
Using File Systems for Non-volatile Main Memory Management

Shuichi Oikawa
Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan

Keywords: Operating Systems, Memory Management, Non-volatile Memory.

Abstract: Non-volatile (NV) memory is next generation memory. It provides fast access speed comparable to DRAM
and also persistently stores data without power supply. These features enable NV memory to be used as both
main memory and secondary storage. While the active researches have been conducted on its use for either
main memory or secondary storage, they were conducted independently. This paper proposes the integrated
memory management methods, by which NV memory can be used as both main memory and secondary
storage. The proposed methods use file systems as their basis for NV memory management. Such integration
enables the memory allocation for processes and files from the same source, and processes can take advantage
of a large amount of physical memory used for both main memory and storage. We implemented the proposed
memory management methods in the Linux kernel. The evaluation results performed on a system emulator
show that the memory allocation costs of the proposed methods are comparable to that of the existing DRAM
and are significantly better than those of the page swapping.

1 INTRODUCTION

Non-volatile (NV) memory is next generation mem-
ory. It provides fast access speed comparable to
DRAM and also persistently stores data without
power supply. These features enable NV memory to
be used as main memory and secondary storage. Es-
pecially, the active researches have been conducted to
utilize phase change memory (PCM) as main memory
from the computer architecture’s point of view (Lee,
et. al., 2009; Qureshi, et. al., 2009; Zhou, et. al.,
2009; Qureshi, et. al., 2010). Since these were the
researches on the computer architecture, the operat-
ing system (OS) takes only a minor role (Zhang and
Li, 2009; Mogul, et. al., 2009). There are also the
researches that construct file systems on NV memory
by taking advantage of its byte addressability (Condit,
et. al., 2009; Wu and Reddy, 2011).

While these researches on the use of NV mem-
ory for either main memory or storage have been per-
formed as described above, they were conducted in-
dependently. Since NV memory can be used for both
main memory and storage, their management can be
integrated. Such integration enables the memory al-
location for processes and files from the same source,
and processes can take advantage of a large amount
of physical memory used for both main memory and
storage. Therefore, integrating memory management
with a file system on a NV main memory system en-
ables the improvement of system performance by re-

moving the paging swapping between main memory
and storage. While the advantage brought by the in-
tegration were discussed (Bailey, et. al., 2011; Jung
and Cho, 2011), there has been no research effort to
realize it in an actual OS.

This paper proposes the integrated memory man-
agement methods, by which NV memory can be used
as both main memory and storage. The two, direct
and indirect, methods that use file systems as their ba-
sis for NV memory management are described. The
direct method directly utilizes the free blocks of a file
system by manipulating its management data. The
indirect method indirectly allocates blocks through a
file that was created in advance for the use of main
memory. These methods have their own advantages
and disadvantages; thus, each method meets different
requirements.

We implemented these memory management
methods in the Linux kernel. When the kernel tries to
allocate a physical memory page from the NV mem-
ory, the kernel directly or indirectly consults the file
system and takes a free block from it. By making
the block size of the file system the same as the page
size and using the XIP (eXecution In Place) feature,
allocated file system blocks can be used as physical
memory pages and be directly mapped into a virtual
memory address space without copying. The evalua-
tion results performed on a system emulator show that
the memory allocation costs of the proposed methods
are comparable to that of the existing DRAM and are

208 Oikawa S..
Using File Systems for Non-volatile Main Memory Management.
DOI: 10.5220/0004330702080213
In Proceedings of the 3rd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2013), pages 208-213
ISBN: 978-989-8565-43-3
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

significantly better than those of the page swapping.
To the best of our knowledge, we are among the first
to design and implement the integration of main mem-
ory and storage.

This paper focuses on the integration of the main
memory and file system management; thus, the eval-
uation results presented in Section 4 do not take into
account the difference of access latencies and treat
DRAM and NV memory the same. This is because
NV memory technologies are still under active de-
velopment and it is possible that some of them will
perform comparably to DRAM. For example, the per-
formance of STT-RAM is comparable to DRAM, and
there is no need to treat it differently (Park, 2012).

The rest of this paper is organized as follows. Sec-
tion 2 describes the related work. Section 3 presents
the design and implementation. Section 4 describes
the current status and shows experiment results. Fi-
nally, Section 5 concludes this paper.

2 RELATED WORK

There are only a few papers that describe the inte-
gration of main memory and storage. (Bailey, et. al.,
2011) discusses various possibilities, including the in-
tegration of main memory and storage, made possible
by employing NV memory as main memory. (Jung
and Cho, 2011) describes the policy and possible ef-
fect of the integration. Neither of them, however, real-
ized the integration. This paper describes the methods
to realize it and presents their design and implemen-
tation in the Linux kernel.

There are a number of researches conducted to en-
able byte addressable NV memory to be used as main
memory (Lee, et. al., 2009; Qureshi, et. al., 2009;
Zhou, et. al., 2009; Qureshi, et. al., 2010; Zhang and
Li, 2009; Mogul, et. al., 2009). Since these are the re-
searches of the computer architecture to integrate NV
memory into main memory by overcoming its lim-
itations, there is no consideration to integrate main
memory and storage. On the other side, there are the
researches that construct file systems on NV memory
by taking advantage of its byte addressability (Condit,
et. al., 2009; Wu and Reddy, 2011). Although these
researches utilize the feature that enables NV mem-
ory to be used as main memory, they do not consider
NV memory as main memory at all.

FlashVM (Saxena and Swift, 2010) and SSDAl-
loc (Badam and Pai, 2011) propose the methods to
make usable memory spaces virtually larger by utiliz-
ing SSDs and making page swapping faster than the
existing mechanism. While these improve the virtual
memory system of the OS kernel, main memory and

CPU�

DRAM(NV(Memory(

Figure 1: Target system memory structure.

storage remain separated.

3 DESIGN AND
IMPLEMENTATION

This section describes the design and implementation
that enable the integration of the main memory and
storage management by employing byte addressable
NV memory.

3.1 Target System Structure

Since there is no publicly available system that em-
ploys byte addressable NV memory as its main mem-
ory, we need to construct a reasonable target system
structure. In this paper, we assume that 1) DRAM
and byte addressable NV memory constitute the main
memory of a system, and 2) DRAM and byte address-
able NV memory are placed in the same physical ad-
dress space. DRAM and byte addressable NV mem-
ory are connected to the memory bus(ses) of CPUs,
and they are mapped in the same physical address
space; thus, they can be accessed in the same way
with appropriate physical addresses, and there is no
distinction between them from the OS kernel. Figure
1 depicts the memory architecture of the target sys-
tem.

Since our goal is to integrate the main memory
and storage management, byte addressable NV mem-
ory takes the roles of both main memory and storage.
Our methods construct a file system on NV memory.
The file system is used to store directories and files,
and these contents persist across the termination and
rebooting of the OS kernel. The free blocks of the file
system are used for main memory while a system is
running. They are returned to the file system when a
system terminates.

We consider this structure is reasonable when our
primary target systems are clients devices, such as
note PCs, tablets, and smart phones. Since these
client devices do not require a large amount of stor-

Using�File�Systems�for�Non-volatile�Main�Memory�Management

209

Memory'Allocator�

NV'Memory'

Virtual'Memory�

DRAM'

File'System�

Figure 2: Virtual memory system architecture and its rela-
tionships with the memory allocator and a file system.

age spaces, NV memory suffices the needs of storage.
While NV memory can constitute the whole memory
of a system, DRAM is also useful to hold data regions,
which are known to be volatile and overwritten soon.
Examples of such regions include stacks and buffers
used for data transfer. Thus, it should be reasonable
to consider that a target system’s memory consists of
both DRAM and NV memory.

We employ the QEMU system emulator to con-
struct the target system described above and to exe-
cute Linux on it. The more details of the emulation
environment is described in Section 4.1.

3.2 Virtual Memory System

This section describes the virtual memory system ar-
chitecture and its relationships with the memory allo-
cator and a file system. Figure 2 depicts the architec-
ture. The virtual memory system of the Linux kernel
is built upon the memory allocator and file systems.

Traditionally, the memory allocator manages
DRAM, and file systems manage storage. The virtual
memory system uses the memory allocator to allocate
physical memory pages from DRAM. It then maps the
allocated DRAM pages in virtual address spaces.

The virtual memory system can also use XIP1-
enabled file systems, such as Ext2 and PRAMFS,
to directly map files in user process address spaces.
Since the physical memory pages of the files are
mapped through the virtual memory system, no copy-
ing of pages occurs between DRAM and NV memory.
Since Ext2 and PRAMFS are the only XIP-enabled
file systems that support both read and write, these
are our target file systems to implement the integrated
memory management methods described in the next
section.

3.3 Integrating Main Memory and File
System Management

This section describes the integrated memory man-
1XIP stands for eXecution In Place.

agement methods, by which NV memory can be used
for the memory allocation for both processes and files.
In order to use NV memory as main memory, physical
memory pages need to be allocated from a file system.
Therefore, in Figure 2, the double arrowed line that
connects the memory allocator and a file system is a
missing link. Making the memory allocator allocate
physical memory pages from a file system connects
the link; thus, it enables the integration of the main
memory and storage management.

This paper proposes the two, direct and indirect,
methods to connect the link. Both of them use file
systems as their basis for NV memory management.
The direct method directly utilizes the free blocks of a
file system by manipulating its management data. The
indirect method indirectly allocates blocks through a
file that was created in advance for the use of main
memory. These methods have their own advantages
and disadvantages; thus, each method meets different
requirements. The details of these methods are de-
scribed below.

3.3.1 Direct Method

The direct method allocates free blocks from a file
system for the use of main memory just as those are
allocated for files. The allocation is done by finding
free blocks and marking them allocated. Such in-
formation is stored in the management data of a file
system; thus, this method requires the direct manip-
ulation of the management data, and the additional
code for the allocation and freeing needs to be imple-
mented.

The advantage of the direct method is the tight in-
tegration of main memory and file system manage-
ment. Any of the free blocks of a file system can be
used for both main memory and files. The use of the
free blocks is not decided and they remain free until
their allocation; thus, this method does not waste the
free blocks. The disadvantages are the dependency on
the implementation of a file system and the crash re-
covery. The dependency issue involves two aspects,
the effect of the internal structure to the performance
and the implementation cost of the additional code.
The crash recovery is required because the allocated
blocks for the use of main memory do not belong to
any file; thus, these blocks cause the inconsistency of
a file system when crashed.

3.3.2 Indirect Method

The indirect method utilizes the blocks of a file that
was created in advance to be used for main memory.
This method does not need to consult the management
data of a file system, but indirectly uses the blocks that

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

210

were allocated for a file. The content of the file is ini-
tialized by creating a linked list of its blocks; thus, all
of the file’s blocks need to be allocated when created.
The allocation for main memory is done by simply
taking blocks out of the linked list.

The advantages of the indirect method are con-
trary to the direct method. The indirect method does
not depend on the implementation of a file system.
The provision of the XIP feature of a file system re-
quires the implementation of get_xip_mem() inter-
face. The interface converts a file offset to its block
address. By using this interface, the initialization of
a file used for main memory can be done indepen-
dently from the internal implementation of a file sys-
tem. The linked list of the free blocks also makes the
allocation cost independent from the internal imple-
mentation. Moreover, since the blocks used for main
memory are allocated for a file, they do not cause the
inconsistency of a file system when a system crashes.
The disadvantage is that the blocks of a file used for
main memory are preallocated; thus, their use is fixed
for main memory. It is desirable to adjust the size of
the preallocated file. While it is easy to extend the
file size as more blocks need to be allocated for main
memory, more work is necessary to shrink it.

4 EXPERIMENT RESULTS

This section first describes the evaluation method and
then shows the experiment result that measures the
allocation costs of main memory from file systems.

4.1 Evaluation Method

We employ the QEMU system emulator to construct
the target system described in Section 3.1. The ver-
sion of QEMU used for the evaluation is 1.0.1, and
QEMU emulates x86 64. QEMU was modified to
emulate NV memory that persists its contents across
the termination and rebooting of the emulator. A file
is used for the persistence of the NV memory. The
file is mapped into the physical address space emu-
lated by QEMU. The experiments described in this
section were performed on QEMU invoked with the
following options:

% qemu -m 128 -nvmemory \
file=nvmemory.img,physaddr=0x100000000

With the above options, QEMU is invoked with
128MB DRAM along with the NV memory mapped
from 0x100000000 of the physical address. The size
of the file emulating NV memory (nvmemory.img) is
4GB. While the size of DRAM is passed to the Linux

kernel through BIOS, the information of NV memory
is not passed in order to make their management sep-
arate.

The modified QEMU executes the Linux kernel
that includes the modifications of the proposed meth-
ods. The version of the Linux kernel modified and
used for the experiments is 3.4.

The evaluation of execution costs needs to mea-
sure execution times. Times counted by the interrupts
from a timer device are not accurate enough on sys-
tem emulators. Instead, the number of instructions
executed is used as the measure of execution costs.
The -icount 0 option of QEMU lets the TSC (time
stamp counter) register count the number of instruc-
tions executed. The RDTSC instruction reads the
value of TSC.

As described in Section 1, the following evalua-
tion results do not take into account the difference of
access latencies and treat DRAM and NV memory the
same.

4.2 Page Allocation Costs

This section shows the measurement results of the al-
location costs of main memory from file systems and
compares them with those that use the page swapping
mechanism. Integrating the main memory and file
system management on NV memory brings a large
amount of physical memory to processes; thus, such
integration should be able to remove the necessity of
the paging swapping and to improve the performance
to allocate a large amount of memory. In order to ver-
ify the effectiveness of the integration, we executed
a program that allocates a memory region by using
malloc() and performs writes to the beginning of the
page boundaries for the actual allocation of physical
memory pages.

The measurements were performed for several
cases, and Figure 3 shows the results. The figure com-
pares the eight cases. DRAM (w/o swap) and DRAM
(w/ swap) show the costs when only DRAM is used
as main memory without and with a swap device, re-
spectively. In these cases, a swap device for DRAM
is a ramdisk created on NV memory. PRAMFS NV
mem (direct) and PRAMFS NV mem (indirect) show
the costs when PRAMFS is constructed on NV mem-
ory and the direct and indirect methods are used for
main memory allocation from the file system, respec-
tively. PRAMFS swap file shows the cost when only
DRAM is used as main memory and a swap file cre-
ated on PRAMFS is used as a swap device. In the
cases of Ext2 NV mem (direct), Ext2 NV mem (indi-
rect), and Ext2 swap file, Ext2 was constructed on NV
memory.

Using�File�Systems�for�Non-volatile�Main�Memory�Management

211

0""

200,000""

400,000""

600,000""

800,000""

1,000,000""

1,200,000""

1,400,000""

1,600,000""

1,800,000""

1" 32" 64" 128" 256" 512"

N
um

be
r"
of
"in
st
ru
c8
on

s"
[1
/1
00
0]
"�

Alloca8on"size"[MB]�

DRAM"(w/o"swap)"

DRAM"(w/"swap)"

PRAMFS"NV"mem"(direct)"

PRAMFS"NV"mem"(indirect)"

PRAMFS"swap"file"

Ext2"NV"mem"(direct)"

Ext2"NV"mem"(indirect)"

Ext2"swap"file"

Figure 3: Comparison of page allocation costs.

The measurement results apparently show the ef-
ficiency of the memory allocation from NV memory
and the inefficiency of the cases that use the page
swapping. The cases that use the indirect method per-
forms the best, and their results are basically the same
because of their implementation independent from the
underlying file systems. PRAMFS NV mem (direct)
comes next to the indirect method with 10% overhead
for the allocation of 512MB of memory. Ext2 NV
mem (direct) poses 18% overhead. DRAM (w/ swap),
PRAMFS swap file, and Ext2 swap file are approxi-
mately 7.8, 8.1, and 8.7 times as much as the indirect
method, respectively.

For the both cases that use the direct method
and the page swapping, Ext2 performs slower than
PRAMFS, and Ext2 poses approximately 7% over-
head over PRAMFS. Since these cases depend on the
internal implementations of the file systems, the com-
plicated mechanisms of Ext2, which have been devel-
oped and optimized for hard disk drives (HDDs), had
a negative impact for the use for NV memory. There-
fore, the internal implementations of the file systems
affect the performance of the integrated management
of main memory and a file system.

5 SUMMARY AND FUTURE
WORK

Non-volatile (NV) memory is next generation mem-
ory. It achieves performance comparable to DRAM
and also persistently stores data without power sup-
ply. These features enable NV memory to be used
as main memory and secondary storage. While the
active researches have been conducted on its use for
either main memory or secondary storage, theses re-
searches were conducted independently. This paper
proposed the integrated memory management meth-
ods, by which NV memory can be used as both main
memory and storage. The two methods that use
file systems as their basis for NV memory manage-
ment were described. The direct method utilizes the
free blocks of a file system by manipulating its man-
agement data. The indirect method allocates blocks
through a file that was created in advance to be used
for main memory. We implemented these mem-
ory management methods in the Linux kernel. The
evaluation results performed on a system emulator
showed that the memory allocation costs of the pro-
posed methods are comparable to that for the existing
DRAM and are significantly better than those of the
page swapping. To the best of our knowledge, we are

PECCS�2013�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

212

among the first to design and implement it.
The integration of the main memory and file sys-

tem management creates new possibilities of the us-
age of NV memory. This paper is just the starting
point of various further investigations. We will inves-
tigate new possibilities of the use of NV memory.

REFERENCES

A. Badam and V. S. Pai. SSDAlloc: hybrid SSD/RAM
memory management made easy. In Proc. of 8th
USENIX conference on Networked systems design and
implementation (NSDI ’11), 2011.

K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy. Oper-
ating system implications of fast, cheap, non-volatile
memory. In Proc. of the 13th USENIX conference on
Hot topics in operating systems (HotOS 13), 2011.

J. Condit, E. B. Nightingale, C. Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. Better I/O
through byte-addressable, persistent memory. In Proc.
of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP ’09), pp. 133-146, 2009.

J-Y. Jung and S. Cho. Dynamic co-management of persis-
tent RAM main memory and storage resources. In
Proc. of the 8th ACM International Conference on
Computing Frontiers (CF ’11), 2011.

B. C. Lee, B. C. E. Ipek, O. Mutlu, and D. Burger. Architect-
ing phase change memory as a scalable dram alterna-
tive. In Proceedings of the 36th annual international
symposium on Computer architecture (ISCA ’09), pp.
2-13, 2009.

J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Oper-
ating system support for NVM+DRAM hybrid main
memory. In Proc. of the 12th conference on Hot top-
ics in operating systems (HotOS ’09), 2009.

Sung Wook Park: Overcoming the Scaling Problem for
NAND Flash. Flash Memory Summit, 2012.

Protected and Persistent RAM Filesystem. http://
pramfs.sourceforge.net/, 2012.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable
high performance main memory system using phase-
change memory technology. In Proc. of the 36th an-
nual international symposium on Computer architec-
ture (ISCA ’09), pp. 24-33, 2009.

Qureshi, M.K.; Franceschini, M.M.; Lastras-Montano,
L.A.; ”Improving read performance of Phase Change
Memories via Write Cancellation and Write Paus-
ing,” In Proc. of 2010 IEEE 16th International Sym-
posium on High Performance Computer Architecture
(HPCA), pp.1-11, 2010.

M. Saxena and M. M. Swift. FlashVM: virtual memory
management on flash. In Proc. of 2010 USENIX con-
ference on annual technical conference (USENIX ATC
’10), 2010.

X. Wu and A. L. N. Reddy. SCMFS: a file system for stor-
age class memory. In Proc. of 2011 International Con-
ference for High Performance Computing, Network-
ing, Storage and Analysis (SC ’11), pp. 1-11, 2011.

W. Zhang, T. Li, ”Exploring Phase Change Memory and 3D
Die-Stacking for Power/Thermal Friendly, Fast and
Durable Memory Architectures,” In Proc. of 18th In-
ternational Conference on Parallel Architectures and
Compilation Techniques, pp. 101-112, 2009.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and en-
ergy efficient main memory using phase change mem-
ory technology. In Proc. of the 36th annual inter-
national symposium on Computer architecture (ISCA
’09), pp. 14-23, 2009.

Using�File�Systems�for�Non-volatile�Main�Memory�Management

213

