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Abstract: 3D object data acquired from different viewpoints are usually expressed in different spatial coordinate 
systems where systems’ spatial relations are defined by Euclidean transformation parameters: three rotation 
angles and a translation vector. The computation of those Euclidean parameters is a task of surface 
registration. In a nutshell all registration methods revolve around two goals: first how to extract the most 
reliable features for correspondence search between views in order to come up with the set of candidate 
solutions, secondly how to quickly pinpoint the best, i.e. satisfying, solution. Occasionally some registration 
method expects also other data, e.g. normal vectors, to be provided besides 3D position data. However, no 
method assumed the possibility that part of Euclidean parameters could be reliably known in advance. 
Acknowledging technology advancements we argue that it become relatively convenient to include in 3D 
reconstruction system some inertial sensor which readily provides info about data orientation. Assuming 
that such data is provided, we demonstrate a simple, but yet time efficient and accurate registration method. 

1 INTRODUCTION 

The task of a surface registration is to fuse 3D data 
originally acquired from different viewpoints (Salvi 
et al., 2007). To this end it is required to find the 6 
degrees of freedom: three rotation angles and three 
dimensional translation vector that describe a spatial 
relationship between a pair of viewpoints. An 
alternative to readily solve the surface registration, 
using rotating tables and/or robot arms, is neither 
always available nor a feasible solution due to the 
number of degrees of freedom of the mechanics and 
particularly in the case of large surfaces, self-
occlusion areas etc. Consequently software based, 
coarse and fine, surface registration methods have 
been investigated which operate on 3D data only. 
The former searches for a good enough initial 
estimate which is then usually refined by some fine 
registration method. 

The majority of published algorithms, except for 
few PCA based exceptions (Chung and Lee, 1998), 
consist of two important phases: first a selection of 
candidate solutions, and second, the detection of the 
optimal candidate solution. The intrinsic 
combinatorial complexity of the problem causes 
that, for all algorithms, both phases are very likely to 
be memory and time demanding, as well as sensitive 

to outliers. Genetic (Santamaría et al., 2011) and 
RANSAC based algorithms (Diez et al., 2012) are 
known for its reliability to give eventually a good 
solution, but at the expense of a substantial 
computation time which can make them quite 
impractical. On the other hand, a ready to use PCA 
fast solutions are additionally sensitive to the object 
symmetries (otherwise common problem to all other 
methods too) and a requirement for a large overlap 
between views. Next, most methods require at least 
three correspondences between pair of views to 
define a candidate solution. Even if they seemingly 
require only a single correspondence (Feldmar and 
Ayache, 1994) then there is a substantial pre-
processing involved during which a feature vector 
for every point is first found and afterwards used for 
the extensive comparisons. Finally, some methods 
(Makadia et al., 2006) expect as input from 3D 
reconstruction system not only 3D point position 
data, but also a normal vector in every 3D point. 
Somewhat surprisingly, it appears that neither 
method expected a possibility if a part of Euclidean 
parameters are known in advance, rather they try to 
solve all six Euclidean transformation unknowns. 

In this work we propose a surface registration 
method assuming that rotation is provided by an 
inertial sensor (e.g. MTx, 2012), and translation 
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vector is still left to be found. We justify our 
assumption by the fact that nowadays technologies 
have made quite affordable a large pallet of various 
inertial devices which reliably outputs data about 
object orientation. This is not only present in popular 
smart phones and accessories for video games, but 
there are also smart cameras which have an 
embedded on-board inertial sensor for orientation 
detection in 3D space (Shirmohammadi and Taylor, 
2011). Nevertheless, it seems that this fact has not 
been exploited in the context of surface registration.  

2 METHOD DEFINTION 

The proposed method consists of the following 
straightforward steps: 

1 Given a pair of views A and B align them 
partially using the system provided (ideally from 
some embedded inertial sensors) orientation data 
(rotation angles).  

2. Pick a single point XA from view A for which 
a correspondence in the second view exists. 

3. Sample (e.g. uniformly) a set of M points XBi 
from the second view B, where is typically M≤100.  

4. Construct a candidate translation vector 
between point XA and every point i from XBi set. For 
every translation vector candidate solution, translate 
views A and B into common reference system and 
evaluate the goodness of solution using some merit 
function. For a further consideration, keep only a 
single XB from XBi set for which an extreme of merit 
function is achieved.  

5. Take the closest N points (~100) to XB and 
similar as in step 4, define N candidate translation 
vectors, for each of them translate A to B view, 
evaluate the goodness of potential solution using 
some merit function. At last, the one for which an 
extreme of merit function is achieved, take as a final 
solution.  

3 EXPERIMENTS 

In this work we have used 3D data from a structured 
light scanning of mannequin head from several 
different viewpoints (Figure 1). The white markers 
set on it (Figure 2) served as control points to 
compute registration data and are in the subsequent 
experiments considered as ground truth data. In fact, 
we use those control points to compute rotation data 
between views just as if they were provided by some 
inertial sensor. 

 

Figure 1: A screen snap from Blender software package 
where 3D raw data from ten viewpoints were input and 
surface meshes created. 

Figure 2: Camera images for a pair of views A and B. See 
text for more details. 

The left image on Figure 2 is an example of view A 
and the black star on is a point chosen for which a 
correspondent one is searched in the view B (right 
image). Black dots on the view B image represent 
the actual candidate solutions sampled during step 3 
and processed during step 4 of the proposed method. 
The green area is neighborhood within which a 
correct solution is, i.e. within which a final solution 
is searched (step 5).  

Figure 3 shows an alignment between two views 
after applying a rotation. The right (blue) and left 
(red) point clouds are view A and B respectively. 
The black dots on the view B point cloud, the green 
area marked on it and the black star on the view A 
point cloud represent the same points as already 
introduced for Figure 2, but now in 3D space. 

Moreover, black dots on Figure 3 shows that 
even a sparse consideration of candidate solution 
allows a pretty good estimate of the final one. 
Hence, a candidate solution providing an extreme of 
merit function after step 4 is actually a black dot 
within a green area. Thus, the green area on Figure 3 
shows the neighborhood of points which is further 
evaluated in order to set a final solution (step five). 
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Table 1: Comparison of the ground truth data with the initially computed and final results. 

View Pair Number 
of Points 

Ground truth data[mm] Error initial solution[mm] Error final solution[mm] 

Tx Ty Tz ∆Tx ∆Ty ∆Tz ∆Tx ∆Ty ∆Tz 

(33110, 34109) -75,72 -16,25 -86,57 -6,10 -5,12 -0,06 -0,98 -0,47 -0,38 

(34109, 39255) -119,04 -19,89 -104,45 -2,29 -7,33 0,14 -1,59 -1,97 -1,24 

(39255, 43096) -158,73 -37,78 -194,54 -8,46 1,98 -4,73 -1,36 0,21 -0,87 

(43096, 38759) -111,19 -8,00 -54,98 -4,10 7,40 4,63 -1,60 1,92 2,33 

(38759, 35371) -102,26 -27,49 -156,87 8,88 13,00 -4,64 -3,76 4,36 -3,86 

(35371, 39647) -133,69 -21,36 -104,36 -4,84 -10,29 0,17 -2,47 -4,18 0,44 

(39647, 44440) -133,58 -30,09 -155,76 0,55 -11,91 -4,17 -2,35 -1,27 -1,96 

(44440, 41044) -44,59 -8,93 -59,90 -1,10 5,82 -2,49 -0,10 0,23 0,09 

(41044, 36357) -82,26 -13,36 -65,99 -12,06 -0,17 -2,61 -1,65 0,08 -2,57 

Absolute average error[mm] 5,38 7,00 2,63 1,76 1,63 1,52 

 

 

Figure 3: An alignment of 3D point clouds (downsampled 
for better visualization) from two views after applying a 
rotation. See text for more detail. 

Table 1 is a representative example of extensive 
experimenting using real 3D noisy data and it 
demonstrates a very good agreement of ground truth 
data for translation vector components with the 
computed values. The central table rows resemble 
the registration of back of the mannequin head 
which due to symmetries (Figure 1) is harder to 
register and consequently a slight decrease in 
accuracy is witnessed.  

Although the speed optimization was out of the 
scope of this work (Park et. al., 2011), for 
completeness we stress out that it took about 4 
minutes in Matlab to align a pair of views (Intel 
Core 2 DUO 2.5GHz), where we used all available 
points (>35000 points, first column Table 1). We 
point out that such excessive number of points is 
normally not used in practice (Salvi et al., 2007). 
When we downsampled our 3D point clouds to be 
~6000 points (note this is still a rather large number 
for registration) per view, we have acquired 

basically the same results as in Table 1 (not shown 
here for the lack of space). But in addition, the 
processing time significantly dropped to only 10-15 
seconds per view pair, even using this noticeably 
suboptimal Matlab code version. Based on this 
timing and earlier experience, we estimate that even 
CPU optimized C like code (future work) would 
allow processing time in matter of seconds for point 
clouds of size 15000-20000 points. 

4 DISCUSSION 
AND CONCLUSIONS 

Unlike other methods the proposed one does not pre-
process data in order to first compute certain 
Euclidean invariants and/or local features around 
candidate points (Chua, 1997). The proposed 
method has basically an inherent Euclidean invariant 
which allows that after rotation alignment is done 
then all points needs to be moved by the very same 
translation vector. Since for a some point in view A 
we know that there is its correspondent point in view 
B we simply search for the best candidate in view B 
which minimizes our merit function. However, we 
do not perform an exhaustive search, typical for 
some RANSAC based approaches, of all candidate 
solutions in view B. In our particular experiment it 
was sufficient to try altogether just a couple hundred 
of candidate solutions to reach a final one. But we 
note that we did essentially work all the time with all 
available reconstructed points (~30000 to 40000 
points per view). It means that we have tested <1% 
of possible solutions. At the same time, no initial 
data downsampling (Trucco et al., 1999) was 
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performed to make the method actually applicable. 
Our method uses a point-to-point correspondences 
strategy, which is generally much simpler than 
curves or surface correspondence (Wyngaerd, 2002). 
The merit function used here to estimate candidate 
solution quality is very simple one: distance point-
to-point. We do not require implementation of point-
to-plane distances known to be more robust, but also 
harder to compute (Rusinkiewicz and Levoy, 2001). 

As shown the method performs quite well even 
without removing any outliers (Dalley and Flynn, 
2002) and we do not bother with the computing and 
assigning different weights during processing 
(Godin et al., 1994). In addition, our method does 
not require a priory any initial guess for the searched 
translation vector, but computes accurately even a 
final solution and therefore can be recognized as 
both coarse and final method in one. In terms of 
speed and simplicity our method resembles the 
character of PCA method, but it is also quite less 
subtle to the size of overlapping regions. Our 
method is general purpose one, meaning that to be 
successfully applied it does not require any typical 
environment, such as buildings where planar regions 
and straight lines are expected (Stamos and 
Leordeanu, 2003). Furthermore, no estimation of 
certain experimental parameters is needed, as usual 
in some genetic algorithms. We think that 
technology associated with inertial sensor has 
become mature enough to be more affordable, and 
therefore, additional cost justified. Particularly if we 
compare it with the alternative of using rotation 
tables and/or robot arms which can be also 
prohibitive in many practical situations. Our future 
course is the implementation of proposed idea using 
the actual inertial sensor which experimenting began 
during the submission of this work. 
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