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Abstract: This paper deals with model transformations based on attributed graphs transformation. Our approach is
based on the categorical approach called Single Pushout. The principal goal being to strengthen the attribute
computation part, we generalize our earlier approach based on the use of typed lambda-terms with inductive
types and recursion to represent attributes and computation functions. The generalized approach takes terms in
variable context as attributes and partial proofs as computation functions that permit to combine computation
with proof development and verification. The intended domains of application are the development of cerified
software models and semantics models for interactive proof development and verification.

1 INTRODUCTION

In Model Driven Engineering (abbreviated MDE),
models are mostly described using a graphical syntax
(UML, SDL, etc.). Models are composed of a struc-
tural part which can be represented as a graph and of
attributes which are informations attached to vertices
or edges of the graph. Thus, models can be formal-
ized as attributed graphs and model transformation as
attributed graph transformations. An attributed graph
transformation is composed of a rewrite of the struc-
tural part and of computations on its attributes.

When considering graph transformations, it can be
noticed that a lot of them deal only with structures and
not with attributes. For instance transforming UML
class diagrams to relational models or UML activity
diagrams to Petri nets require few attribute compu-
tations. In contrast, when dealing with formalisms
such as timed automata, complex Petri nets (predicate
Petri nets, Object Petri nets, colored Petri nets), in-
ternal program representation leads to sophisticated
attribute computations. In our previous and current
works we decided to focus on graph transformations
requiring complex computations. So we developped
a first approach based on a typedλ-calculus and now
we moved a step further considering inference rules
as a way to make attribute computations.

One of the challenges of attributed graph transfor-
mation systems concerns the implementation of at-
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tribute computations. Most of the existing systems
based on category theory adopt the standard algebraic
approach where graphs are attributed using algebraic
data types represented byΣ-algebras (Ehrig et al.,
2006b), (Orejas, 2011). However, the computation
with algebraic data types does not permit to repre-
sent certain computations (like computation of recur-
sive functions or term matching), and meets efficiency
problems when implemented.

In our earlier work, see (Rebout et al., 2011), (Re-
bout et al., 2008), (Tran et al., 2010) we suggested
to use inductive types and lambda terms in com-
bination with a modification of the double pushout
approach (Rozenberg, 1997) called DPoPb (“double
pushout-pullback” approach). As stated above, our
goal was to use a well developed approach to imple-
ment rewriting of the structural part of graphs and
to use the expressive power ofλ-terms and induc-
tive types to describe and facilitate attribute compu-
tations. But the construction of the double pushout
imposed strong constraints on computation functions
mostly due to the usage of total maps and the obli-
gation to split all the computations into two parts.
That is why later we presented a new approach based
on single pushout andλ-terms as computation func-
tions (Boisvert et al., 2011a).

In this paper, we generalize this approach towards
models incorporating proofs. Instead ofλ-terms in
the same fixed context we consider full typing judge-
ments of the formΓ ⊢ t : A whereΓ is a context,t is
a term andA is a type. Instead ofλ-terms as com-
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putation functions we take partial proofs in the corre-
sponding system of type theory. As a result, the scope
of the approach is considerably extended. It can be
used now not only to support attribute computations
in graph transformation systems but also in computer-
assisted verification and proof-development.

The next section of this paper introduces the main
approaches of graph rewriting based on category the-
ory, and particularly the single pushout approach on
which our approach is based. Afterwards we define
our category of attributed graphs, and then explain
how to apply a rewrite rule by the computation of
a weak pushout. Proofs are based on the ideas pre-
sented in (Boisvert et al., 2011a) but applied in more
general setting. In section 5 we present examples.
Section 6 contains an outline of future work. The pa-
per is completed by an appendix that contains a brief
description of the system of typedλ-calculus with in-
ductive types used for presentation and examples as
well as necessary notions of proof theory.

2 CATEGORICAL GRAPH
REWRITING

In graph rewriting systems based on category the-
ory, we usualy define a category whose objects are
graphs and morphisms are graph homomorphisms.
A transformation rule is composed of at least two
graphs called the left-hand side (usually notedL) and
right-hand side (usually notedR). The left-hand side
describes which subgraph a graphG must contain
in order that the transformation could be applied to
it, and the right-hand side describes how this part
will look like after the transformation. Morphisms
between left-hand side and right-hand side describe
which parts of graphs will be deleted, transformed or
added. To apply a rule to some subgraph of a larger
graphG, we need first to embed the left-hand side as
a subgraph ofG. The embedding is represented by an

inclusionL
i
→G. Cf Figure 1(a) and 1(b).

There are two principal categorical approaches to
graph rewriting: double pushout (abbreviated DPo,
concieved by H. Ehrig and his colleagues (Ehrig,
1978), (Rozenberg, 1997)) and single pushout (ab-
breviated SPo, mainly developped by Löwe (Löwe,
1993), (Rozenberg, 1997)). The main difference is
that in DPo morphisms are total maps and in SPo mor-
phisms are partial maps. This implies different forms
of rules.

In the DPo approach a rule is defined by 3 graphs

and 2 total morphisms:L
l
← K

r
→R. The morphisml

indicates what vertices or edges should be erased (the

ones who are not in the image ofl ) and the morphism
r indicates what vertices or edges should be trans-
formed (those who are inK), and added (those who
are not in the image ofr). The application of the rule
is done by a computation of a pushout-complement

(adding the arrowsK
d
→ D and D

l∗
→ G and then a

pushout (the arrowsR
i∗
→ H andD

r∗
→ H). Cf Figure

1(a).
In the SPo approach, a rule is defined by one par-

tial morphimL
r
→ R. Vertices and edges not included

in the domain ofr will be deleted, the ones in the do-
main ofr will be transformed and those which are not
in the image ofr will be added. The application of
the rule is done by the computation of one pushout

(adding the arrowsG
r∗
→ H andR

i∗
→ H). Cf Figure

1(b)
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(b) SPo approach

Figure 1: Classical categorical graph rewriting approaches.

Because not all pushout-complements necessarily
exist in the categories of graphs, there exist “applica-
tion conditions” in DPo approach. As a consequence,
rules that create dangling edges are forbidden in the
DPo approach while in SPo approach dangling edges
are removed when the rule is applied. If necessary, it
is possible to add application conditions in the SPo
approach as well. Thus the SPo approach is more
general than the DPo approach, but SPo approach re-
mained less developed due, in our opinion, mostly to
historical reasons and to the fact that computation of
pushout in categories of partial maps is more difficult
than in categories of total maps.

Both approaches met many difficulties on the level
of attribute computations. Our experience with the
DPoPb approach, see (Rebout et al., 2008), (Rebout
et al., 2011), (Tran et al., 2010) and the use ofλ-terms
for attributes was encouraging but the construction of
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a double pushout still imposed some constraints due
to the use of total maps and the obligation to split
computation into two parts. The approach based on
single pushout construction withλ-terms as attributes
that we pursued afterwards (Boisvert et al., 2011a)
was more direct and natural, free of application condi-
tions and no specific constraints on the computational
level. It permitted to strengthen attribute computa-
tions and lighten the structure rewrite. At the same
time, while the relationship betweenλ-calculus and
proof theory is well known (one may mention famous
Curry-Howard isomorphism), the early version of our
system could not be used directly in proof develop-
ment and verification. In this paper, we generalize it
in this direction.

3 CATEGORY OF ATTRIBUTED
GRAPHS

To develop a categorical graph rewriting system we
must define a category (objects and morphisms) and
then explain how to apply a rule (in our case by the
computation of a pushout).

Let us recall that a pushout of two morphismsL
r
→

R, L
i
→G is a couple of morphisms (G

r ′
→H, R

i′
→ H)

such that:

• i′ ◦ r = r ′ ◦ i

• for every other couple of morphisms (R
h
→ H ′,

G
g
→ H ′) such thath◦ r = g◦ i it exists a unique

morphismc such that the diagram below com-
mutes:

L

i

r R

i′

hG

g

r ′ H
c

H ′

As a consequence, the existence of pushout im-
plies the uniqueness of the objectH up to isomor-
phism (cf. (Ehrig et al., 2006a), (Löwe, 1993)). If we
have the two properties in the definition of pushout
but not the unicity ofc, the construction is called a
weak pushout.

As in our previous work (Boisvert et al., 2011a),
the systemT of λ-calculus is used to define attributes
and computation functions, but now we generalize
both the notion of an attribute and of a computation
function: instead ofλ-terms in a fixed context, full
typing judgementsΓ ⊢M : A with arbitrary contextΓ

and partial typing proofs are considered. The result-
ing category of attributed graphs will be denoted by
GrTP. (For all notions that are not explained in the
main part of our paper please see Appendix.)

To have better idea of the power ofT, let us recall
that it is a system of simply typedλ-calculus with sur-
jective pairing, terminal object and inductive types.
Type constructors include→ for functional types,×
for product (pairing) andInd for inductive types. Pair-
ing may be used to represent records, i.e., to “pack”
multiple attributes into one. The presence of inductive
types permits to define all ordinary types of attributes,
like Bool, Nat, etc., as well as more complex types
like lists, binary trees,ω-trees, etc. Definition of in-
ductive types includes structural recursion over each
inductive type, this explains their particular interest in
modeling computations.

Below Θ is the set of all typing judgements ofT.
Objects. Objects of GrTP are attributed graphs.
An attributed graph is defined as 5-tupleG =<
VG,EG,srG, tgG,attG>, where the structural part (first
4 items) consists of the set of verticesVG, the set of
edgesEG and two functions sourcesrG : EG→VG and
targettg : EG→VG to connect edges to vertices. The
elements of the setVG∪EG are called “elements of
the graph”. In this paper, we assume thatVG∪ EG
is fully ordered (lexicographically)2. The function
attG : VG∪EG→ Θ associates exactly the judgement
Γ ⊢M : A with each element of the graph.

To represent multiple attributes of a structural el-
ement, we use pairing to “pack” different data into
one λ-term. So each attribute can be seen as an n-
tuple containing all information attached to an ele-
ment. The n-tuple< M1, ...,Mn > is considered as an
abbreviation of the term< ... < M1,M2 >,...,Mn >.

Certain inductive type(s) can be reserved to rep-
resent labels in ordinary sense.E.g., let Fn =
Ind(α){c1 : α |...|cn : α} be a finite type. InT, we
have typing judgementsΓ ⊢ ci : Fn in any contextΓ. If
we want to useci in combination with other attribute
M : A, we may use< M,ci > of type A× Fn. The
“absence of attributes” is represented by 0 :⊤.
Morphisms. Let G,H be two attributed graphs. A
morphismf : G→ H is defined in three parts:

1. The “structural part” notedfstr is a partial graph
homomorphism (Rozenberg, 1997) from the stuc-
tural part ofG to the structural part ofH (cf. Fig.
2).For eachv∈VH ∪EH , its pre-image (i.e. the set
of all its antecedents) is noted[v] fstr ⊆VG∪EG.

2. The “attribute dependency relation”fadr is a rela-

2In any case, it is close to ordinary practice when ver-
tices are represented by natural numbers.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

64



tion between the setsVG∪EG andVH ∪EH . For
eachv∈VH ∪EH , its pre-image is noted[v] fadr ⊆
VG∪EG. Applying to its elementsattG, all at-
tributes of graphG which are used to computev
can be obtained.

3. The “computational part”fcmp(v) is represented
by a partial proof. The partial proofsfcmp(v) have
to be “matched” with the attributes ofG andH in
the following sense.
Let v ∈ VH ∪ EH . Let att(v) = Γ ⊢ M : A. Let
[v] fadr = {u1, ...,uk},u1 < ... < uk (as before, we
use the ordering on elements ofG) and

att(u1) = Γ1 ⊢M1 : A1, ...,att(uk) = Γk ⊢Mk : Ak.

The partial proof treep = fcmp(v) should have
exactlyk active leaves with labels that are equal
to the attributesΓ1 ⊢M1 : A1, ...,Γk ⊢Mk : Ak (in
the order defined by the order of the leaves of the
tree). The root of the tree should have a label that
is equal to the attributeattH(v). Parameter leaves
are not matched to anything. (See Fig. 2.)

Equality of Objects and Morphisms. For objects,
we use identity on structural part andβηι-equality of
judgements ofT for attributes. For morphisms,f = g
requires the identity offstr andgstr, fadr andgadr; for
computation functions, for allv the equality offcmp
andgcmp(v) w.r.t. βηι-equality is required (see defi-
nition 6.5 of the Appendix3).
Categorical Structure on GrTP. The identityidG is
defined using identity graph homomorphism asfstr,
identity relation asfadr and canonical identity par-
tial proofs asfcmp(v). The composition of morphisms
(only the level of partial proof trees is non-trivial) is
defined using composition of partial proof trees, defi-
nition 6.6 of the Appendix.

Theorem 3.1. GrTP defined above is a category.

Proof. Composition is associative due to associativ-
ity of the composition of graph homomorphisms, and
associativity of the composition of relations. For par-
tial proofs composition is associative too because of
confluence and the fact thatT is strongly normaliz-
able. Thus any evaluation strategy will terminate on a
same simply typedλ-term. It is easy to verify that for
every morphismf : G→ H we havef ◦ IdG = f and
IdH ◦ f = f .
Remarks. This notion of equality is discussed in
detail in (Boisvert et al., 2011a). Here we would like
to remark that there is no reason to impose equiva-
lence relation on partial proofs themselves since the

3We may obtain other interesting categorical structures
with different kinds of equality of judgements and partial
proofs, for example syntactic (graphical) equality of judge-
ments.

system we describe is intended to study the properties
of deductions, models etc. represented by attributed
graphs. So it is more natural to impose an equivalence
relation on attributes and attributed graphs as needed.

4 RULE APPLICATION BY A
WEAK PUSHOUT
COMPUTATION

As in the SPo approach, in our approach each mor-
phism r : L→ R defines a transformation rule. The
auxilliary notion of an embedding is necessary to in-
dicate a “redex” - the part of the host graph to which
the rule can be applied.
Injective Attributed Graph Morphism. Let f : G→
H be an attributed graph morphism.f is injective if:

1. fstr is an injective partial graph homomorphism
(i.e. ∀v1,v2 ∈V(G)∪E(G).( fstr(v1) = fstr(v2)⇒
v1 = v2));

2. fadr = fstr;

3. for eachv′ ∈V(H)∪E(H):

• if [v′] fadr is empty, thenfcmp(v′) is the partial
proof tree (cf. appendix) that has one node with
the labelatt(v′). It is at the same time its root
and its only leaf, which is not active.

• if [v′] fadr is not empty (thus[v′] fadr is a single-
ton becausefadr is injective) then fcmp(v′) is
canonical identity partial proof for the attribute
att(v′).

We shall call anembeddinga total injective at-
tributed graph morphism.

Canonical Retraction of an Embedding. Let f :
G→ H be an embedding. A retraction off (or a left
inverse) is an attributed graph morphismf : H → G
such thatf ◦ f = IdG.

With this definition, we have not necessarilyf ◦
f = IdH , and f is not unique in general. That’s why
we give a canonical construction to obtain a retraction
of f . This construction is defined by:

1. for everyv′ ∈V(H)∪E(H) if [v′] fstr is empty,i.e.,
v′ does not belong to the image offstr, then v′

does not belong to the domain off str(v
′); if [v′] fstr

is not empty then[v′] fstr = {v} for somev because
of injectivity and we posef str(v

′) = v. Notice that
[v] f str

= {v′} by this definition.

2. f adr = f str

3. for eachv ∈ V(G) ∪ E(G) fcmp(v) is canonical
identity partial proof for the attributeatt(v).
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Figure 2: Attibuted graph morphism.

With this definition, it is easy to see thatf ◦ f = IdG.

Construction of a Weak Pushout.The construction
of a (weak) pushout in case of application of a rule
is inspired by the paper by Löwe and others (Rozen-
berg, 1997), but there will be differences due to our
definition of attributed graphs and graph morphisms.

The “starting point” is the pair of morphisms (L
r
→

R, L
i
→G) wherei is an embedding as definded above.

We want to compute the weak pushout (R
i′
→H, G

r ′
→

H) of this pair.
The first step to define a pushout would be to

take the coproductG+R of G andR (coproduct be-
ing here just the disjoint union). Next step would be
to factorize it by certain equivalence relation (creat-
ing (G+R)′ which contains equivalence classes), and
then to complete the construction using composition
with certain morphismp from factor object to pushout
objectH.

We shall define each of the morphismsr ′ andi′ as
a composition of three morphisms (Cf. figure 3) in
order to have

r ′ = G
j ′
→ (G+R)

f ′
→ (G+R)′

p
→ H

and

i′ = R
j ′′
→ (G+R)

f ′′
→ (G+R)′

p
→H

The objects and morphisms in these diagrams are
defined in several steps.

• On the level of structureG+R is disjoint union of
the graphsG andR;

L

i

r
R

j ′′

G

i

j ′

G+R
f ′′

j ′′

G+R

f ′

j ′

(G+R)′

p

(G+R)′ p H

Figure 3: Construction of weak pushout.

• on the level of attributes each element ofG andR
in G+Rhas the same attribute as inG andR;

• j ′ and j ′′ are inclusions respectively ofG andR
into G+R, thus they are total injective attributed
graph morphisms.

To continue, we define first the equivalence rela-
tion∼1 on the elements of the graph structureG+R.

• let’s put a ∼1 b for a,b ∈ G + R if ∃x ∈
L.( j ′(i(x)) = a∧ j ′′(r(x)) = b)

• then the relation∼ is defined as reflexive, sym-
metric and transitive closure of∼1.

• notice that the elements ofG+Rwhich are not the
images of elements ofG− i(dom(r)) form equiva-
lence classes consisting of single element (itself).

The elements of(G+R)′ are defined as equiva-
lence classes of elements ofG+R. It is easily checked
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that this definition is consistent with the incidence re-
lation and the map sending each element ofG+ R
to its equivalence class is a (total) graph homomor-
phism. This map will be structural part off ′ and f ′′.

Moreover, each equivalence class with respect to
∼ containing an image of an element ofRmay be seen
as a “span”, consisting of the image of this element
of R under j ′′ and the images of its antecedent via
r under j ′ ◦ i. In particular, each equivalence class
contains exactly one image of an element ofR. As a
consequence, the compositionf ′′str ◦ j ′′str is injective.

It permits also to define the attribute part of(G+
R)′. Each equivalence class that contains an image
of an element ofR has the same attribute as this ele-
ment has inR. Other equivalence classes (that have
the form{ j ′(y)},y∈G,y 6= i(x) for somex∈ L) keep
the same attribute as inG.

The definitions of relational part and computation
functions of f ′ and f ′′ are different.

For f ′′ the relationf ′′adr connects the elements ofR
with corresponding equivalence classes (it is bijective
on theR-part). There is no connections on theG-part.
The computation functions are identities.
Remark. The compositionf ′′ ◦ j ′′ is injective, in par-
ticular ( f ′′ ◦ j ′′)str is an injective total graph homo-
morphism,( f ′′ ◦ j ′′)adr = ( f ′′ ◦ j ′′)str and computation
functions are identities.

Now we may definef ′ as follows:

• ∀v∈ img( j ′ ◦ i):

f ′ = G+R
j ′
→G

i
→ L

r
→ R

j ′′
→G+R

f ′′
→ (G+R)′.

• for the elements ofG− i(L), f ′ is like the identity.

As usual (cf. (Rozenberg, 1997))H is defined now
as for coequalizer construction. LetL0 = dom(r). In
our caseH will be a subgraph of(G+R)′. The inci-
dence relation in(G+R)′ is inherited fromR andG.
The elements on H (on the level of graph structure)
are:

1. all the equivalence classes of the form
{x1, ...,xk,z} (x1, ...,xk ∈ j ′(i(L0)),z∈ j ′′(r(L));

2. all the equivalence classes of the form{z}, z∈
j ′′(R− r(L));

3. all the equivalence classes of the form{x}, x ∈
j ′(G− i(L)) that are not dangling edges (Rozen-
berg, 1997).

The attributes for the equivalence classes of the
first two types are inherited fromR and for the third
from G.

The morphismp is defined as follows. Its struc-
tural part is identity on all elements of(G+R)′ that
remain inH. We have alsopadr = pstr, and all com-
putation functions are identities.

Now i′, r ′ andH are defined such thati′ ◦ r = r ′ ◦ i.
Let h : R→ H ′ andg : G→ H ′ be two other mor-

phisms such thath◦ r = g◦ i. As i′ is injective, we
can use the canonical retractioni′ and take forc h◦ i′

and for elements who are not in the domain ofi′ we
extendc in order to make it in accord withg. The
commutativity on the level of computation functions
follows from the definition of equality of attributed
graph morphisms (cf section 3). Thus the diagram
commutes but in general the unicity ofc is not guar-
anteed, so we have a weak pushout.

This is summarised in the following theorem.

Theorem 4.1. Let L
r
→ R be an attributed graph

morphism and L
i
→ G be an embedding in GrTP.

There exists weak pushout of L
r
→ R and L

i
→ G.

Moreover, it may be assumed that the morphism i′ in
the (weak) pushout diagram is also an embedding.

Composite Rules. The proof of the theorem
above provides a canonical construction of the weak
pushout, in particular the vertical arrowi′ is an em-
bedding likei. Such weak pushouts are sometimes
called specific weak pushouts because in the proof we
used the property that one of the two morphisms is an
embedding.

This construction of specific weak pushout per-
mits to compose the rules. Take two morphisms

L
r
→ R andR

r ′
→ R′. We have also their composition

L
r ′◦r
−→R′. The fact thati′ in the specific weak pushout

above is also an embedding permits to construct the
second weak pushout representing an application of

the rule given byR
r ′
→ R′. It may be verified that the

construction of specific weak pushout applied directly
to r ′ ◦ r gives the same graphH ′ after transformation.
Possible Generalizations: Schematic Morphisms
and Rule Schemas.The idea to use metavariables
in the definitions of graph transformation rules is sup-
ported by the practice of proof theory. Various ex-
amples are possible, e.g., one may define the disjoint
union of graphs using a rule schema (Boisvert et al.,
2011b). We shall use below only a restricted case of
rule schema based on the notion of schematic mor-
phism which we shall define precisely. For definitions
of partial proofs and schemas see Appendix, defin-
tions 6.4 and 6.8.

Definition 4.1. A schematic morphism is obtained
if we replace partial proofs in the definition of mor-
phism in GrTP by partial proof schemas. An instance
of schematic morphism is any morphism in GrTP ob-
tained by instantiation of metavariables. Let r: L→R
be a schematic morphism. The rule schema in GrTP
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is the family of graph transformation rules defined by
all instances of r: L→R.

5 EXAMPLES

To illustrate our transformation approach we present
in this section two detailed examples that may be of
interest from the point of view of model transforma-
tions. The first one presents computation on attributes
representing infinite trees. This can not be done us-
ing Σ-algebras. Possible applications include trans-
formations of infinite models. The interest of dealing
with infinite models is now taken into consideration
(Combemale et al., 2012). A model can be infinite
according to the width or the depth of the graph. In
the example, we show how to deal with infinite width
trees. Another example concerns coercive subtyp-
ing, that has important uses in software modeling and
reuse (Soloviev and Luo, 2001).

Let us mention also some examples not devel-
oped in this paper that can be easily treated using
our approach: (i) graph cloning, cf. (Boisvert et al.,
2011b); (ii) generation and transformation of proofs
in deductive systems, cf. (Boisvert et al., 2012) (e.g.,
Kleene-style premutations of rules (Kleene, 1952));
(iii) information transfer between attributes and struc-
ture; (iv) transformations of UML diagrams to rela-
tional models; (v) term graph rewriting (cf. (Baren-
dregt et al., 1997)).

5.1 UML Diagram to Database
Relational Model

Our approach permits to manage classical graph
transformation problems like UML diagram to
database relational model transformation. This prob-
lem is described in (). In (Taentzer et al., 2005) the
transformation using the the DPo approach ... In our
approach it is possible to manage this classical prob-
lem. In this paper we present only an example of
rule because it would take several pages to present
them all. The figure 4 presents the rule “Class2Table”
(Taentzer et al., 2005). As we use typedλ-calculus, it
necessary to define the types used in this example:

• the typeTypeis defined as a finite type (see ap-
pendix 6) representing all “classes” of objects ma-
nipulated by the transformation:

Type= Ind(α){Class: α|Table: α|Column: α|...}4

4the constant Column and other constants are used in
other rules that are not described in this paper

• the typeConnectoris also defined as a finite type
representing all temporary nodes that permit to
connect elements of the class diagram to elements
of the relational database model (see (Taentzer
et al., 2005)):

Connector= Ind(α){C2T : α|A2C : α|A2F : α|...}

• the typeNameis the type describing the Name of
the classes or tables. It is more or less like String.

• the type Bool is used as the value of the attribute
is persistentof a node ofType Class.5

We do not describe only one rule of this problem
here because it would take several pages to write them
all, and there is no complex attribute computation in
these rules. Thus our approach has no advantage on
other approach to manage this example. It is possi-
ble to define all the other rules presented in (Taentzer
et al., 2005) in the same way.

5.2 Managing Infinity with Functional
Attributes

The use ofλ-terms as attributes permits to manage
complex data structures that can represent infinity.

As an example, the typeTω which represents trees
with infinite branching6 can be defined as follows:

Tω = Indα{0 : α,
S: α→ α,
L : (Nat→ α)→ α}

Using the standard recursion operators on in-
ductive types (see appendix), we can define com-
plex ω-trees and computations on these infi-
nite tree structures. The figure 5 presents a
simple example ofω-tree defined by the term
L(RecNat→Tω (0)(λxNatλyTω .S(y))). It is also possible
to define computations that transform these terms.

It is possible to write a function that takes as ar-
gument an infinite tree, and give as results the trees
whith branches with pair numbers at every infinite
branching:

RecTω→Tω (0)(λxTω .S)(λu.λv.(v◦d))

5.3 Coercive Subtyping

The notion of coercion was introduced to represent
explicitly the transformation of the elements of the

5In this example the attributes of a node have no “name”,
because they are stored in a tuple, and the position in the tu-
ple permits to identify the different attributes. We do like
this because we respect strictly on formalism, but in prin-
ciple it would be possible to add names for the different
elements of a tuple

6nodes have an infinite number of subtrees
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Figure 4: Example of a rule.

... ...

Figure 5: Example ofω-tree defined by the term
L(RecNat→Tω(0)(λxNatλyTω .S(y))). The length of the n-th
branch is n.

subtype into the elements of the supertype. It is com-
mon knowledge that the representation of the ele-
ments of a datatype is often changed when we pass
to a larger datatype, even if from mathematical point
of view it is merely an inclusion.

In coercive subtyping the subtyping relationA <
B is interpreted as existence of a certain definable
termc : A→ B, with motivation of giving operational
semantics to calculi with subtyping and inheritance
(see, e.g., (Breazu-Tannen et al., 1991)).

In practice, certain “basic coercions” are defined
and other coercions are derived using appropriate
rules. For example, to the transitivity of subtyping
relation corresponds composition of coercions, from
two subtyping relationsA< B andC< D one can de-
rive B→C< A→D, respectively, from the coercions
c1 : A→ B andc2 : C→ D one may derive a coercion
c : (B→C)→ (A→ D).

In the calculus with inductive types basic coer-
cions are usually certain coercions between inductive
types, for example the typeBool= Ind(α){T : α|F :
α} is the subtype ofNat = Ind(α){0 : α|S : α→ α}
(with coercionc(T) = S(0) : Nat,c(F) = 0 : Nat).

The set of coercions may be represented by an
acyclic attributed graph where attributes of the nodes
represent corresponding inductive types. To do that

we may use free variables, e.g., to represent the type
A we take the axiomx : A⊢ x : A as the attribute. Two
nodes corresponding to the typesA and B are con-
nected by an arc if the types are in subtyping relation,
and the attribute of this arc is the coercion⊢ c : A→B
(coercion terms representing basic coercions have no
free variables).

The set of coercions is coherent if composition of
coercion terms along two paths with the same source
and target is equal. The graph is completed to transi-
tive closure (concerning the attributes, coherence per-
mits to do it without contradiction). Practical useful-
ness of this is clear, since the coercions “implement-
ing” the subtyping relation can be directly taken from
the graph.

One of the main results obtained in (Soloviev and
Luo, 2001) was that coherence of the set basic coer-
cions implies coherence of the set of all derived coer-
cions. The main consequence was that the subtyping
extension of the consistent type theory without sub-
typing remains consistent.

Here we shall consider as an example two graph-
rewriting rules (besides already mentioned transitiv-
ity) that may be used to extend already obtained co-
ercion graph. They include the following derivations
used to define new coercions.

d =

x : A
∗
⊢ x : A

x : A,z : C ⊢ x : A
x : A⊢ λz : C.x : C→ A

⊢ λx : A.λz : C.x : A→ (C→ A)

d′ =

∗
⊢ c : A→ B

z : C⊢ c : A→ B
f : C→ A,z : C⊢ c : A→ B

f : C→ A,z : C⊢ f : C→ A f : C→ A,z : C⊢ z : C
f : C→ A,z : C⊢ f z : A

f : C→ A,z : C⊢ c( f z) : B
f : C→ A⊢ λz : C.(c( f z)) : C→ B

⊢ λ f : C→ A.λz : C.(c( f z)) : (C→ A)→ (C→ B)

Here in factd is an ordinary derivation andd′ is a
partial derivation, active leaves (we refer to Ap-
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c4

d’c3

[A] [B]

→ A] [C → B]

c2

c1 c3

[A] [B]

[C → A] [C → B]

c2

c1

[C

Figure 7: Rule 2.

x:A x:A

x:A x:A A→u:C A→u:C

λx:A λy:C.x:A → (C → A)

d

Figure 6: Rule 1.

pendix) are labeled by∗. If A,B,C are considered
as the metavariables for arbitrary types andc as a
metavariable for arbitrary coercions, then we have
schemas of (partial) derivations instead of concrete
(partial) derivations. The instances will be obtained if
we take, e.g.,Bool instead ofA, Nat instead ofB and
C, and concrete coercionc : Bool→ Nat mentioned
above.

Of course, other rules to introduce new coercions
are possible, for example, a “contravariant” rule to
pass fromA < B to B→ C < A→ C and the rules
for product typesA∧B.

Below we give an example of graph transforma-
tions usingd andd′ to define computation functions.

The rules are given in Fig. 6 and 7. In Fig. 7,
[A] denotesx : A ⊢ x : A, [B] denotesx′ : B ⊢ x′ : B
etc., c1 denotes some coercion⊢ c1 : A→ B, c2 de-
notes⊢ λx : A.λy : C.x : A→ (C→ A), c3 denotes
λ.x′ : B.λy′ : C.x′ : B→ (C → B), and c4 denotes
⊢ λ f : C→ A.λz : C.(c( f z)) : (C→ A)→ (C→ B).
In Fig. 7 the left side may be assumed to be already
obtained by applications of the first rule7.

6 CONCLUSIONS

The aim of this paper was to generalize our previously
defined graph transformation system . As in (Boisvert
et al., 2011a), it is based on the SPo approach and its
main originality concerns the use of a partial deduc-
tions to express attribute computations. Type theory

7The labels added using pairing may be used to avoid
repeated application of transformation rules to the same ar-
guments.

incorporates bothλ-calculus and reductions as com-
putational mechanism, and has at the same time de-
duction rules for typing. The use of inductive types
permits to include user-defined datatypes, as in many
modern programming languages, and recursion over
these types.

That gives to our approach a great expressive
power that permit to manage classical model transfor-
mations like UML to Relational database model trans-
formation, and also more sophisticated examples like
computation on functions, on infinite data structures,
or on proofs.

At the same time, the presence of proofs permits to
establish connection between development and trans-
formation of software models and software certifica-
tion and verification.

Theoretically speaking, the SPo approach neces-
sitates the definition and the construction of a weak
pushout when dealing with attributes. A solution is
presented in this paper. In comparison with our pre-
vious papers, we presented a more powerful way to
describe transformation of attributes, using not only
computation withλ-terms but deduction rules.

The possible domains of applications include all
usual applications of graph transformations, e.g., ver-
ification and model transformations in software engi-
neering. Note that thanks to the approach described
above it is now possible to deal with certain infinite
models. More “tight” relationship between computa-
tion, graph structure and proofs will permit also the
pursuit of much more specific goals, in particular in
the domain of computer-assisted reasoning and veri-
fication (Luo, 1994),(Soloviev and Luo, 2001).

As a principal example of deductive system based
on type theory we considered in this paper the sim-
ply typedλ-calculus with inductive types and pairing.
All the constructions, though, can be easily modified
to be used in case of higher order and dependent type
systems in proof assistants, as well as for purely logi-
cal systems and applications.

A former experiment (Tran et al., 2010) of imple-
mentation in Haskell language constitutes the basis
for building a sofware environment devoted to model
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transformations using our new approach. This is a
natural practical extension of our current work.
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APPENDIX

Typed λ-Calculus with Inductive Types

The system ofλ-calculus in this paper is the simply
typed λ-calculus with surjective pairing, terminal
object and inductive types. For details see (Chemouil,
2005), here we recall the principal definitions con-
cerning this system that will be namedT in the other
sections of this paper.

Definition 6.1. Types are either atomic types or de-
fined by using a type constructor.

Atomic types are:

• the constant type⊤;
• a finite or infinite setS = {α,β, . . .} of type vari-

ables;

Type constructors are:

• → for functional types, which constructs A→ B
for any types A and B
• × for product types, which constructs A×B for

any types A and B
• Ind, defined as follows: letC be an infinite set of

introduction operators( constructors ofelements
of inductive types), withC ∩ S = ∅. an inductive
type with n constructors c1, . . . , cn ∈ C , each of
them having the arity ki (with 1≤ i ≤ n), has the
form:

Ind(α){c1 : A1
1→ . . .→ Ak1

1 → α ;

. . . ;

cn : A1
n→ . . .→ Akn

n → α},

Here, every A≡ A1
i → . . .→ Aki

i → α is an induc-

tive schema, i.e., Aji is:

– either a type not containingα;

– or a type of the form Aji ≡C1→ . . .→Cm→ α,
whereα does not appear in any Cℓ∈1..m (such
A j

i are calledstrictly positive operators).

Here Ind(α) bindsthe variableα.

Example 6.1. (Definition of types Bool, Nat and Tω,
the type ofω-trees.)

Fn = Ind(α){c1 : α | ... |cn : α}
Bool= Ind(α){T : α |F : α}
Nat= Ind(α){0 : α |S :α→ α}
Tω = Ind(α){0ω : α |S :α→ α |Lω : (Nat→ α)→ α}.

Definition 6.2. LetV be an infinite set of variablesV
(withV ∩S ∩C =∅). The set ofλ-termsis generated
by the following grammar rules:

M ::= c|RB,D |x|(λx : B ·M) |(M M) | < M M >

where x∈ V , c∈ C , B and D are arbitraty types, and
RB,D is the standard recursion operator (for details,
see (Luo, 1994), (Chemouil, 2005)).

All terms and types are considered up toα-
conversion,i.e., renaming of bound variables. Con-
text Γ is a set of term variables with typesx1 :
A1, ...,xn : An (x1, ...,xn distinct). Γ,∆ denotes the
union of contextsΓ,∆ (we assume thatΓ,∆ have no
common term variables). The expressionΓ ⊢M : A is
called typing judgement (or sequent). Its meaning is
“term M has typeA in the contextΓ”.

Definition 6.3. Here are the following typing axioms
and rules for the terms defined above (A,B,D denote
arbitrary types,Γ arbitrary context).
Axioms.

• Γ,x : A⊢ x : A, Γ ⊢ 0 :⊤;
• For each inductive type C= Ind(α){c1 :

A1 | . . . |cn : An} and1≤ i ≤ n

Γ ⊢ ci : Ai [B/α]
(for example, if C=Nat, we shall haveΓ⊢ 0 :Nat
andΓ ⊢ S: Nat→Nat);
• For C as above and any type D the axiom8:

Γ⊢ RC,D : ϒC(A1,D)→ ...→ϒC(An,D)→C→D.

Typing Rules.

Γ ⊢M : A Γ ⊢ N : B
Γ ⊢< M N >: A×B

(pair)

Γ ⊢M : A×B
Γ ⊢ p1M : A

(p1)
Γ ⊢M : A×B
Γ ⊢ p2M : B

(p2)

Γ,x : A⊢M : B
Γ ⊢ (λx : A ·M) : A→ B

(λ)

Γ ⊢M : A→ B Γ ⊢ N : A
Γ ⊢ (M N) : B

(app)

Remark 6.1. (i) The constantRC,D is called there-
cursor from C to D. Notice that applying it (using
the rule app) to the terms M1 : ϒC(A1,D), ...,Mn :
ϒC(An,D) we define the functionRC,DM1...Mn : C→
D. The following derived rule is often included:

Γ ⊢Mi : ϒC(Ai ,D)(1≤ i ≤ n)
Γ ⊢ (RC,D M1 . . . Mn) : C→ D

(elim)

(ii) Usually the followingstructural rules are in-
cluded in T (they are admissible w.r.t. other rules):

Γ ⊢M : B
Γ,x : A⊢M : B

(wkn)
Γ,x : A,x′ : A⊢M : B
Γ,x : A⊢ [x/x′]M : B

(contr)

8ϒC(A,D) are certain auxilliary types used to define re-
cursion fromC to D. They correspond to the types of func-
tions that appear in standard recursive equations overC. For
example, ifC = D = Nat andA= Nat→ Nat (the type of
successorS), thenϒNat(A,Nat) = Nat→ Nat→ Nat.
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Γ ⊢ N : A Γ,x : A⊢M : B
Γ ⊢ [N/x]M : B

(subst)

Here [N/x] denotes substitution with renaming of
bound variables to avoid capture.

Normalization and Equality. The terms of the sys-
tem T are considered up to equality generated by
conversion relation. Theα-conversion (renaming
of bound variables) was already mentioned. Other
conversions are9 : (i) β-conversion(λx : A.M)N =
[N/x]M; (ii) η-conversionλx : A.(Mx) = M (where
x must not be free inM); (iii) and ι conversion for
recursion. Theι-conversion corresponds to one step
in recursive computation. It applies to the terms of
the form (RC,DM1...Mn)(ciN), i.e. when the func-
tion defined by recursion applied to the term begin-
ning by one of the introduction operators. For exam-
ple, for (RNat,Natag)0→ι a and(RNat,Natag)(Sn)→ι
(RNat,Natag)((gn)(Sn)) (herea : Nat is “initial value”
andg : Nat→Nat→Nat defines inductive step. The
exact general definition may be found in (Chemouil,
2005), p.884.

T is confluent and strongly normalizing with re-
spect toβηι-reductions (directed conversions). De-
tailed description and normalization theorems forT
can be found in (Chemouil, 2005). Thus, the equiv-
alence relation on terms based on conversion (often
calledβηι-equality) is decidable.

Proof Trees and Partial Proofs

An inference rule in proof theory is a couple
P
C

where

P is a list of premises, possible subject to some con-
straints. As examples one may take the rules of the
systemT above. Usually in proof theory the presen-
tation of rules isschematic, that is, the metavariables
like Γ,∆ are used to represent arbitrary contexts,A,B
to represent arbitrary typesetc. The presentation be-
low is generic,i.e., all the definitions can be modified
to accomodate a change of logical system, if only the
system has tree-form derivations build by application
of deduction rules to their premises.

Trees are a special case of graphs, and proof trees
are a special case of attributed graphs, but in any
case the trees below should be considered as part of
metatheory and not the objects of the category of at-
tributed graphs defined in this paper. Applications
of trees to computations and data structures are usu-
ally straightforward, in difference from graphs in gen-
eral10. Our generalization of the definition of graph

9We omit the contexts and types of terms.
10The possibility to “embed” them into this category

seems obvious, but to our opinion it may be considered as
an invitation to study a hierarchy of graphs and attributes

transformation systems is based on the notion of par-
tial proof. Below the reader may assume that the par-
tial proofs are taken in the systemT described above
but the definition will apply to any other deductive
system with appropriately defined derivable objects.

According to standard definitions (cf. (Diestel,
2010)), a tree is a connected directed acyclic graph
J= (V,E) in which a single node is designated as root
and there is a unique path from the root to any other
node. If(x,y)∈V, we say thaty is a child ofx andy is
the parent ofx. A leaf has no children. SinceJ has no
directed cycles, the transitive closureE∗ of E defines
a partial strict order onV. There is a path fromx to y
in J iff (x,y) ∈ E∗.

An ordered tree is the tree where outgoing edges
of any v ∈ V are numbered 0,1, .... Thus, to any
(x,y) ∈ E∗ corresponds a unique sequence of natu-
ral numbers. The lexicographic ordering of these se-
quences beginning at the rootr permits to extend this
partial order to the unique linear order onV. In par-
ticular there is the natural ordering of the leaves.

The definitions below are modified definitions
from (Bundy, 1988) adapted to our case.

Definition 6.4. A partial proof is an ordered tree with
the following properties: (i) each node is labelled
with a sequent and the rule of inference which is ap-
plied to this sequent (backwards) to produce the (la-
bels of) the node’s children; (ii) the final sequent (or
the goal) is the sequent at the root of the tree; (iii) for
the leaves, no rule of inference is specified; (iv) we
shall further distinguish “active” and “parameter”
leaves. Active leaves are marked by∗.

Our purpose is to use partial proofs for attribute
transformations, and thus, the difference between ax-
ioms and other sequents is not relevant. In some cases
we may impose additional restrictions, e.g., that the
parameter leaves are axioms or that all leaves have
derivablesequents as labels.

The use of partial proofs instead ofλ-terms to rep-
resent computation functions permits more flexibility
concerning the choice of equality in the category of
graph transformations. The definitions and results be-
low will be valid for any equality (equivalence rela-
tion) on the set of sequents (logical formulas, judge-
ments). Usually (but not necessarily) the judgements
of the systemT are considered up toβηι-equality.
Another choice may be syntactic (graphic) equality
of terms and types (withγ andΓ′ equal as sets).

Next notion we are going to define is the equality
of partial proofs. In fact, the main requirement is that
the good properties of composition must be assured.

with alternating layers. The possibility seems interesting
but it is out of scope of this paper.
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Definition 6.5. Partial proofs are equal if they have
the same number of active leaves, the labels of corre-
sponding active leaves (in order defined by the trees)
and the labels of two roots are equal11.

The notion of composition of partial proofs is in-
spired by the notion of composition of multivariable
functions.

Definition 6.6. Let l1 < ... < lk be all active leaves
(see definition above) of the partial proof P. Let P1,...,
Pk be partial proofs and r1, ..., rk their roots. Let
for all i, 1≤ i ≤ k the labels of lk and rk be equal.
The composition P∗ (P1, ...,Pk) is obtained by iden-
tification of each li with its label and ri with its la-
bel (assuming other nodes disjoint). Order relations
are extended to the new tree in natural way. The ac-
tive leaves are now the union of the active leaves of
P1, ...,Pk and the root is the root of P.

The result is another partial proof. This composi-
tion is associative w.r.t. the equality defined above.

Definition 6.7. The canonical identity partial proof
for the sequent (formula, judgement) S is the tree with
one node (which is the root and the one active leaf at
the same time) that has S as its label.

Schemas of Partial Proofs

It is common in proof theory to use axiom and rule
schemas instead of individual axioms and rules. In
the schemas the meta-variables may be used. The for-
mulations of axioms and rules of the systemT above
are schematic. There may be metavariables of differ-
ent kinds,e.g., metavariables for terms, contexts, and
even for arbitrary variables as in the axiom schemas
or the rule (λ) above12.

Definition 6.8. (Partial Proof Schema.) A partial
proof schema is an ordered tree with the following
properties: (i) each node is labelled with a meta-level
sequent. (ii) each node except the leaves is labeled
also with the rule of inference which is applied to this
sequent (backwards) to produce the node’s children
(and the children of course must be the meta-level se-
quents matching the premises of this rule). (iii) the
final meta-level sequent (or the goal) is the meta-level
sequent at the root of the tree, some of the leaves are
marked as active by∗.

11An alternative definition would be to require the equal-
ity of the whole ordered trees andall corresponding labels.

12Essentially, this practice is similar to the use of non-
terminals in the formal grammars.
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