
Octopus
A Redundant Array of Independent Services (RAIS)

Christian Baun1, Marcel Kunze2, Denis Schwab3 and Tobias Kurze2
1SAP AG, Walldorf, Germany

2Steinbuch Centre for Computing, Karlsruher Institut für Technologie, Eggenstein-Leopoldshafen, Germany
3Hochschule Karlsruhe, Fakultät für Informatik, Karlsruhe, Germany

Keywords: Cloud Computing, Cloud Federation, Storage Services, Availability.

Abstract: Cloud storage services such as the Amazon Simple Storage Service (S3) are widely accepted and are reaching
an ever-expanding range of customers. Especially services providing S3-compatible interfaces enjoy great
popularity due to S3’s simplistic, yet powerful approach to store and retrieve data via web protocols. While
cloud storage services present a convenient tool, they also might turn into a risk for your data. Apart from
planned service outages which may or may not be covered by Service Level Agreements (SLA), there is
no guarantee that a service provider might go out of business. One might also imagine that data could be
destroyed, lost or altered due to unplanned outages or physical disaster. One possibility to improve availability
and also data robustness is to consume services of more than one cloud storage provider simultaneously and
to establish a federated, redundant cloud storage system. Octopus cloud storage implements such a federated
system realizing the concept of a Redundant Array of Independent Services (RAIS).

1 INTRODUCTION

Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS) are the
most popular cloud service delivery models. Since
Amazon launched its Simple Storage Service (S3) to
handle web objects in 2006, an ecosystem of compat-
ible tools and implementations came into existence.
While the functionality of object-based storage ser-
vices usually is sufficient for many use-cases, the ac-
companying dependency to a provider may present
a problem. If a provider goes out of business, nor
the service and neither the stored data would be ac-
cessible any more. A federated cloud service setup,
based on the simultaneous use of multiple providers
may be more resilient. In addition, a high availability
setup may be realized comprising multiple, indepen-
dent services.

This paper highlights the concept of a Redundant
Array of Independent Service (RAIS) and uses fed-
erated object-based storage services to implement a
prototype called Octopus.

In section 2 we provide some background infor-
mation on object based cloud storage services and
their issues regarding availability. We also give a short
introduction concerning the concept of cloud federa-

tion and how our redundant storage service conceptu-
ally fits into the picture. Section 3 outlines the con-
cept of storage federation and the redundant storage
service. Section 4 explains the service architecture,
and describes some challenges and issues we faced
and their corresponding solution. Finally, in section 6
we conclude our work be giving an overview of poten-
tially useful extensions, as well as of persisting chal-
lenges we did not tackle yet.

2 BACKGROUND

2.1 Object-based Storage Services

The Amazon Web Services (AWS)1 are a popular col-
lection of public cloud service offerings. Due to their
widespread use, the AWS API may be considered as
a de-facto standard for cloud services. Amongst oth-
ers, the AWS include S3, a web object data storage
for applications. The AWS comprise a broad range
of additional cloud computing web services like Elas-
tic Block Store (EBS), Relational Database Service
(RDS), SimpleDB, and DynamoDB.

1http://aws.amazon.com

321Baun C., Kunze M., Schwab D. and Kurze T..
Octopus - A Redundant Array of Independent Services (RAIS).
DOI: 10.5220/0004352003210328
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 321-328
ISBN: 978-989-8565-52-5
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Table 1: Interfaces of S3 compatible Cloud storage services.

REST SOAP BitTorrent
Amazon S3 X X X

Google CS X — —

Host Europe CS X — —

Eucalyptus Walrus X X —

OpenStack Swift X — —

Nimbus Cumulus X — —

S3 stores data in form of web objects and each ob-
ject is assigned to a bucket. Objects are identified by
unique keys and are addressable using HTTP URLs.
S3 implements a flat name space and has therefore
no support for folder hierarchies. Buckets and objects
may be created, listed and retrieved using web service
interfaces either via REST or SOAP. Objects may also
be retrieved using HTTP GET and a BitTorrent pro-
tocol interface. Users may check and alter the access
rights – the Access Control List – of each S3 bucket
and object to authorize access to the data.

2.1.1 S3 Ecosystem

An advantage of S3 is the growing ecosystem of
compatible programming libraries, management tools
and services. With Walrus from Eucalyptus2 (Nurmi
et al., 2008a) (Nurmi et al., 2008b) (Nurmi et al.,
2009), Cumulus (Bresnahan et al., 2011) from Nim-
bus3 (Keahey et al., 2009) (Marshall et al., 2010)
and Swift from OpenStack4 three open source private
cloud solutions exist that implement at least a subset
of the S3 API. A unique characteristic of this API in
contrast to others is the existence of open source pri-
vate cloud solutions and several public cloud imple-
mentations. Beside Amazon S3, Google Cloud Stor-
age (CS)5 and Host Europe Cloud Storage6 provide
more or less equivalent functionality and implement
the S3 API as well. Table 1 gives an overview of S3
compatible cloud storage offerings.

Other object storage service offerings from, e.g.,
GoGrid7 or FlexiScale8 come with their own propri-
etary APIs. However, those offerings lack an ecosys-
tem of compatible tools and open source implementa-
tions when compared to S3.

There are also efforts to establish standardized,
provider-independent cloud APIs such as the Open

2http://open.eucalyptus.com
3http://www.nimbusproject.org
4http://www.openstack.org
5http://developers.google.com/storage/
6http://www.hosteurope.de/produkte/Cloud-Storage/
7http://www.gogrid.com/cloud-hosting/cloud-api.php
8http://www.flexiscale.com/reference/api/

Cloud Computing Interface (OCCI)9 which would
certainly by beneficial but currently there is only lim-
ited to no support by commercial cloud providers. As
service providers usually try to seal off their offer-
ings from competitors (Harmer et al., 2010), a multi-
provider agreement for implementing an open cloud
service interface is unlikely in the near future.

For the AWS API on the other hand there is a
growing number of adaptor libraries available like
JetS3t10 and boto11 as well as tools like GSutil12,
s3cmd13 and S3Fox14 that help working with S3.

2.1.2 Availalablity

In the following section we discuss the availability of
public and private cloud storage services:

Public Cloud Providers. Amazon guarantees that
S3 stores data redundantly at multiple facilities of
a region and offers two different redundancy op-
tions. The standard S3 redundancy option provides
99.999999999% durability based on three replicas.
The reduced redundancy option replicates objects
only two times, resulting in an expected durability of
99.99%15. Switching to reduced redundancy results
in cost savings of about 45%. In both cases the SLA
guarantees a minimum availability of 99.99%.

For Google’s Cloud Storage the Service Level
Agreement (SLA)16 guarantees an availability of
99.99% but doesn’t make any statement concerning
durability. If the monthly uptime percentage falls be-
low the guaranteed value, customers of Amazon re-
spectively Google receive service credits for future
monthly bills.

Apart from guarantees stated in SLAs, there still
is a risk in case of an unplanned outage.

Private Clouds. Very often private cloud deploy-
ments do not guarantee SLAs the same way public
cloud offerings do. If a certain level of availability
is required, it has to be provided by a thoroughly de-
veloped and operated storage service. Some private
cloud storage solutions help to accomplish this goal
through their design. For example, the pWalrus17

9http://occi-wg.org
10http://www.jets3t.org
11http://code.google.com/p/boto/
12http://code.google.com/p/gsutil/
13http://s3tools.org/s3cmd
14http://www.s3fox.net
15http://aws.amazon.com/s3-sla/
16http://developers.google.com/storage/docs/sla/
17http://www.pdl.cmu.edu/pWalrus/index.shtml

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

322

project tries to improve the throughput and availabil-
ity of the web objects by using more than just a sin-
gle instance of Walrus in a parallel way. These stor-
age server instances use a distributed file system (e.g.
PVFS, GPFS or LUSTRE) to store the data (Abe and
Gibson, 2010). A disadvantage of pWalrus and simi-
lar approaches however is that the source code of Wal-
rus and therefore the installation itself needs to be al-
tered, which is not always possible or desirable. An-
other drawback is, that the simultaneous use of public
and private storage services is tedious.

In order to increase availability it seems promis-
ing to design a redundant meta storage service imple-
menting the S3 API. Such a storage solution would
enable the use of various public and private storage
services simultaneously without the necessity of al-
tering these services in any way.

2.2 Cloud Federation

In (Kurze et al., 2011) we analyzed the term cloud
federation and categorized federation strategies along
several dimensions. Concerning IaaS, and especially
storage services we identified three basic federation
strategies:

• Replication:data items, i.e., objects in an object-
based storage, are distributed and stored in mul-
tiple locations. Amongst other advantages, this
usually increases availability and decreases ven-
dor lock-in.

• Erasure Coding:parts of data, i.e., parts of ob-
jects in an object-based storage, are split up and
stored at different locations to, for example, in-
crease overall availability or address data privacy
concerns.

• Fragmentation:data items are stored according to
their requirements. For example, it might be nec-
essary to store sensitive, individual-related data
inside a certain country or region, but then, other
data might be stored elsewhere to optimize costs.

The RAIS storage described in this paper is a ba-
sic implementation of the IaaS federation concepts of
replicationanderasure coding. At the momentfrag-
mentationis not supported as the focus is on availabil-
ity rather than compliance.

3 REDUNDANT ARRAY OF
INDEPENDENT SERVICES

We propose aRedundant Array of Independent Ser-
vices (RAIS)that is based on the simultaneous usage

of multiple storage services in aRAID (Redundant
Array of Independent Disks)-like manner to increase
availability and to decrease provider dependency. The
storage system supports two modes of operation:

• RAID-1-like Mode: RAID-1 provides mirroring
without parity or striping. The objects are written
identically to multiple storage services. At least
two S3-compatible services are required to built
up a RAID-1 array. The array is operational as
long as at least a single service is available, though
it might be in a degraded state.

When an object is transferred to RAIS using
RAID-1, the file is subsequently sequentially re-
layed to the registered storage services. If a single
transfer to one of storage services fails, the action
is rolled back, i.e., transfers to remaining storage
services is cancelled and already transferred ob-
jects are deleted. This ensures the consistency of
the array.

• RAID-5-like Mode:RAID-5 provides block-level
striping with distributed parity data. Therefore,
objects are partitioned in equal parts, according
to the number of registered storage services mi-
nus one. If it is not possible to split the data into
equal partitions, zero-bits are added to the smaller
part. Then, the parity information is computed
for each partition and stored on the appropriate
node. To ensure that data and its corresponding
parity information are not stored in the same stor-
age service, Octopus has implemented a mecha-
nism calledrotating-paritywhose principle is il-
lustrated in figure 1.

To calculate the parity information in case of
three storage services the original data is split into
two partitions. The first partition is stored with
provider A, the second partition with provider
B and provider C stores the parity information,
which is being calculated by applying the XOR
operator to partitions one and two. In general, the
parity information is calculated by applying the
XOR operator to all partitions except the one that
would have been stored with the corresponding
storage provider. Rotating parity guarantees, that
data can always be recovered - even in the case
of one storage service being unavailable. If more
than one storage service is unavailable though,
i.e., more than one data partition is lost, the ob-
ject can’t be recovered any more.

The RAID-5 operation mode not only provides
better availability, but also improves data privacy,
as no single provider has an entire object stored
on its premise. To further improve security, the
parts could also be encrypted before being up-

Octopus�-�A�Redundant�Array�of�Independent�Services�(RAIS)

323

Figure 1: Uploads through Google’s Blobstore.

loaded. (Schwab, 2012)

To check whether objects in storage services are
in sync or not, RAIS strongly relies on MD5 check-
sums. All S3-compatible storage services generate
and store an MD5 checksum for each object. These
checksums along with some other meta-data are trans-
ferred automatically whenever an object or a list of
objects is requested. Figure 2 depicts the meta-data
for an object with the key“testobject.txt”, as returned
by Amazon S3, following a customer requests to list
objects in a bucket. For RAIS, the important informa-
tion are<Key>...</Key>, holding the display name
of the object, and<ETag>...</ETag>, holding the
MD5 checksum.

Whenever RAIS receives a request to list objects
in a certain bucket, it checks if the data is still syn-
chronized across the registered storage services by
comparing the MD5 checksums. First, it requests the
list of objects inside the user’s buckets from all reg-
istered storage services. Then RAIS compares the
names and checksums of the received objects inside
the returned lists. If the returned lists have identi-
cal keys and checksum entries, the data is considered
in sync across the registered storage services. (Baun,
2011).

<Key>testobject .txt</Key>
<LastModified >2012-01-29 T21:18:24 .000Z<

/LastModified >
<ETag >" ;71388

ba9a76ddb7ecd43a14f2a9ae216 "</
ETag >

<Size >2163 </Size >
<Owner>

<ID>af0af9137ff6 ...97272818796 </ID>
<DisplayName >username </DisplayName >
</Owner>

<StorageClass >STANDARD</StorageClass >

Figure 2: Object-related meta-data as returned by Amazon
S3.

4 PLATFORM &
ARCHITECTURE

The RAIS concept has been implemented using the
Google App Engine (GAE) in a project called Oc-
topus. GAE is a platform as a service (PaaS) of-
fered by Google that provides a stable and highly
available runtime environment at a fair price or - de-
pending on the usage - even for free. It comes with
APIs to manage user authentication, mail delivery
and reception, manipulate images and many more.
Another advantage of GAE is its inherent scalabil-
ity. There are compatible and free private cloud alter-
natives to GAE, namely AppScale18 (Chohan et al.,
2009)(Bunch et al., 2010) and typhoonAE19.

Figure 3: Octopus running inside the public cloud PaaS.

Figure 3 depicts how Octopus may be run in a
public cloud. In contrast, figure 4 shows the situation
when operating Octopus in a private cloud environ-
ment based on AppScale respectively typhoonAE.

18http://appscale.cs.ucsb.edu
19http://code.google.com/p/typhoonae/

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

324

Figure 4: Octopus running inside a private cloud PaaS.

Octopus has been implemented in Python using
the web framework Django20. In order to communi-
cate with storage services compliant to S3, Octopus
uses boto, an open source python interface to AWS.

The App Engine provides several helpful APIs
e.g. to use the Google authentication mechanism and
storage services of the Google infrastructure. The
user management and authentication of Octopus is
based on Google user accounts (see figure 5). The
Datastore (a BigTable service with a SQL-like query
language) is used to store the customers imported
credentials for S3-compatible storage services (see
Figure 6). The corresponding APIs and services
of the App Engine are supported by AppScale and
typhoonAE too. If Octopus is running on a private
AppScale or typhoonAE platform service the user au-
thentication is implemented with AppScale respec-
tively typhoonAE so that there is no need to use any
Google user accounts.

When multiple storage services are used to store
the same file or parts of a file redundantly, it is ob-
viously necessary to transfer the file respectively the
parts multiple times as well. In a first implementa-
tion of Octopus, files were uploaded directly from the
clients, i.e., from the clients browsers to each associ-
ated storage service. This was an easy but very ineffi-
cient and time consuming solution.

In order to improve Octopus an object to be stored
in multiple storage services is uploaded only once and
cached in the Blobstore before being uploaded to the
storage services. Though this is a much better ap-
proach from a customer’s perspective, it also is tech-
nically more complex and has to respect restrictions
of Google’s Blobstore, such as the maximum file size,
for example. Figure 7 illustrates how Octopus handles
uploads.

20http://www.djangoproject.com

Figure 5: Concept of Octopus’ user management and au-
thentication.

Figure 6: Concept of Octopus’ managing the users creden-
tials to storage services.

User/Customer

Datastore

Google
Blobstore

Datastore

Datastore

upload

Figure 7: Uploads through Google’s Blobstore.

4.1 Interaction with Storage Services

Octopus has been designed to work in a multi-user
environment. To support multiple tenants simultane-
ously, it prepares a bucket for each user upon his or
hers registration for a certain storage service. There-

Octopus�-�A�Redundant�Array�of�Independent�Services�(RAIS)

325

fore, the following scheme for bucket names has been
deployed: octopus-storage-<username>. These
buckets, created for every registered storage service,
serve as root storage locations for Octopus. In order
to register a storage service a user has to provide the
corresponding credentials using the Octopus web in-
terface.

Once a storage service is registered, Octopus in-
teracts with its S3-compatible REST API. We are not
using SOAP interfaces or BitTorrent due to limited
support by some storage providers. Table 1 provides
an overview of interfaces implemented by different
cloud storage services.

REST is an architectural-style that relies on HTTP
methods likeGET or PUT. S3-compatible services use
GET to receive the list of buckets that are assigned to
an user account, or a list of objects inside a bucket
or an object itself. Buckets and objects are created
with PUT and DELETE is used to erase buckets and
objects. POST can be used to upload objects and
HEAD is used to retrieve meta-data from an account,
bucket or object. Uploading files into S3-compatible
services is done via HTML forms andPOST directly
from the customers client, i.e., browser. Table 2 gives
an overview of methods used to interact with S3-
compatible storage services.

Table 2: Description of the HTTP methods with request-
URIs that are used to interact with storage services.

Account-related Operations

GET / List buckets

HEAD / Retrieve metadata

Bucket-related Operations

GET /bucket List objects

PUT /bucket Create bucket

DELETE /bucket Delete bucket

HEAD /bucket Retrieve metadata

Object-related Operations

GET /bucket/object Retrieve object

PUT /bucket/object Upload object

DELETE /bucket/object Delete object

HEAD /bucket/object Retrieve metadata

POST /bucket/object Update object

The basic functionality of all S3-compatible stor-
age services is more or less identical, but the exact
behavior is often slightly different.

4.1.1 Amazon Web Services

Amazon S3 supports multi-part uploads to break
larger objects into chunks of smaller size and upload

a number of chunks in parallel. This feature is helpful
in case of upload failures, as the upload some chunks
can be restarted imposing less overhead compared to
the re-upload of the entire file. So multi-part uploads
could help to improve the performance of the meta-
storage service but the other S3-compatible storage
solutions do not support this feature and therefore it
is not implemented in Octopus.

4.1.2 Cumulus and Host Europe

Cumulus and Host Europe Cloud Storage both do
support uploading objects viaGET but not viaPOST
yet. Eventually future releases may have this feature
to be used by Octopus. As long as this feature is miss-
ing, it is impossible to upload file objects using these
services with Octopus.

4.1.3 Walrus and OpenStack

In Amazon S3, Google Cloud Storage, Cumulus and
Host Europe Cloud Storage, the MD5 checksums are
enclosed by double quotes (see Figure 2). In Wal-
rus and OpenStack they are not. The reason for this
difference behavior remains unclear. Octopus has
been designed to handle this implementation detail
and thus nonetheless works with these storage sys-
tems.

If no submit button inside a form is used to upload
an object into Walrus, some bytes of garbage data is
appended to the object.

An annoying issue of Walrus is that the service
adheres faulty data to all objects that are transferred
via POST when no submit element exists at the end
of the HTML message. Walrus recognizes the submit
element as the objects’ end. If the subject element is
missing, Walrus attaches all data until the end of the
transfer to the object.

Another problem of Walrus is that in the version
that is part of Eucalyptus 1.6, inside each bucket an
object with the keyNone exists, which is incorrect. As
this object cannot be erased Octopus need to ignore it.

When using Amazon S3 or Walrus, inside
the HTML form and the related policy docu-
ment21, the developer has the freedom to use
either die attribute redirect or alternatively
success_action_redirect to set the page, the
browser will be redirected to, if the upload was suc-
cessful. Google Cloud Storage in contrast just makes
use of the attributesuccess_action_redirect and
ignoresredirect.

21The policy document contains i.a. the object’s name,
a description of the content, the bucket and the destination
address to which the browser will be redirected if the upload
was successful.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

326

4.1.4 Google Cloud Storage

An issue of Google Cloud Storage is that the submit
button, that is used inside a HTML form to transfer
objects to the storage service must not contain the
name attribute. Amazon S3 and Walrus both ignore
thename attribute.

5 RELATED WORK

Various systems to avoid vendor lock-in and to im-
prove availability have been developed. Bermbach et
al. developed MetaStorage (Bermbach et al., 2011),
which is a federated cloud storage system that dis-
tributes data across different cloud storage services
and relies on some mechanisms from Amazon’s Dy-
namo (DeCandia et al., 2007) for cross-provider repli-
cation to achieve higher levels of availability as well
as of fault tolerance and scalability. It relies on a dis-
tributed hashtable and extends the (N,R,W)-quorum
approach to include providers as a supplemental di-
mension. MetaStorage consists of multiple compo-
nents, of these the most important ones are: storage
nodes, distributors and coordinators. Storage nodes
provide an abstraction from the underlying infrastruc-
ture, i.e. cloud storage services or just hard-disks.
Distributors are in charge of the replication and of the
retrieval of files using the underlying storage nodes.
To avoid a bottlneck, multiple distributors can be used
but have to be managed. Coordinators provide this
management and assure that every distributor has the
same configuration.

RACS (Abu-Libdeh et al., 2010) is a system that
uses RAID-like techniques to distribute data across
multiple cloud storage providers to, for example, re-
duce costs in case of a provider switch or to avoid
vendor lock-in. By striping data across multiple
providers, provider changes become easier; also era-
sure coding provides redundancy against outages.
Thereby data objects are broken down intom frag-
ments and mapped to a larger set ofn fragments of
the same size, in a way that the original fragments
can still be obtained by certain subsets of them-
fragments. RACS is designed as a proxy between
a client application and potentially different cloud
providers. It provides an Amazon’s S3 interface and
therefore enables usage by S3-compatible software.
To avoid a bottleneck, multiple RACS proxies can
interact concurrently with the same storage systems.
Apache ZooKeeper is used to provide distributed syn-
chronization primitives to avoid data races.

OceanStore (Rhea et al., 2003) is another storage
service that uses multiple layers of replication and

distributes data over the internet to provide a persis-
tent, und durable data store.

(Chun et al., 2006) discusses replication strate-
gies for distributed storage systems. It focuses on the
development of algorithms permitting to store data
durably at low bandwidth costs. A basic implementa-
tion of the presented algorithm using distributed hash
tables is presented and detailed.

HAIL (Bowers et al., 2009) is no storage system,
but a system to ensure that a file, stored with storage
services, is still intact and retrievable. It is a remote-
file integrity check protocol that extends the princi-
ples of RAID to work in cloud settings.

(Dabek et al., 2004) provides background infor-
mation about the design of an efficient distributed
hash table providing high-throughput and low-latency
network storage.

6 CONCLUSIONS AND FUTURE
WORK

We have described the concept of a Redundant Ar-
ray of Independent Services (RAIS) to realize a fault-
tolerant cloud storage. The application of RAIS may
improves data storage availability as well as secu-
rity. Octopus is a first implementation that can be de-
scribed as a meta-storage service that allows to store
data using storage services of different providers si-
multaneously.

The Octopus service is licensed as open source ac-
cording to the Apache License v2.0 and the source
code is available at the project site22. The graphical
user interface currently supports the English and Ger-
man language. Due to the design of the application, it
is straightforward to implement additional languages.

A useful extension of Octopus would be some
kind of proxy or buffer storage into which objects
are uploaded by Octopus from the client side be-
fore they are distributed to the storage services. The
Google Datastore is not suitable as proxy, because ob-
jects inside the Datastore can have a maximum size
of 1 MB. The Blobstore is another storage service of
the Google infrastructure, that can be used by appli-
cations running inside the App Engine. It allows the
persistent storage of data in form of so-called BLOBs
(Binary Large Objects), each with up to 2 GB. An-
other possible basis for a proxy is the Google Cloud
Storage. Objects inside Google Cloud Storage can be
accessed directly from web applications that run in
the App Engine, which is a requirement for transfers
via HTTPPOST to the other storage services used. A

22http://code.google.com/p/cloudoctopus/

Octopus�-�A�Redundant�Array�of�Independent�Services�(RAIS)

327

disadvantage of the App Engine in general is that out-
going data connections are limited to 1 MB for each
transfer.

As the objects are transferred directly from the
customers browser to each storage service used, the
amount of data that need to be transmitted increases
linearly with each additional storage service. Even
large objects must be transferred at least two times,
if they should be stored in a redundant way. For this
reason, the use of multiple storage services leads to
extended transfer times.

Our next steps in the development of Octopus
foresee the evaluation of further approaches to imple-
ment a proxy to upload the objects to the storage ser-
vices in parallel to improve the performance.

REFERENCES

Abe, Y. and Gibson, G. (2010). pWalrus: Towards better
integration of parallel file systems into cloud storage.
In Cluster10: Int. Conf. on Cluster Computing 2010.
IEEE.

Abu-Libdeh, H., Princehouse, L., and Weatherspoon, H.
(2010). Racs: a case for cloud storage diversity. In
SoCC’10: 1st Symposium on Cloud computing. ACM.

Baun, C. (2011). Untersuchung und Entwicklung von
Cloud Computing-Diensten als Grundlage zur Schaf-
fung eines Marktplatzes. PhD thesis, Universität Ham-
burg.

Bermbach, D., Klems, M., Menzel, M., and Tai, S. (2011).
Metastorage: A federated cloud storage system to
manage consistency-latency tradeoffs. InCLOUD’11:
4th Int, Conf. on Cloud Computing. IEEE.

Bowers, K. D., Juels, A., and Oprea, A. (2009). Hail: a
high-availability and integrity layer for cloud storage.
In CSS’09: 16th Conf. on Computer and communica-
tions security. ACM.

Bresnahan, J., Keahey, K., LaBissoniere, D., and Freeman,
T. (2011). Cumulus: An open source storage cloud
for science. InScienceCloud’11: 2nd Int. Workshop
on Scientific Cloud Computing. ACM.

Bunch, C., Chohan, N., Krintz, C., Chohan, J., Kupferman,
J., Lakhina, P., Li, Y., and Nomura, Y. (2010). An
evaluation of distributed datastores using the appscale
cloud platform. InCloud10: Int. Conf. on Cloud Com-
puting. IEEE.

Chohan, N., Bunch, C., Pang, S., Krintz, C., Mostafa, N.,
Soman, S., and Wolski, R. (2009). Appscale: Scal-
able and open appengine application development and
deployment. 1st Int. Conf. on Cloud Computing.

Chun, B.-G., Dabek, F., Haeberlen, A., Sit, E., Weather-
spoon, H., Kaashoek, F., Kubiatowicz, J., and Mor-
ris, R. (2006). Efficient replica maintenance for dis-
tributed storage systems. InNSDI’06: Symposium
on Networked Systems Design and Implementation.
USENIX.

Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M. F.,
and Morris, R. (2004). Designing a dht for low la-

tency and high throughput. InNSDI’04: 1st Sympo-
sium on Networked Systems Design and Implementa-
tion. USENIX.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. (2007). Dynamo: ama-
zon’s highly available key-value store. InSOSP’07:
21st Symposium on Operating Systems Principles,
New York. ACM.

Harmer, T., Wright, P., Cunningham, C., Hawkins, J., and
Perrott, R. (2010). An application-centric model for
cloud management. InSERVICES’10: 6th World
Congress on Services. IEEE.

Keahey, K., Tsugawa, M., Matsunaga, A., and Fortes, J.
(2009). Sky computing.Internet Computing, IEEE,
13(5):43–51.

Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S.,
and Kunze, M. (2011). Cloud federation. InCLOUD
COMPUTING 2011: 2nd Int. Conf. on Cloud Com-
puting, GRIDs, and Virtualization.

Marshall, P., Keahey, K., and Freeman, T. (2010). Elas-
tic Site Using Clouds to Elastically Extend Site Re-
sources. InCCGrid: 10th Int. Conf. on Cluster, Cloud
and Grid Computing. IEEE/ACM.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-
man, S., Youseff, L., and Zagorodnov, D. (2008a). Eu-
calyptus: A technical report on an elastic utility com-
puting architecture linking your programs to useful
systems. InUCSB Computer Science Technical Re-
port Number 2008-10.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-
man, S., Youseff, L., and Zagorodnov, D. (2008b).
The eucalyptus open-source cloud-computing system.
In CCA’08: Cloud Computing and Its Applications
workshop.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-
man, S., Youseff, L., and Zagorodnov, D. (2009). The
eucalyptus open-source cloud-computing system.Int.
Symposium on Cluster Computing and the Grid.

Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B.,
and Kubiatowicz, J. (2003). Pond: The oceanstore
prototype. InFAST’03: 2nd Conf. on File and Storage
Technologies. USENIX.

Schwab, D. (2012). Implementierung eines redundanten
Datenspeichers für die Hybride Cloud.Hochschule
Karlsruhe.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

328

