
Composition of Domain Specific Modeling Languages 
An Exploratory Study 

Edmilson Campos1,2, Marília Freire1,2, Uirá Kulesza1, Adorilson Bezerra1,2 and Eduardo Aranha1 
1Department of Informatics and Applied Mathematics, PPgSC / CCET, UFRN, Natal, RN, Brazil 

2Federal Institute of Education, Science and Technology of Rio Grande do Norte, IFRN, Natal, RN, Brazil 

Keywords: Domain Specific Languages, Model Composition, Experimental Software Engineering. 

Abstract: This paper presents an exploratory study in the context of composition of domain-specific modeling 
languages (DSMLs). It aims evaluating a composition method using Ecore-based DSMLs based on xText 
tool. The study was performed applying the method to modelling a composition of DSMLs from the domain 
of controlled experiments in software engineering. The study consists of four different DSMLs, whose 
ultimate goal is to generate executable workflows for each experiment subject. The study results present: (i) 
new adaptations that can be incorporated into the method in order to enable its application to the xText 
context; and (ii) a brief comparison of the method application using xText and XML based approaches. 

1 INTRODUCTION 

The development of software systems using domain-
specific languages (DSLs) has increased in the last 
years. DSLs raise the abstraction level and bring 
facilities for generation of models or source code. It 
can contribute to increase the development produc-
tivity, and it also facilitates a precise definition of 
concerns within a particular domain (Lochmann and 
Bräuer, 2007). The successful development and 
customization of DSLs depend on the effective 
collaboration between several stakeholders as well 
as a flexible and coherent problem domain con-
ceptualization (Hessellund et al., 2007). In complex 
projects, the use of a single DSL is usually insuffi-
cient to deal with several views and perspectives of 
the software system modeling, thus the usage of 
multiple DSLs can be interesting and useful in such 
context. As a consequence, there is an increased risk 
of consistency loss among several models elements, 
requiring greater concern with regard to this issue. 
Consistency maintenance among models is one of 
critical challenges involved on DSLs composition. 
In this way, new methods and tools must provide 
support to address their composition. 

Recent research work has explored the con-
sistency problem between models (Mens et al., 
2006) (Nentwich et al., 2003); (Bézivin and Jouault, 
2005). However, many of them have not explicitly 
addressed the problem of DSLs composition. 

Hessellund and Lochmann (2009) were one of these 
few works that proposed a specific method to deal 
with multiple DSLs. However, although the method 
had been applied in some case studies (Hessellund et 
al., 2007); (Lochmann and Grammel, 2008), they 
have only reported experiences and case studies with 
XML-based DSLs composition. Hence, there is a 
need to conduct new assessments of existing meth-
ods of DSL composition considering new scenarios 
and mainstream technologies.  

This paper presents an exploratory study that 
aims to assessing the DSL composition method 
proposed in (Hessellund and Lochmann, 2009). Our 
study focuses on the method application for the 
composition of DSMLs based on xText and Ecore 
metamodel from the Eclipse Modeling Framework. 
The method was evaluated in the development of 
DSLs for the domain of controlled experiments 
modeling in software engineering. It involves the 
combination of four different DSLs proposed to 
automate the controlled experiments execution by 
generating executable workflows for each experi-
ment subject. As a result of our study, we have 
adapted the original method in order to consider 
specificities of Ecore-based DSLs. In addition, we 
also discuss several issues that still need to be ex-
plored in the DSL composition context. 

Moreover, Section 2 explains some background 
topics. Section 3 describes the exploratory study, the 
DSLs and some additional discussions. Finally, 
Section 4 concludes and suggests possible future 

149Campos E., Freire M., Kulesza U., Bezerra A. and Aranha E..
Composition of Domain Specific Modeling Languages - An Exploratory Study.
DOI: 10.5220/0004321401490156
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 149-156
ISBN: 978-989-8565-42-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



 

work. 

2 BACKGROUND 

2.1 DSL Composition 

The development of software systems with the ap-
plication of DSLs has brought new challenges to the 
software engineering. The complexity of modern 
software systems has motivated the adoption of 
multiple DSLs in order to address different perspec-
tives from existing horizontal and vertical software 
domains. However, there are several questions re-
garding the adoption of multiple DSLs that still need 
to be explored and investigated (Hessellund, 2009).  

Their study explored four kinds of constraints 
DSLs that was identified in a study case realized in 
Hessellund et al, (2007). They are these: (i) Well-
formedness of individual artifacts, when an element 
presence and attribute declaration depends on the 
presence of other elements or attributes in that same 
context; (ii) Simple referential integrity across 
artifacts; (iii) References with additional 
constraints, when a reference has an additional 
constraint; and (iv) Style constraints. 

For Bézivin and Jouault (2005), constraints vio-
lation may be still classified according to the 
severity level which can be errors or warnings. 
Errors are serious violations and they invalid the 
model whereas warnings just indicate a problem, but 
they don’t invalidate the model. Other levels can 
also be defined to improve the violations accuracy. 

2.2 The DSL Composition Method 

Aiming to solve the listed problems, a specific 
method was proposed (Hessellund and Lochmann, 
2009) for dealing with multiple DSLs. The method 
divides the composition development in three steps: 
(i) Identification; (ii) Specification; and (iii) Appli-
cation. We adopted the method in our exploratory 
study whose purpose was to compose DSLs to 
model controlled experiment in the experimental 
software engineering context. Below we present the 
method overview and in the Section 3 we explain 
more details about the study. 
Identification: This is the first method step and its 
purpose is to uncover the overlaps between different 
DSLs. Overlaps among two or more languages 
happen when there is a reference among their 
models, i.e. one DSL references another DSL. This 
identification can be made manually or automatic, 
with some support tool, such as the SmartEMF 

(Hessellund, 2007) proposed with the method. 
Specification: The purpose of this step is to 
implement the connections identified previously, 
according to the reference type. The specification 
may be: (i) partial − when only the overlaps among 
models have to be encoded; or (ii) full − when the 
whole system needs to be encoded and represented 
in a common format. Supporting tools are also re-
quired in order to perform the encoding. 
Application: The application step makes visible the 
method adoption gains distributed in three areas: (i) 
navigation; (ii) consistency checking; and (iii) 
guidance presentation. The navigation is simply the 
way to navigate between models; the consistency 
checking is a more advanced kind of application and 
it allows to check integrity rules; and the guidance is 
a well-explored concept in programming IDEs to 
present suggestions, errors and warnings so this 
concept is also availed in this investigated method. 

3 EXPLORATORY STUDY 

This section presents an exploratory study conducted 
aiming to investigate the Hessellund and 
Lochmann’s method in the context of Ecore-based 
DSLs. Our study involves the composition of differ-
ent DSLs used to modeling the domain of controlled 
experiments. The modeling of controlled experi-
ments is used in a model-driven approach to gener-
ating specialized workflows for each experiment 
subject according to the experiment design (Freire et 
al., 2011); (Freire et al., 2012). The composition 
method has been applied to promote the metamodels 
integration from each one of the defined DSLs.  

 

Figure 1: Approach overview. 

Figure 1 presents an overview of our model-
driven approach for modeling of controlled experi-
ments. It is presented from two perspectives: plan-
ning and execution. The planning perspective aggre-
gates a series of DSLs that are composed to model 
an experiment. These DSLs are used to specify ex-
periments with their respective processes and met-
rics during the experiment planning phase. After this 

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

150



 

step, the experiment modeling with DSLs is used to 
generate specialized workflows and web forms re-
sponsible to promote the execution of the experi-
ment and monitoring of the subjects’ activities. 
Figure 1 also presents this execution perspective. 
The mapping between the perspectives is imple-
mented by means of model-driven transformations, 
which are not presented in this paper because it is 
out of scope. In this work, we are more interested in 
the application of the composition method to the 
DSLs from the planning perspective. 

3.1 Study Activities 

The main aim of our study was to apply the compo-
sition method to a still unexplored scenario, collect 
and evaluate the results and lessons learned. Our 
study was organized into the following activities: 
 DSL Definition: The DSLs were defined to 

address the software engineering experimental 
field. They have been proposed based on current 
research work of our research group when 
conducting controlled experiments; 

 DSLs Composition: We adopt the method pro-
posed (Hessellund and Lochmann, 2009) 
adapting it for our scenario to implement the 
DSLs composition; 

 Analysis of the results and discussions: Our 
study can be characterized as a qualitative 
analysis that contrasts the results of our study 
with a previous study (Hessellund et al, 2007). 

3.2 DSL Definition 

A controlled experiment is an experimental tech-
nique that allows us to test a research hypothesis and 
the cause-and-effect relationship between the varia-
bles (dependent and independent) involved in the 
study environment. In this context, we have been 
motivated to propose a customizable and extensible 
support environment for conducting controlled ex-
periments. Our first aim has been the planning and 
execution stages. Based on the know-how of our 
research group carrying out controlled experiments, 
we have specified a set of DSLs, which allows mod-
eling a controlled experiment. These DSLs were 
developed with xText (http://eclipse.org/xtext), a 
model-driven framework for the DSLs development. 
Each DSL has its own syntax and semantics and 
they can be used alone or combined. 

Altogether we used four DSLs. Their grammars 
are presented in detail in (DSL Composition, 2012). 
The first one, ProcessDsl, is used to define the pro-
cedures to be followed to collect the needed data 

from the subjects in a controlled experiment. The 
second, MetricDsl, allows specifying metrics related 
to some of the dependent variables of the specified 
experiment and that it will be collected during its 
execution. The other, ExperimentDsl, is defined for 
the ESE context and it basically allows setting the 
treatments and the control variables that are required 
for the specified experiment. A treatment can be 
composed of the combination of one or more factors 
that can have different control levels. And the last 
one defined DSL, called QuestionnaireDsl, allows 
specifying questionnaires with the aim of collecting 
feedback from the experimental subjects. 

3.3 DSL Composition 

The composition method application in our DSLs 
context required some adjustments. Most of them 
were applied in the original proposal to adapt the 
method for considering Ecore-based DSLs. We have 
used the modeling of two controlled experiments to 
evaluate the application of the composition method. 
This section presents the experiments modeling and 
discussions about the method application. 

3.3.1 Controlled Experiments Modeling 

The DSLs have been used to model two different 
controlled experiments. The first experiment in-
volves the comparison of the development produc-
tivity using the Java and C++ programming lan-
guages. It has been adapted from Wohlin et al 
(2000) and was used as an initial validation of our 
model-driven approach. The second experiment 
aims to investigate the comprehension of configura-
tion knowledge specification in three existing prod-
uct derivation tools. It was conducted in cooperation 
with the Software Engineering Laboratory from 
PUC-Rio, Brazil (Cirilo et al., 2011). Next we detail 
of both experiments. 

a) Programming Languages Experiment 
Modeling. The goal of this first experiment was to 
compare the development productivity using the 
Java and C++ languages. The experiment considers 
as its control factors, the two languages, the systems 
under development and the different subjects. The 
two languages are also the treatments of our 
experiment. The language and system factors were 
still subdivided in two levels each one. We used the 
Java and C++ languages as the language levels. For 
the system control factor, we use two systems of 
different levels of complexity. The first one, called 
Phonebook, has a reduced number of use cases. The 
second one, called Event Management System, has a 

Composition�of�Domain�Specific�Modeling�Languages�-�An�Exploratory�Study

151



 

greater degree of complexity. The participants were 
randomized for the experiment, as well as the sys-
tems and languages, according to the Latin Square, 
the statistical design selected. At the end, each 
subject performed the same activities sequence with 
the two systems using in each treatment a different 
language (Java or C++). Figure 2 shows the experi-
ment modeling using ExperimentDsl. 

 
Figure 2: Programming Languages Experiment modelling. 

In each treatment, the subjects received an input 
artifact containing the use cases specification of one 
random system (according to the Latin Square) and 
then each one of them had to perform the following 
activities, with the selected language: 
(i) Use Case Project: It involves the tasks to de-

sign the reference architecture and the user in-
terface, according to the use case specification; 

(ii) Use Case Implementation: It contains the tasks 
responsible to codify the implementation arti-
facts designed in the previous activity; 

(iii) Perform Use Case tests: This activity involves 
the development and execution of test cases for 
each use case implemented. 

 
Figure 3: Simple Process modeling fragment. 

This set of activities, tasks and artifacts are the 
simple process used to perform this experiment. 
Figure 3 presents a fragment of this process model-
ing using the ProcessDsl. It shows the process 
lifecycle with its activities arranged in the execution 
order and tasks grouped by activity. Moreover, the 
process modeling contains the definition of artifacts 
and roles involved in each task. This process has 
only a role that represents the experiment subject. 
The process is part of the experiment, as well as the 
metrics related to this process. In this experiment, 

three metrics were considered for analysis: (i) the 
time spent to design the use cases; (ii) the time spent 
to implement each use case; and (iii) the time taken 
to prepare and execute test cases. 

b) Configuration Knowledge Experiment 
Modeling. The second modeled experiment was 
performed in collaboration with another research 
group and is described in (Cirilo et al., 2011). The 
aim of experiment is to investigate the 
comprehension of configuration knowledge in three 
product derivation tools (CIDE, GenArch+, 
pure::variants) in the context of software product 
line (SPL) engineering. A SPL (Clements and 
Northrop, 2011) represents a software family from a 
particular market segment that shares common 
functionalities, but that also defines specific 
variabilities for members (products) of the software 
family (Czarnecki and Helsen, 2006). Features are 
used to capture commonalities and discriminate 
variabilities among SPL systems. A feature can be a 
system property or functionality relevant to a 
stakeholder. The product derivation (Deelstra et al., 
2005) refers to the process of building a product 
from the set of code assets that implement the SPL 
features. The selection, composition and 
customization of these code assets based on a set of 
selected features constitute a SPL configuration and 
the way to perform this configuration changes 
according to the adopted automated tool. The speci-
fied experiment investigates the adoption of deriva-
tion tools with distinct approaches in order to ana-
lyze the configuration knowledge comprehension in 
each one. 

This experiment was modeled (DSL Compostion, 
2012) using our DSLs such as the previous 
experiment. Its experimental design is a three-
dimensional Latin Square. There are three factors 
(tool, SPL and subject) with three levels each one. 
The tool factor represents the three tools that have to 
be compared. They also constitute the treatments of 
the experiment. The SPL factors are modeled as 
three distinct values: OLIS, Buyer Agent and eShop. 
Each SPL has been developed using different 
frameworks and technologies. Finally, the subject 
factor represents the experiment participants. All the 
participants need to analyze a different SPL imple-
mentation for each one of the three distinct treat-
ments. The order and combination of the tool/SPL 
pair under evaluation for different subjects are ran-
domly selected according to the Latin Square. Sev-
eral SPLs are used to avoid that the participants get 
used to the same one from one treatment to another 
(the learning effect) and this could cause influence 
on results. There are three processes (set of activi-

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

152



 

ties) related to the experiment, one for each treat-
ment. Each process defines ten activities linearly 
linked. During the experiment execution, the sub-
jects need to perform the task answering a question 
about the comprehension of configuration 
knowledge on each activity. The only metric meas-
ured in the experiment is the time spent by each 
subject to perform the activities in each process, 
only the correct answers were considered during the 
analysis of the experiment. 

This experiment has also some questionnaires 
that were applied after and before the experiment 
activities or at the beginning or end of the experi-
ment. Altogether there are five questionnaires, one 
applied before the experiment beginning and four 
applied after each process activity and after experi-
ment end of the experiment. All they were modeled 
using the QuestionnaireDsl. Figure 4 shows the 
specification of one of these questionnaires applied 
before the execution of the SPL implemented using 
Jadex framework. It has questions about the sub-
jects’ expertise level. A relationship to the process 
name (BuyerAgentProcess) is realized. 

 
Figure 4: BuyerJadex questionaries modelling. 

3.3.2 Composition Method Application 

1) Identification: As it was said in Section 2, the 
purpose of the identification step of the composition 
method is to discover overlaps between the DSLs 
that we are interested to compose. Our expertise in 
the ESE domain was useful to perform the manual 
identification that was adopted since the automatic 
type is not currently supported by xText framework. 
The analysis resulted in the identification of eight 
reference points between the metamodels, which are 
illustrated in Figure 5 and discussed below. 

ProcessDsl is the only that does not reference 
another one. For this reason it can be used to specify 
processes from distinct domains such as software 
development or experiment process or even a busi-
ness process. ExperimentDsl, in its turn, needs to 
reference the processes, metrics and questionnaires 
that are part of the experiment. A questionnaire is 
referenced in an experiment and modeled with 
QuestionnaireDsl. Each questionnaire may reference 

one or more processes. Moreover, the MetricDsl is 
always related to a process and must indicate the 
artifacts, activities or tasks of this process that have 
to be considered for measurement. Here we identify 
a typical reference case with additional constraint 
where the referenced element in the metric has to 
respect the restriction of being an artifact, activity or 
task in the existing related process. 

  
Figure 5: Overlaps between the metamodels. 

Although some overlaps depend on the addi-
tional restriction for validation, as in the case of 
MetricDsl, all overlaps identified in our study are 
from the simple references type. There are no exist-
ing complex connections cases, where a DSL relates 
to another one requiring a certain semantic condi-
tion. Accordingly, we have two possible strategies 
for implementing these overlaps, the explicit or 
implicit references (Hessellund, 2009). 
2) Specification: In our study, the encoding was 
performed using special features from xText and 
some additional validations written in the Java lan-
guage. It was not necessary to recode any DSL 
grammar, since they were already created in the 
same environment where we were implementing the 
specification. In the case of SmartEMF, the tool 
imported the metamodels and therefore was needed 
to perform their complete specification in order to be 
able to know all the DSLs grammar. 

Natively, xText offers the possibility that a 
metamodel imports another one thus implementing 
the explicit references among models. Since we are 
working with DSLs based on Ecore metamodel, 
xText has a model generator created for each gram-
mar and responsible for the equivalent Ecore meta-
model generation. To perform the importing, it is 
only needed to inform the grammar model generator 
path to create the reference. After that, each refer-
enced metamodel can be recognized by an alias 
name making possible to refer explicitly anyone of 
its elements. Figure 6 illustrates an ExperimentDsl 
grammar fragment after the composition. 

An alternative implementation would be to 
continue using STRING values as implicit reference 

Composition�of�Domain�Specific�Modeling�Languages�-�An�Exploratory�Study

153



 

since there are some validations to check whether 
the referenced value corresponds to a valid element 
in another DSL. This solution was used for the 
method application in XML-based approaches, using 
SmartEMF. However, with xText, we have chosen 
the first strategy because of the several integrated 
features provided by the tool during the DSL speci-
fications, such as pop-ups automatic generation with 
reference names suggestions functioning as a guide. 

 

 
Figure 6: ExperimentDsl referencing ProcessDsl. 

For MetricDsl and QuestionnaireDsl it was 
followed the same strategy used in ExperimentDsl. 
However, as seen in the metrics language there is 
some references with additional constraints, which 
demand the creation of extra validation routines. 
That is the case of the references to artifacts, tasks or 
activities that depend on the process to which the 
metric is related. In Ecore-based grammars, the 
model generator creates also equivalent Java classes 
to each DSL model element beyond helper classes 
with specific function, such as formatting, valida-
tion, and so on. We used these xText features to 
encode additional restrictions just in case they are 
necessary. Figure 7 shows examples of these rules 
implemented using the Java language. The code pur-
pose is to recover all the related process Tasks and 
iterate over them so that it can check the additional 
restrictions to validate them. 

 
Figure 7: Validating method for the TaskMetric element. 

The MetricDslJavaValidator class was auto-
matically generated by xText after grammar compi-
lation and we added to it only the validation meth-
ods. Figure 7 shows this class fragment focusing on 
the checkTaskIsValid(Metrics metrics) method 
that was created to validate the tasks in the metrics 
DSL. Similarly, two other methods were 
implemented to validate activities and artifacts. 
3) Application: This is last method step and it 
consists on applying the composition that was 
codified in the specification step. The application is, 
used for navigation, maintenance and guidance. 

Navigation is a visualization and communication 

resource between models. The xText framework 
does not provide very sophisticated navigation 
functionalities, but it allows specifying links among 
languages through of their reference points. It is 
based on the code navigation features from Eclipse 
platform, which do not provide graphical views but 
presents interesting interaction capabilities. 

A maintenance checking is the method key-point 
because it allows examining whether the restrictions 
are maintained or violated. This consistency 
checking is consequence of the encoding performed 
on the specification step and it becomes visible from 
the xText alert resources. The xText can provide 
warnings or errors guidance and also pop-ups with 
suggested values (Figure 8) or suggested repairs 
(Figure 9) during the typing. 

 
Figure 8: Pop-up with reference suggestions. 

 

Figure 9: Pop-up with error and repair suggestions. 

We also investigated the xText support for the 
four restrictions types listed in the case study per-
formed by the method authors (Hessellund and 
Lochmann, 2009). For the restriction related to the 
well-formed artefacts issue, the xText uses the DSL 
grammar to confront the syntax used in the 
modelling in order to check missing attributes or 
incorrect syntax. In case of failure, error alerts are 
displayed, for example, when in a task modelling in 
the ProcessDsl is not informed the process name 
before the description attribute. Figure 10 show that 
error messages present guidelines for the correction. 
If it is required to present custom messages, extra 
validation routines can be created such as we have 
made for the additional restrictions of the MetricDsl. 

 
Figure 10: Pop-up indicating not well-defined artefacts. 

The second restriction type, the simple referential 
integrity, is the constraint that is better supported by 
xText since using explicit references, these become 

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

154



 

known by the framework. Thus the integrity 
validation among models only requires code imple-
mentation in the case of references with additional 
restrictions, such as presented in the next paragraph. 

References with additional restrictions occurred 
in our study only in the MetricDsl. In this current 
step, these restrictions result in similar effects to 
others, but with customized alerts messages presen-
tation. The warnings and error messages are used to 
validate the constraints and are introduced through 
pop-ups conforming encoded in the specification 
step. Figure 11 illustrates the metrics modelled using 
MetricDsl for the Configuration Knowledge experi-
ment. We can see that the ReplyTimeOLIS metric is 
related to the OLISProcess process but its attribute 
activityBegin refers to an activity (Question1) that 
belongs to another process, BuyerAgentProcess. An 
error message was displayed as a result of the exe-
cution of the validation routine created in the speci-
fication step. The error is shown even whether the 
activity is a valid activity in other process. It does 
not make sense for this metric to refer to activities 
from different processes. 

 
Figure 11: Metric modeling violating additional 
restriction. 

The last restriction type is the style constraint. 
The specification of this restriction also needs 
validation methods but it was not identified any case 
in our exploratory study. We could imagine a style 
that prevents processes to be typed with lowercase 
start letter. As this rule would not be an actual style, 
its violation would generate only a warning.  

3.4 Results and Discussions 

After the method usage, we can reflect about some 
preliminary results about its applicability. Our re-
sults are general enough to make them applicable to 
existing Ecore-based DSLs, specially when 
developed using xText. Moreover, it was also 
possible to apply the method in a context that does 
not require the usage of SmartEMF tool as it was 
originally proposed by the method. 

Table 1 presents a comparison results summary. 
The first column lists the points used to analyse both 
tools. The second column shows the results obtained 
with the performed SmartEMF studies (Hessellund 
et al., 2007); (Hessellund and Lochmann, 2009). The 
results obtained for the xText are presented in the 

third column. Next we discuss several issues related 
to the adoption of SmartEMF and xText for the DSL 
composition context. 

Table 1: Comparison between SmartEMF and xText. 

Features \Approach SmartEMF xText 
DSLs types XML-based Ecore-based 

Support for DSL 
implementation and 

composition 

only composition, 
DSLs imported 

implementation / 
composition 

Support type for 
identification 

manual or 
automatic* manual 

Specification type full Partial 
Support type for 

navigation 
SmartEMF’s tree 

navigation 
Eclipse IDE’s 

navigation 
Guidance type warning / error warning / error 

*Except for semantics references 
 

Changes applied to the Method. The method 
application required performing some changes to 
your original specification. The main changes 
occurred in the specification and application steps 
due to the replacement of SmartEMF tool for xText 
framework. We have decided to implement simple 
references identification using explicit references 
encoding type that had been not explored by the 
original method. They argue that this kind of 
composition brings strong coupling between the 
models, since it forces changes in the metamodels 
thus bringing difficulties to the reuse of the DSLs. 
However, in our approach, this weakness was not 
critical, since we can still reuse our DSLs (see 
“DSLs Reuse” discussion). Furthermore, using 
explicit references, the xText automatically verifies 
all the possible references thus improving the 
validation capabilities of the DSLs composition. 

There are some cases where the xText requires 
additional implementation compared to SmartEMF. 
This is the reference with additional constraints case. 
However, only the overlaps are encoded, i.e. partial 
specification, because the grammar is already known 
by the tool. The references classification type issue 
is not proposed in the method, but in other related 
work (Hessellund et al., 2007). In our work, we have 
applied this classification together with the method 
to evaluate and adapt it in the context of the xText 
framework. 

DSLs Reuse. We have applied the method on a 
specific scenario, but some of our specified DSLs 
could be reused in other contexts. The 
ExperimentDsl can be used to model experiments 
from other domains. The MetricDsl, on the other 
hand, is always related to a process; whereas the 
QuestionnaireDsl, by definition, also may or not be 
related to processes. Finally, the ProcessDsl is the 
only independent DSL in our approach that does not 

Composition�of�Domain�Specific�Modeling�Languages�-�An�Exploratory�Study

155



 

reference any other. Because of that, it can be reused 
in different contexts, such as in the modelling of 
software or business processes. 

If we think about the modelling reuse level, the 
processes, metrics and even questionnaires modelled 
for a given experiment using our DSLs can be 
completely or partially reused in the context of other 
experiments. Hence, despite reuse has been not 
explicitly investigated in this study, there is a great 
opportunity to explore the reuse of the specification 
of an experiment using our DSLs. 

Variability in DSLs. In the Configuration 
Knowledge Experiment modelling, there were three 
processes related to the experiment, where each one 
is related to a specific SPL implementation, which 
represents one factor of the experiment. During the 
workflows generation, these processes will vary 
conform the randomized selected SPL for the 
treatment, thus it represents a variation point. The 
identification of these variabilities is important in 
our approach in order to support their specification 
and customization. In the case of our Experiment 
Software Engineering DSLs, for example, we plan to 
explicitly specify such variabilities in the DSLs in 
order to support the customized generation of 
workflows for each subject according to the 
experiment statistical design, for example, Latin-
square.  

4 CONCLUSIONS 

This paper investigated the composition DSLs 
problems through an exploratory study using a 
proposed method. Our study focuses on the 
application of the method for the composition of 
Ecore-based DSLs implemented using the xText 
framework. The composition method was applied in 
the modelling and composition of DSLs that allow 
specifying and executing controlled experiments in 
the experimental software engineering domain. Our 
main contributions were: (i) the evaluation of the 
investigated method in a new context comparing to 
the previous one; and (ii) the two experiments 
specification using the DSLs composition that 
supports the modelling of different perspectives of a 
controlled experiment. 

As future work, we intend to extend our model-
driven approach to completely support the workflow 
generation. Furthermore, we will investigate 
techniques and mechanisms to explicitly model 
variabilities in these DSLs in order to address the 
customized generation of workflows for subjects 
according to the chosen experimental statistical 

design. 

ACKNOWLEDGEMENTS 

This work was partially supported by the National 
Institute of Science and Technology for Software 
Engineering (INES, www.ines.org.br), funded by 
CNPq under grants 573964/2008-4, 560256/2010-8, 
and 552645/2011-7. 

REFERENCES 

Bézivin, J. and Jouault, F., 2005. Using ATL for Checking 
Models. Workshop GraMoT. Tallinn: pp. 69-81. 

DSL Composition, 2012. [Online] Available at: https:// 
sites.google.com/site/compositiondsl/ 

Cirilo, E. et al, 2011. Configuration Knowledge of 
Software Product Lines: A Comprehensibility Study. 
Workshop on VariComp. New York: pp. 1-5. 

Clements, P. and Northrop, L., 2011. Software Product 
Lines: Practices and Patterns. Addison-Wesley. 

Czarnecki, K. and Helsen, S., 2006. Feature-based survey 
of model transformation approaches. IBM Systems 
Journal - MDSD, 45(3), pp. 621-645. 

Deelstra, S. et al, 2005. Product derivation in software 
product families:a case study. JSS, 74(2), pp. 173-194. 

Freire, M. A. et al, 2011. Automatic Deployment and 
Monitoring of Software Processes: A Model-Driven 
Approach. SEKE 2011, 9 dec., pp. 42-47. 

Freire, M. A. et al, 2012. Software Process Monitoring 
Using Statistical Process Control Integrated in 
Workflow Systems. SEKE 2012, 20 jan., pp. 557-562. 

Hessellund, A. and Lochmann, H., 2009. An Integrated 
View on Modeling with Multiple Domain-Specific 
Languages. IASTED on ICSE. pp. 1-10. 

Hessellund, A., 2007. SmartEMF: guidance in modeling 
tools. OOPSLA. New York: ACM, pp. 945-946. 

Hessellund, A., 2009. Domain-specific multimodeling, 
Denmark. Thesi. 

Hessellund, A. et al, 2007. Guided Development with 
Multiple Domain-Specific Languages. MoDELS’2007, 
Nashville, Springer, pp. 46-60. 

Lochmann, H. and Bräuer, M., 2007. Towards Semantic 
Integration of Multiple Domain-Specific Languages 
Using Ontological Foundations. MoDELS, Nashville. 

Lochmann, H.; Grammel, B., 2008. The Sales Scenario: A 
Model-Driven Software Product Line. In:: Software 
Engineering (Workshops). s.l.:s.n., pp. 273-284. 

Mens, T. et al, 2006. Detecting and resolving model 
inconsistencies using transformation dependency 
analysis. MoDELs. Genova: Springer, pp. 200-214. 

Nentwich, C., et al, 2003. Consistency management with 
repair actions. ICSE. Portland: IEEE, pp. 455-464. 

Wohlin, C. et al, 2000. Experimentation in Software 
Engineering: An Intoduction. Norwell: Kluwer 
Academic Publishers 

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

156


