables to avoid capture.

Normalization and Equality. The terms of the sys-
tem T are considered up to equality generated by
conversion relation. The-conversion (renaming
of bound variables) was already mentioned. Other
conversions are: (i) B-conversion(Ax : AM)N =
IN/XIM; (ii) n-conversionAx : A.(Mx) = M (where

X must not be free iM); (iii) and 1 conversion for
recursion. The-conversion corresponds to one step
in recursive computation. It applies to the terms of
the form (®cpMi...Mp)(GiN), i.e. when the func-
tion defined by recursion applied to the term begin-
ning by one of the introduction operators. For exam-
ple, for (RnatNatad)0 — 8 and (RnatNatdd) (SN —
(RNnatNatag) ((gn)(Sn) (herea: Natis “initial value”
andg: Nat — Nat — Nat defines inductive step. The
exact general definition may be found in (Chemouil,
2005), p.884.

T is confluent and strongly normalizing with re-
spect topnt-reductions (directed conversions). De-
tailed description and normalization theorems Tor
can be found in (Chemouil, 2005). Thus, the equiv-

bs)

transformation systems is based on the notion of par-
tial proof. Below the reader may assume that the par-
tial proofs are taken in the systemdescribed above
but the definition will apply to any other deductive
system with appropriately defined derivable objects.

According to standard definitions (cf. (Diestel,
2010)), a tree is a connected directed acyclic graph
J = (V,E) in which a single node is designated as root
and there is a unique path from the root to any other
node. If(x,y) €V, we say thay is a child ofxandy is
the parent ok. A leaf has no children. Sinckhas no
directed cycles, the transitive closugé of E defines
a partial strict order oN. There is a path fromtoy
in Jiff (x,y) € E*.

An ordered tree is the tree where outgoing edges
of anyv € V are numbered .@,.... Thus, to any
(x,y) € E* corresponds a unique sequence of natu-
ral numbers. The lexicographic ordering of these se-
qguences beginning at the raopermits to extend this
partial order to the unique linear order ¥n In par-
ticular there is the natural ordering of the leaves.

The definitions below are maodified definitions
from (Bundy, 1988) adapted to our case.

Definition 6.4. A partial proof is an ordered tree with
the following properties: (i) each node is labelled

alence relation on terms based on conversion (oftenwith a sequent and the rule of inference which is ap-

callednt-equality) is decidable.

Proof Trees and Partial Proofs

. . . P
An inference rule in proof theory is a cou%e/vhere

P is a list of premises, possible subject to some con-
straints. As examples one may take the rules of the
systemT above. Usually in proof theory the presen-
tation of rules isschematicthat is, the metavariables
like I',A are used to represent arbitrary contedt®

to represent arbitrary typestc. The presentation be-
low is genericj.e., all the definitions can be modified
to accomodate a change of logical system, if only the
system has tree-form derivations build by application
of deduction rules to their premises.

plied to this sequent (backwards) to produce the (la-
bels of) the node’s children; (i) the final sequent (or
the goal) is the sequent at the root of the tree; (iii) for
the leaves, no rule of inference is specified; (iv) we
shall further distinguish “active” and “parameter”
leaves. Active leaves are markedshy

Our purpose is to use partial proofs for attribute
transformations, and thus, the difference between ax-
ioms and other sequents is not relevant. In some cases
we may impose additional restrictions, e.g., that the
parameter leaves are axioms or that all leaves have
derivablesequents as labels.

The use of partial proofs insteadfterms to rep-
resent computation functions permits more flexibility
concerning the choice of equality in the category of

Trees are a special case of graphs, and proof treegraph transformations. The definitions and results be-

are a special case of attributed graphs, but in any

low will be valid for any equality (equivalence rela-

case the trees below should be considered as part ofion) on the set of sequents (logical formulas, judge-
metatheory and not the objects of the category of at- Ments). Usually (but not necessarily) the judgements
tributed graphs defined in this paper. Applications ©f the systemT are considered up ni-equality.
of trees to computations and data structures are usu/\N0ther choice may be syntactic (graphic) equality
ally straightforward, in difference from graphs in gen- ©f terms and types (witijandr’ equal as sets).

eralt®. Our generalization of the definition of graph Next notion we are going to define is the equality

- of partial proofs. In fact, the main requirement is that

9We omit the contexts and types of terms. the good properties of composition must be assured.
10The possibility to “embed” them into this category

seems obvious, but to our opinion it may be considered as with alternating layers. The possibility seems interestin

an invitation to study a hierarchy of graphs and attributes but it is out of scope of this paper.

73



MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

Definition 6.5. Partial proofs are equal if they have
the same number of active leaves, the labels of corre-
sponding active leaves (in order defined by the trees)
and the labels of two roots are equal

The notion of composition of partial proofs is in-
spired by the notion of composition of multivariable
functions.

Definition 6.6. Let |} < ... < I¢ be all active leaves
(see definition above) of the partial proof P. Let.R,

P« be partial proofs and 1, ...,r¢ their roots. Let
forall i, 1 <i < k the labels of and 1, be equal.
The composition R (P, ...,P) is obtained by iden-
tification of eachl with its label and r with its la-

bel (assuming other nodes disjoint). Order relations
are extended to the new tree in natural way. The ac-
tive leaves are now the union of the active leaves of
Pi,...,B and the root is the root of P.

The result is another partial proof. This composi-
tion is associative w.r.t. the equality defined above.

Definition 6.7. The canonical identity partial proof
for the sequent (formula, judgement) S is the tree with
one node (which is the root and the one active leaf at
the same time) that has S as its label.

Schemas of Partial Proofs

It is common in proof theory to use axiom and rule
schemas instead of individual axioms and rules. In
the schemas the meta-variables may be used. The for-
mulations of axioms and rules of the systénabove

are schematic. There may be metavariables of differ-
ent kinds,e.g, metavariables for terms, contexts, and
even for arbitrary variables as in the axiom schemas
or the rule }) abové2

Definition 6.8. (Partial Proof Schema.) A partial
proof schema is an ordered tree with the following
properties: (i) each node is labelled with a meta-level
sequent. (ii) each node except the leaves is labeled
also with the rule of inference which is applied to this
sequent (backwards) to produce the node’s children
(and the children of course must be the meta-level se-
guents matching the premises of this rule). (iii) the
final meta-level sequent (or the goal) is the meta-level
sequent at the root of the tree, some of the leaves are
marked as active by.

11An alternative definition would be to require the equal-
ity of the whole ordered trees aiadl corresponding labels.

12Essentially, this practice is similar to the use of non-
terminals in the formal grammars.
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