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Abstract: In the supervised context, we intend to introduce a system which is composed of a series of novel and 
efficient algorithms that is able to realize a non parametric Bayesian classifier for high dimension. The 
proposed system tries to search for the best discriminate sub space in the mean of the minimum of the 
probability error of classification which is computed by using a modified kernel estimate of the conditional 
probability density functions. Therefore, Bayesian classification rule is applied in the reduced sub space. 
Such heuristic consists of four tasks. First, we maximize a novel estimate of the quadratic measure of the 
probabilistic dependence in order to realize multivariate extractors resulting from a number of different 
initializations of a given numerical optimizing procedure. Second, an estimation of the miss classification 
error is computed for each solution by the kernel estimate of the conditional probability density functions 
with the optimal band-with parameter in the sense of the Mean Integrate Square Error (MISE) which is 
obtained with the Plug in algorithm. Third, the sub space which presents the minimum of the miss 
classification values is thus chosen. After that, the Bayesian classification rule is operated in the reduced sub 
space with the optimal MISE of the modified kernel estimate. Finally, different algorithms will be applied to 
a base of images in grayscale representing classes of faces, showing its interest in the case of real data. 

1 INTRODUCTION 

One of the main goals of the discriminate analysis is 
to prepare the classification procedure in a relatively 
reduced space which is defined by optimizing a 
given criterion. Different classification rules have 
been applied in literature. The k means and the 
Bayesian are considered as ones of the well known 
classifiers. The first is very useful in practice since it 
could be working well in high dimension and does 
not need any assumptions about the form of the 
conditional distributions of the observation. It 
presents also a low algorithmic complexity and 
implementation facilities. Unfortunately, when one 
of the conditional distributions has a multimodal 
form (or we are in the Heterosedastic condition), the 
k mean does not lead to a satisfactory solution. In 
order to minimize the probability of error, the 
optimal solution could be reached by the application 
of the Bayesian classifier when it is possible to do. 
Despite its simplicity of implementation and low 
requirement at the sample size training, in the case 

of high dimensions, the bayes classifier cannot lead 
to precise results due to the fact that very few 
analytical expressions of random vectors are known 
outside of classical cases such as Gaussian vectors, 
uniform, Gamma, Beta ... These are close to 
covering the most frequent cases encountered in 
various applications. The nonparametric approach 
seems consequently more realistic to model in the 
concrete situations. However, it is well established 
in the statistical literature that the convergence of 
nonparametric probability density function (pdf) 
estimators in the sense of the conventional criteria, 
generally requires a sample size that increases 
exponentially with the dimension of the features 
space. Kernel estimate and the based orthogonal 
functions are non parametric and have strong 
requirements in terms of sample sizes with the same 
order to those required by the method of the 
histogram. To unblock this limitation, the approach 
known by linear discriminate analysis (LDA) is 
preferred. The LDA method has a certain number of 
advantages in the practice. We mention here its 
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simplicity of implementation and its low algorithmic 
complexity. However, relatively recent works have 
identified major limitations coming from at least two 
reasons: in the first the instability of the results that 
may come from the numerical inversion method of 
the within class matrix in the case of high dimension 
feature observation vector D, the second is the 
convergence towards an unsatisfactory result of 
reduction dimension that can be interpreted by the 
fact that the scatter matrices are expressed only from 
the statistical moments of order less than or equal to 
2 of the conditional distributions. 

In order to overcome these limitations, the 
probabilistic distances were introduced in the 
context of two classes. Patrick Fischer distance was 
estimated between the two conditional probability 
density functions. Its estimations based on kernel 
method have been proposed for the implementation 
of this discriminate analysis qualified as 
probabilistic. The L2-probabilistic measure of 
dependence was discussed in the literature (Devijver 
and Kittler, 1982) with the objective of generalizing 
the notion of Patrick Fischer distance to the 
multiclass case. In our recent work (Drira and 
Ghorbel, 2012), an estimator of the L2 probabilistic 
dependence measure based on orthogonal functions 
has been introduced leading to a global multivariate 
extractor. In the implementation of the classification 
in the reduced space, a second optimization phase 
operated on different results of the numerical 
maximization of the estimate of the probabilistic 
dependence measure is representing an attempt to 
achieve a minimization of probabilities error and 
consequently a trial of the approximation of the 
Bayes classification. 

So this article is structured as following. A first 
section will include a brief reminder of the 
orthogonal probabilistic dependence measure 
estimate. A second section will be discussing the 
optimal bayes classifier method based on the 
orthogonal estimate of the probabilistic distance for 
reduction dimension presented in previous work 
(Drira and Ghorbel, 2012). In the third section, we 
will present a face classification process based on 
these different algorithms of the orthogonal estimate 
of the dependence probabilistic measure.  

2 FORMULATION 

Linear discriminate analysis LDA (Fisher, 1936) is 
probably the most well-known approach to 
supervised linear dimension reduction (LDR). The 
LDA is a very robust and effective technique but 

still has some limitations. Various techniques were 
introduced to improve it, among them we can find 
discriminate analysis based on Chernoff criterion 
like the Approximate Chernoff Criterion ACC (Loog 
et al., 2001) which takes the Chernoff distance in the 
original space into consideration to minimize the 
error rate in the transformed space, another method 
based on the information theory called Information 
Discriminate Analysis IDA (Nenadic, 2007) based 
on a numerical optimization of an information-
theoretic objective function. 

These methods are defined from first and second 
order statistical moments of the conditional class 
random variable or based on some hypothesis on the 
law distribution type such as the Heterosedastic 
condition. Therefore, in complex situations as the 
multimodal conditional distributions, these methods 
couldn’t describe completely statistical dispersions. 

In order to avoid this limitation, distances 
between the conditional probability density 
functions weighted by the prior probabilities have 
been suggested by Patrick and Fischer. They have 
been introduced in (Patrick and Fischer, 1969) a 
global discriminate analysis based on the L2 
dependence probabilistic measure. It issues directly 
the discriminate plane which optimizes the 
orthogonal estimate of L2 measure of dependence. 
The multivariate estimator in the reduced space of 
this L2 probabilistic dependence measure represented 
by the linear transformation W of RD, introduced in 
previous work (Drira and Ghorbel, 2012), expressed 
in function of W as follows: 
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Where ൛ ܸ
, ݅ ൌ 1,… , ݊, ݇ ൌ 1, . . ,  ൟ denotes aܭ

supervised learning sample distributed according the 
random vector conditional of the class k of 
dimension D, nk  is the size of the observation 
relative to the class k and K denotes the number of 
class. 〈W|V〉 represents the inner product of two 
vectors V and W of the space RD. 

K෩୫ొ൫ݒ, ܸ൯ is the multivariate generalized kernel 
associated to an orthogonal functions basis: 

ICPRAM�2013�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

642



 

෩ಿܭ	
ሺݒ, ܸሻ ൌ ෩ಿܭ	 ቀሺݔ

ଵ, … , ,	ௗሻݔ ൫ ܺ
ଵ, … , ܺ

ௗ൯ቁ

ൌ 	ෑܭಿ൫ݔ
, ܺ

൯

ௗ

ୀଵ

 

And K୫ొ൫ݔ, ܺ൯is the scalar generalized kernel 
associated to an orthogonal functions basis ݁ሺݔሻ. 
For a trigonometric system defined on [-π, π] 
corresponds to a complete basis in the Hilbert space 
L2(ሾെߨ,  ಿ givesܭ	 ሿ), the estimation of the kernelߨ
the Dirichlet kernel given by the following 
expression: 
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So, the discriminate analysis is obtained numerically 
by maximizing the estimator of the L2 probabilistic 
dependence measure relatively to W, defined by: 

ܹ∗ ൌ ݃ݎܣ ݔܽ݉
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Where W is an orthonormal matrix i.e. ܹ	்ܹ ൌ  ܫ
where ܫ is the identity matrix of size D. 

This functional maximization problem cannot be 
solved analytically. Numerical optimization methods 
are then implemented. The number of parameters 
involved in this optimizing problem is d x D. 

3 BAYES OPTIMAL OF 
FEATURE EXTRACTION 
BASED ON ORTHOGONAL 
SERIES ESTIMATE 

There exists a sort of equivalence between the 
distance of Patrick Fischer and the probability of 
misclassification. This equivalence is expressed by 
the possibility to surround the probability of error 
with this distance close to constants. Thus, from a 
theoretical point of view, the d-dimension reduction 
by the orthogonal estimate of the Patrick-Fischer 
distance presented in (Drira and Ghorbel, 2012) can 
be interpreted as a dimension reduction equivalent to 
that which could be obtained by minimizing the 
probability of misclassification. The corresponding 
discriminate analysis prepares the implementation of 
the Bayes classifier in a non-parametric frame and 
large dimensions. Since Bayesian classifier role can 
be expressed according to the conditionals 
probability densities as: 

g∗ሺݔሻ ൌ max	݃ݎܣ


	ߨ ݂ሺݔሻ 

The previous expression has to be estimated with 
a non parametric method as the histogram, the 
orthogonal basis one or the kernel estimate. For a 
given precision, the convergence of the 
corresponding theorems needs a large size N of the 
supervised training sampleሼሺX୧, Y୧ሻሽ୧∈ሾଵ..ሿ which 
have to increase exponentially with the dimension of 
the feature space. Thus the application of the 
Bayesian rule can be obtained from the modified 
kernel estimate which is defined as:  
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Where K represents a probability density function, I 
notices the indicator function of the set	ሾY୧ ൌ kሿ and 
hN is the smoothing parameter. The adjustment of 
the kernel method described in (Drira and Ghorbel, 
2012) which is applied to its modified version, 
contributes to achieve the goal through its 
application in the reduced space supposing that its 
dimension is below the value 3. This tends to 
promote conditions of respect of convergence 
theorems of the kernel estimator. This convergence 
could be obtained in case of real data whose cost of 
collecting supervised observations still affordable.  

On the other hand, the search for an absolute 
maximum of the objective function of the estimate 
L2 probabilistic dependence measure cannot be 
obtained analytically, a numerical optimization 
process is therefore required. Solutions obtained 
from numerical optimization are often dependent on 
initialization and lead in most cases to local maxima. 
By multiplying different initializations of the 
numerical optimization process, we obtain a family 
of M d-reducers dimension characterized by a finite 
set of transformations {Wm

*, m=1,..,M}. At each of 
these d-reducers, the corresponding misclassification 
rate is then estimated from a supervised sample test 
that we denote by ൛൫V′୨, Y′୨൯, j ൌ 1, . . , N′ൟ. 

In accordance with the notations introduced in 
(Drira and Ghorbel, 2012), the misclassification rate 
is given by the following quantity: 

			݀ݎܽܿ ቄ		Y′୨ 	് ݃ݎܣ			 ቂmax


	 ො݊ 	∑ 	ܭ ቀ
ᇱౠି
୦ొ

ቁே
ୀଵ Iሾଢ଼ୀ୩ሿ൫V′୨൯ቃ , ݆ ൌ 1,… ,ܰ′ቅ

ܰ′
 

The d-reducer retained is the one who realizes the 
lowest misclassification rates. This minimum is well 
approaching the theorical probability of error. 
Through this series of non-parametric procedures, 
we tried to approach the Bayes classifier in a 
multivariate frame and that not necessarily for 
Gaussian distributions, since, in each phase any 
hypothesis about the type of law has been issued. 
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Therefore the proposed system of algorithms 
consists on the three following tasks: 
 First we estimate the L2 measure of the 
probabilistic dependence with orthogonal basis in 
order to realize different multivariate extractors 
resulting from a number of initializations of the used 
numerical optimizing procedure. 
 Second, an estimation of the miss classification 
error is computed for each solution by the modified 
kernel estimate of the conditional probability density 
functions in the context of the optimal smoothing 
parameter. Such parameter is obtained by 
minimizing the Mean Integrate Square Error 
(MISE). The Plug in algorithm tries to provide this 
solution. 
 Third, the sub space which presents the 
minimum of the miss classification values is 
therefore chosen. 

In each task, the numerical optimization procedure 
does not necessarily give optimal solutions. So we 
cannot be sure that we are realizing Bayesian 
classifier at each time. 

4 FACE CLASSIFICATION 
PROCESS 

In face recognition, a huge number of classifiers 
were introduced in the litterature having various 
success rate according to the application type. While 
feature extraction is compulsory phase of a pattern 
recognition system, this approche is offering a 
convenient departure of the the classification of the 
feature vectors, which oriented the researches in the 
face recognition domain to introduce a large number 
of face feature extraction methods. 

In this study, we have employed the “BioID” 
dataset (Jesorsky et al., 2001), composed of 1521 
images in gray level of 23 faces of frontal view, for 
each face image of this database 20 feature points 
are displayed. For any used algorithm, facial 
recognition is accomplished in four step process: the 
acquisition, the face detection, the feature extraction 
and finally the classification. In this paragraph we 
will describe the details of all the steps used in our 
work to accomplish the face classification process. 

As a first step, we selected the Adaboost to 
detect the face and characteristic features location 
knowing that the most of the existing methods for 
facial feature extraction assume that at least coarse 
location of the face is detected. Then, after this 
operation, the computational complexity of the facial 
feature extraction can be significantly reduced. 

In the second step, we move on to the face 
normalization which is very important stage for the 
recognition algorithms. First we start with a 
geometric normalization resumed in performing a 
rotation of face to align the axis of the eye with the 
horizontal axis and then we recover a face image 
whose distance between centers of the eyes is fixed. 
The dimensions of the face image are retrieved from 
the distance between the obtained eyes centers. In 
this phase we set the position of the mouth center in 
the normalized image in order to get acceptable 
column normalization and to ensure that the 
different face parts (eyes, mouth and nose) are in the 
same position for all faces. We apply next an 
increase in the dynamics to the normalized image, 
which is based on a decrease in the center of the 
image histogram to achieve images with the same 
ranges of distribution of gray levels and an average 
alignment of these levels. Second we apply an 
illumination normalization using the histogram 
equalization to re-calibrate the grayscale image 
leading to better contrast and a gamma correction to 
reduce the gap between light and dark areas of the 
face using a nonlinear transformation of grayscale 
(Fig 1). 

When the facial regions could be retrieved, the 
analysis will be focused on the facial features. The 
adopted method locates features coarsely by 
searching areas with low intensity among possible 
face regions. This approach involve basic computer 
vision operations such morphology and projection 
analysis. The morphological operators can fit to it 
regarding their easy and fast implementation added 
to their strong nature. The projections also could be 
computed easily and are convenient with real-time 
applications. Some of the dark side of the projection 
methods is that the gray scale information is deeply 
influenced by a variation of illumination conditions 
and noise. Due to that, projection curves are not 
smooth, which keeps them difficult to be analyzed 
automatically. And therefore will try to use the 
geometrical face model hand to hand with the 
projections and morphology to avoid such problems. 
First, we apply the projection analysis: the gray-
level intensity for the facial features is too weak in 
the image compared to close neighbors. So, the 
position of facial features can be reached by 
projections of the image. The significant minima are 
issued from the retrieved horizontal projection. For 
these minima the vertical projection is calculated 
and significant minima are searched for again. The 
obtained results will be treated as feature candidates. 
Next and once we apply horizontal projection to the 
facial images and we got the base lines, a 
morphological operator will be used to find the eyes 
position. And since the position of eyes and 
intraocular distance are almost similar for most of 
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people, detecting the eyes is a compulsory 
component in automatic facial feature extraction 
systems; it will be helpful to define the rest of facial 
features. We first locate the possible eye regions by 
detecting the valley points in an image and because 
the human iris is darker than its surrounding, a 
valley exists on the eye region, it will be extracted 
thanks to the gray-scale morphological operators 
(Fig 3). 

 

Figure 1: Geometric normalization and illumination 
normalization. 

Finally, we apply method based on the 
geometrical face model. This model includes facial 
features like eyes, eyebrows, nostrils and mouth. 
The line passing through the eyes centers is called a 
base line. The geometric face model gets the 
configuration among eyes, nostrils, and mouth to 
locate facial features. Supposing that in most of the 
faces, the vertical distances between eyes and nose 
and between eyes and mouth are proportional to the 
horizontal distance between the two centers of eyes 
(Fig 2). 

A Principal Component Analysis PCA is 
performed on the data sets after those who have all 
principal component’s eigenvalue smaller than one 
millionth of the total variance and by this way 
problems related to near singular covariance 
matrices are kept away and all three transformations 
can be properly found out. The evaluation consists in 
dividing randomly the data set into k non 
overlapping folds of equal size,  and for k times, 
each time choose one fold to be assigned as a test 
data and the others will be combined to issue the 
training data. The selection of the number of folds k 
relies on the bias-variance trade-off. In order to 
provide a good bias-variance compromise, by 
default we use “20-fold” CV which is widely 
accepted (Effron, 1983). 

Next step, we search for the three Linear 
Reduction dimension transformations using the 
transformed train data and we reduce the 
dimensionality of this train to d where is in {1,2}. 

In the last step, in the d-dimensional reduced 
feature space, we apply the nearest mean, the linear 
and Optimal Bayes classifier using the train data and 
on the other hand we classify the test data after 
transforming its instances in the same way as the 
train instances. The classification error is estimated 

on the test data. 

 

Figure 2: Horizontal projection of facial images from the 
BioID Face Database. 

 

Figure 3: Morphological operator for some examples of 
the BioID Database. 

In table 1, we present the observed Mean Square 
Error MSE for the data Set BioID using the three 
different algorithms. The estimated MSE: using 
features defined by Eigen faces representation is 
noted “FULL”; using the previous features based on 
principal component analysis is noted “PCA” and 
using the features database is noted “D”. We note 
that the average error rates of the 2D L2-PDM / 
Bayes combination compare favorably to those of 
other techniques. This advantage explains the link 
between the probabilistic dependence measure and 
the probability error of Bayes.  

These MSE rates seem to correlate with the 
classification problem: In case of using the K 
Nearest Neighbors classifier, we can see that both 
2D L2PMD and the LDA are ranked as better result 
than IDA with a better advance for 2D L2PMD.  For 
the linear classifiers, the optimal results were 
provided by IDA and 2D L2PMD showing the best 
overall performance far away from the best 
performances of the LDA technique. We should note 
that the feasibility of LDA is seriously limited by the 
constraint d < K (number of classes), note also that 
this approach cannot be realizable in the case of 
reduction features defined by Eigen faces 
representation without applying the ACP method. 
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Table 1: Observed MSE for the data Set BioID using the 
three different Classifier, the K Nearest Neighbors, the 
linear and the optimal Bayes classifier. Optimal observed 
MCE per classifier is typeset in bold. 

  FULL ACP D 

LDA 
K NN - 0.3000 0.3105 

L - 0.3366 0. 3366 
Bayes - 0.3793 0.3910 

IDA 
K NN 0.3512 0.3679 0.3492 

L 0.3360 0.2814 0.2692 
Bayes 0.3119 0.3119 0.2805 

2D L2PMD 
K NN 0.3103 0.2963 0.3007 

L 0.3015 0.2815 0.2605 
Bayes 0.2165 0.2165 0.2300 

5 CONCLUSIONS 

In this paper, we introduced a pattern classification 
system for supervised classification composed of a 
series of novel and efficient algorithms which is able 
to realize a non parametric Bayesian classifier for 
high dimension. The proposed system is aiming to 
search for the best discriminate sub space in the 
mean of the minimum of the probability error of 
classification which is computed by using a 
modified kernel estimate of the conditional 
probability density functions. Therefore, Bayesian 
classification rule is applied in the reduced sub 
space, with the optimal MISE of the modified kernel 
estimate. Thus, the performance of the suggested 
system was compared to the other process based on 
classical algorithms in the real dataset in face 
classification. In the future works, we intend to 
evaluate the effectiveness of this process by studying 
the classification accuracy of a Bayesian classifier in 
term of probability of error based on hermit basis. 
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