Octopus
A Redundant Array of Independent Services (RAIS)

Christian Bauh, Marcel Kunzé, Denis Schwaband Tobias Kurzé
1SAP AG, Walldorf, Germany
2Steinbuch Centre for Computing, Karlsruher Institut fur Technologie, Eggenstein-Leopoldshafen, Germany
3Hochschule Karlsruhe, Fakultat fir Informatik, Karlsruhe, Germany

Keywords: Cloud Computing, Cloud Federation, Storage Services, Availability.

Abstract: Cloud storage services such as the Amazon Simple Storage Service (S3) are widely accepted and are reaching
an ever-expanding range of customers. Especially services providing S3-compatible interfaces enjoy great
popularity due to S3's simplistic, yet powerful approach to store and retrieve data via web protocols. While
cloud storage services present a convenient tool, they also might turn into a risk for your data. Apart from
planned service outages which may or may not be covered by Service Level Agreements (SLA), there is
no guarantee that a service provider might go out of business. One might also imagine that data could be
destroyed, lost or altered due to unplanned outages or physical disaster. One possibility to improve availability
and also data robustness is to consume services of more than one cloud storage provider simultaneously and
to establish a federated, redundant cloud storage system. Octopus cloud storage implements such a federated
system realizing the concept of a Redundant Array of Independent Services (RAIS).

1 INTRODUCTION tion and how our redundant storage service conceptu-
ally fits into the picture. Section 3 outlines the con-
Software as a Service (SaaS), Platform as a Servicecept of storage federation and the redundant storage
(PaaS) and Infrastructure as a Service (laaS) are theservice. Section 4 explains the service architecture,
most popular cloud service delivery models. Since and describes some challenges and issues we faced
Amazon launched its Simple Storage Service (S3) to and their corresponding solution. Finally, in section 6
handle web objects in 2006, an ecosystem of compat-we conclude our work be giving an overview of poten-
ible tools and implementations came into existence. tially useful extensions, as well as of persisting chal-
While the functionality of object-based storage ser- lenges we did not tackle yet.
vices usually is sufficient for many use-cases, the ac-
companying dependency to a provider may present

a problem. If a provider goes out of business, nor 2 BACK GROUND
the service and neither the stored data would be ac-

cessible any more. A federated cloud service setup, : :
based on the simultaneous use of multiple providers 2.1 Object-based Storage Services
may be more resilient. In addition, a high availability
setup may be realized comprising multiple, indepen-
dent services.

This paper highlights the concept of a Redundant
Array of Independent Service (RAIS) and uses fed-
erated object-based storage services to implement

The Amazon Web Services (AWSare a popular col-
lection of public cloud service offerings. Due to their
widespread use, the AWS API may be considered as
a de-facto standard for cloud services. Amongst oth-
ers, the AWS include S3, a web object data storage
For applications. The AWS comprise a broad range
prototype called Octopus. of additional cloud computing web services like Elas-

m Ln r?eCrt]IOHb? v:ebprO\(/jldel S0 dmet bﬁckgrm:\r;id mfor;] dtic Block Store (EBS), Relational Database Service
ation on object based cloud storage services a (RDS), SimpleDB, and DynamoDB.

their issues regarding availability. We also give a short
introduction concerning the concept of cloud federa- http://aws.amazon.com

Baun C., Kunze M., Schwab D. and Kurze T.. 321
Octopus - A Redundant Array of Independent Services (RAIS).

DOI: 10.5220/0004352003210328

In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 321-328

ISBN: 978-989-8565-52-5

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

CLOSER 2013 - 3rd International Conference on Cloud Computing and Services Science

Table 1: Interfaces of S3 compatible Cloud storage services

REST SOAP BitTorrent

Amazon S3 X X X
Google CS X
Host Europe CS X
Eucalyptus Walrus X
OpenStack Swift X
Nimbus Cumulus X

S3 stores data in form of web objects and each ob-
ject is assigned to a bucket. Objects are identified by
unigue keys and are addressable using HTTP URLs.

Cloud Computing Interface (OCCl)which would
certainly by beneficial but currently there is only lim-
ited to no support by commercial cloud providers. As
service providers usually try to seal off their offer-
ings from competitors (Harmer et al., 2010), a multi-
provider agreement for implementing an open cloud
service interface is unlikely in the near future.

For the AWS API on the other hand there is a
growing number of adaptor libraries available like
JetS3tY and botd! as well as tools like GSufi,
s3cmd? and S3FoX* that help working with S3.

2.1.2 Availalablity

S3 implements a flat name space and has therefore

no support for folder hierarchies. Buckets and objects

may be created, listed and retrieved using web service

interfaces either via REST or SOAP. Objects may also
be retrieved using HTTP GET and a BitTorrent pro-

In the following section we discuss the availability of
public and private cloud storage services:

Public Cloud Providers. Amazon guarantees that

tocol interface. Users may check and alter the accesss3 stores data redundantly at multiple facilities of

rights — the Access Control List — of each S3 bucket
and object to authorize access to the data.

2.1.1 S3Ecosystem

An advantage of S3 is the growing ecosystem of
compatible programming libraries, management tools
and services. With Walrus from Eucalyptu®urmi

et al., 2008a) (Nurmi et al., 2008b) (Nurmi et al.,
2009), Cumulus (Bresnahan et al., 2011) from Nim-
bus® (Keahey et al., 2009) (Marshall et al., 2010)
and Swift from OpenStaékhree open source private
cloud solutions exist that implement at least a subset
of the S3 API. A unique characteristic of this API in
contrast to others is the existence of open source pri-
vate cloud solutions and several public cloud imple-
mentations. Beside Amazon S3, Google Cloud Stor-
age (CS) and Host Europe Cloud Storgyprovide
more or less equivalent functionality and implement
the S3 API as well. Table 1 gives an overview of S3
compatible cloud storage offerings.

Other object storage service offerings from, e.g.,
GoGrid’ or FlexiScal@ come with their own propri-
etary APIs. However, those offerings lack an ecosys-
tem of compatible tools and open source implementa-
tions when compared to S3.

There are also efforts to establish standardized,
provider-independent cloud APIs such as the Open

2http://open.eucalyptus.com
Shttp://www.nimbusproject.org
4http://www.openstack.org
Shttp://developers.google.com/storage/
Bhttp://www.hosteurope.de/produkte/Cloud-Storage/
"http://ww.gogrid.com/cloud-hosting/cloud-api.php
8http://www.flexiscale.com/reference/api/

322

a region and offers two different redundancy op-
tions. The standard S3 redundancy option provides
99.999999999% durability- based on three replicas.
The reduced redundancy option replicates objects
only two times, resulting in an expected durability of
99.9994°. Switching to reduced redundancy results
in cost savings of about 45%. In both cases the SLA
guarantees a minimum availability of 99.99%.

For Google's Cloud Storage the Service Level
Agreement (SLAY® guarantees an availability of
99.99% but doesn’t make any statement concerning
durability. If the monthly uptime percentage falls be-
low the guaranteed value, customers of Amazon re-
spectively Google receive service credits for future
monthly bills.

Apart from guarantees stated in SLAs, there still
is a risk in case of an unplanned outage.

Private Clouds. Very often private cloud deploy-
ments do not guarantee SLAs the same way public
cloud offerings do. If a certain level of availability

is required, it has to be provided by a thoroughly de-
veloped and operated storage service. Some private
cloud storage solutions help to accomplish this goal
through their design. For example, the pWalfus

%http://occi-wg.org

LOnhttp:/iwww.jets3t.org
Uhttp://code.google.com/p/boto/
2http:/icode.google.com/p/gsutil/
Bhttp://s3tools.org/s3cmd
http://www.s3fox.net
15http://aws.amazon.com/s3-sla/
18http://developers.google.com/storage/docs/sla/
Uhttp:/fwww.pdl.cmu.edu/pWalrus/index.shtml

Octopus - A Redundant Array of Independent Services (RAIS)

project tries to improve the throughput and availabil- of multiple storage services in RAID (Redundant
ity of the web objects by using more than just a sin- Array of Independent Diskd)ke manner to increase
gle instance of Walrus in a parallel way. These stor- availability and to decrease provider dependency. The
age server instances use a distributed file system (e.gstorage system supports two modes of operation:
PVFS, GPFS or LUSTRE) to store the data (Abe and .] . L
Gibson, 2010). A disadvantage of pWalrus and simi- * RAID-1-like Mode: RAID-1 provides mirroring
lar approaches however is that the source code of Wal- W'thO.Ut parity or striping. The objec_ts are written
rus and therefore the installation itself needs to be al- identically to myltlple storage services. At Ieasft
tered, which is not always possible or desirable. An- W0 S3-compatible services are required to built
other drawback is, that the simultaneous use of public up a RAID-1 array. The array 1 op_eratlonal as
and private storage services is tedious. !ong as at Ie_ast asingle service is available, though
In order to increase availability it seems promis- it might be in a degraded state.
ing to design a redundant meta storage service imple- - When an object is transferred to RAIS using
menting the S3 API. Such a storage solution would ~ RAID-1, the file is subsequently sequentially re-
enable the use of various public and private storage layed tothe registered storage services. If a single

services simultaneously without the necessity of al- transfer to one of storage services fails, the action

tering these services in any way. is rolled back, i.e., transfers to remaining storage
services is cancelled and already transferred ob-

22 Cloud Federation jects are deleted. This ensures the consistency of
the array.

In (Kurze et al., 2011) we analyzed the term cloud e RAID-5-like Mode:RAID-5 provides block-level
federation and categorized federation strategies along = striping with distributed parity data. Therefore,
several dimensions. Concerning laaS, and especially objects are partitioned in equal parts, according
storage services we identified three basic federation to the number of registered storage services mi-
strategies: nus one. If it is not possible to split the data into
equal partitions, zero-bits are added to the smaller
part. Then, the parity information is computed
for each partition and stored on the appropriate
node. To ensure that data and its corresponding
parity information are not stored in the same stor-
age service, Octopus has implemented a mecha-

e Erasure Coding:parts of data, i.e., parts of ob- nism calledrotating-parity whose principle is il-
jects in an object-based storage, are split up and |ystrated in figure 1.

stored at different locations to, for example, in-
crease overall availability or address data privacy

e Replication:data items, i.e., objects in an object-
based storage, are distributed and stored in mul-
tiple locations. Amongst other advantages, this
usually increases availability and decreases ven-
dor lock-in.

To calculate the parity information in case of
three storage services the original data is split into

concerns. two partitions. The first partition is stored with
e Fragmentationdata items are stored according to provider A, the second partition with provider
their requirements. For example, it might be nec- B and provider C stores the parity information,

essary to store sensitive, individual-related data which is being calculated by applying the XOR
inside a certain country or region, but then, other operator to partitions one and two. In general, the
data might be stored elsewhere to optimize costs. parity information is calculated by applying the
XOR operator to all partitions except the one that
would have been stored with the corresponding
storage provider. Rotating parity guarantees, that
data can always be recovered - even in the case
of one storage service being unavailable. If more
than one storage service is unavailable though,
i.e., more than one data partition is lost, the ob-
ject can’t be recovered any more.

The RAID-5 operation mode not only provides

The RAIS storage described in this paper is a ba-
sic implementation of the laaS federation concepts of
replicationanderasure coding At the momenfrag-
mentationis not supported as the focus is on availabil-
ity rather than compliance.

3 REDUNDANT ARRAY OF

INDEPENDENT SERVICES better availability, but also improves data privacy,
as no single provider has an entire object stored
We propose &edundant Array of Independent Ser- on its premise. To further improve security, the

vices (RAIS}hat is based on the simultaneous usage parts could also be encrypted before being up-

323

CLOSER 2013 - 3rd International Conference on Cloud Computing and Services Science

Part 1 Part 2 Parity <Key>testobject . txt</Key>
O O <Last Modi fied>2012-01-29T21: 18:24.000Z<
/ Last Modi fied>
Storage A Storage B Storage C <ETag>" ; 71388
— ba9a76ddb7ecd43al4af 2a%9ae216 " ; </
< S < _ ETag>
Storage C Storage A Storage B <Size>2163</ Size>
~ - <Owner >
S > <I D>af 0af 9137ff6...97272818796</ | D>
<Di spl ayName>user name</ Di spl ayName >
Storage B Storage C Storage A </ Owner >
<St orageCl ass>STANDARD</ St or ageCl ass >
Figure 2: Object-related meta-data as returned by Amazon
v S3.
Storage A Storage B Storage C
< > < > 4 PLATFORM &
Part 1.1 Part 1.2 Parity 1 ARCHITECTURE
< = < The RAIS concept has been implemented using the
Part 2.2 Parity 2 Part 2.2 Google App Engine (GAE) in a project called Oc-
topus. GAE is a platform as a service (PaaS) of-
< > < > fered by Google that provides a stable and highly
Parity 3 Part 3.1 Part 3.2 available runtime environment at a fair price or - de-

pending on the usage - even for free. It comes with

APIs to manage user authentication, mail delivery

and reception, manipulate images and many more.
loaded. (Schwab, 2012) Another advantage of GAE is its inherent scalabil-
To check whether objects in storage services areity. There are compatible and free private cloud alter-

in sync or not, RAIS strongly relies on MD5 check- hatives to GAE, namely AppScafé(Chohan et al.,

sums. All S3-compatible storage services generate2009)(Bunch et al., 2010) and typhoonRE

and store an MD5 checksum for each object. These

checksums along with some other meta-data are trans- j; Local Site —

Figure 1: Uploads through Google’s Blobstore.

ferred automatically whenever an object or a list of
objects is requested. Figure 2 depicts the meta-data

for an object with the keftestobject.txt”, as returned e
by Amazon S3, following a customer requests to list
objects in a bucket. For RAIS, the important informa-

tion are<Key>. .. </ Key>, holding the display name {:}
of the object, anckETag>. . . </ ETag>, holding the

User/Customer

MD5 checksum. —

Whenever RAIS receives a request to list objects
in a certain bucket, it checks if the data is still syn- | o iy e
chronized across the registered storage services b App Engine
comparing the MD5 checksums. First, it requests the 2
list of objects inside the user’s buckets from all reg- Google Amazon

istered storage services. Then RAIS compares the
names and checksums of the received objects inside
the returned lists. If the returned lists have identi-

cal keys and checksum entries, the data is considere
in sync across the registered storage services. (Baun
2011).

Figure 3: Octopus running inside the public cloud PaaS.

Figure 3 depicts how Octopus may be run in a

ublic cloud. In contrast, figure 4 shows the situation

wwhen operating Octopus in a private cloud environ-
ment based on AppScale respectively typhoonAE.

18http://appscale.cs.ucsb.edu
Bhttp://code.google.com/p/typhoonae/

324

Octopus - A Redundant Array of Independent Services (RAIS)

Local Site User requests the Octopus PaaS Google
service via the browser 1
- No userdata found
AppScale/ Swift User need to login first 2
P
typhoonAE BB User pressed the 3
login button
Local
Octopus REST Interface a Redirect

User/Customer Google login page] Google login page

@rnet

User enters his
Google crendentials 6 User
----- Auth

Return access token Service
Octopus

~

®

Query Email address

REST Interface REST Interface @y v Gty
from language table -
> < 9 orcreate a new one
Cloud e Datastore
Storage S3
1~ OctoplsCloudDatabaselanguage |
Google Amazon Luser | wolkenrechnenegnail.con |
b
User need credentials Llanguagede ___ __ _ _ _ |
. . L. . to cloud stoage services o When a user opens a site from Octopus,
. i 1
Figure 4: Octopus running inside a private cloud PaasS. imported G oGy DU

occures in the specified language

Octopus has been implemented in Python using Figure 5: Concept of Octopus’ user management and au-
the web framework Djang8. In order to communi- thentication.
cate with storage services compliant to S3, Octopus
uses boto, an open source python interface to AWS. vser pressed the Paas Service
The App Engine provides several helpful APIs credentiabution |1 f Provider
e.g. to use the Google authentication mechanism and oo |
storage services of the Google infrastructure. The —
user management and authentication of Octopus is Impart credentials
based on Google user accounts (see figure 5). The
Datastore (a BigTable service with a SQL-like query Answerfrom service | | &iorss
language) is used to store the customers imported i Octopus
credentials for S3-compatible storage services (se€|,. .o s
Figure 6). The corresponding APIs and services [o e
of the App Engine are supported by AppScale and
typhoonAE too. If Octopus is running on a private [y TisosBe

Luser wolkenrechnen@gnail. com

AppScale or typhoonAE platform service the user au-

Turl ec2.amazonaws . con

thentication is implemented with AppScale respec- Octopus credentials page | 8

Taccesskey | AKIAJIDAAKPYSCZSCIKA

tively typhoonAE so that there is no need to use any R I I

Google user aF:COl“'mS') Figure 6: Concept of Octopus’ managing the users creden-
When multiple storage services are used to store jg|s 1o storage services.

the same file or parts of a file redundantly, it is ob-

viously necessary to transfer the file respectively the

parts multiple times as well. In a first implementa- Datastore

tion of Octopus, files were uploaded directly from the i

-

w

IS

v

Test credentials

o

clients, i.e., from the clients browsers to each associ- upload

ated storage service. This was an easy but very ineffi-

cient and time consuming solution. UserlCustomer
In order to improve Octopus an object to be stored

in multiple storage services is uploaded only once and

cached in the Blobstore before being uploaded to the

storage services. Though this is a much better ap-

proach from a customer’s perspective, it also is tech- 41

nically more complex and has to respect restrictions ™

of Google’s Blobstore, such as the maximum file size,)))

for example. Figure 7 illustrates how Octopus handles Octopus has been designed to work in a multi-user

Google

Blobstore Datastore

Datastore

QI

Figure 7: Uploads through Google’s Blobstore.

Interaction with Storage Services

uploads. environment. To support multiple tenants simultane-
- ously, it prepares a bucket for each user upon his or
20http://www.djangoproject.com hers registration for a certain storage service. There-

3

N

5

CLOSER 2013 - 3rd International Conference on Cloud Computing and Services Science

fore, the following scheme for bucket names has beena number of chunks in parallel. This feature is helpful
deployed: oct opus- st or age- <user nane>. These in case of upload failures, as the upload some chunks
buckets, created for every registered storage service can be restarted imposing less overhead compared to
serve as root storage locations for Octopus. In orderthe re-upload of the entire file. So multi-part uploads
to register a storage service a user has to provide thecould help to improve the performance of the meta-
corresponding credentials using the Octopus web in- storage service but the other S3-compatible storage
terface. solutions do not support this feature and therefore it
Once a storage service is registered, Octopus in-is not implemented in Octopus.
teracts with its S3-compatible REST API. We are not
using SOAP interfaces or BitTorrent due to limited 4.1.2 Cumulusand Host Europe
support by some storage providers. Table 1 provides
an overview of interfaces implemented by different Cumulus and Host Europe Cloud Storage both do
C|0ud Storage Services_ Support Uploading ObjeCtS VIGET but not viaPOST
REST is an architectural-style that relieson HTTP Yet. Eventually future releases may have this feature
methods likeGET or PUT. S3-compatible services use 0 be used by Octopus. As long as this feature is miss-
GET to receive the list of buckets that are assigned to ing, it is impossible to upload file objects using these
an user account, or a list of objects inside a bucket Services with Octopus.
or an object itself. Buckets and objects are created
with PUTJand DELETE is used to erajse buckets and 218 WalrusandOpenstagk
objects. POST can be used to upload objects and
HEAD is used to retrieve meta-data from an account,
bucket or object. Uploading files into S3-compatible
services is done via HTML forms arROST directly
from the customers client, i.e., browser. Table 2 gives
an overview of methods used to interact with S3-
compatible storage services.

In Amazon S3, Google Cloud Storage, Cumulus and
Host Europe Cloud Storage, the MD5 checksums are
enclosed by double quotes (see Figure 2). In Wal-
rus and OpenStack they are not. The reason for this
difference behavior remains unclear. Octopus has
been designed to handle this implementation detail
and thus nonetheless works with these storage sys-

Table 2: Description of the HTTP methods with request- tems. J L .
URIs that are used to interact with storage services. If no submit button inside a form is used to upload
Account-related Operations an object into Waqus, some bytes of garbage data is
appended to the object.
GET / List buckets An annoying issue of Walrus is that the service
HEAD / Retrieve metadata adheres faulty data to all objects that are transferred

via PCST when no submit element exists at the end

Bucket-related Operations) !
of the HTML message. Walrus recognizes the submit

T /bucket List objects element as the objects’ end. If the subject element is
PUT I bucket Create bucket missing, Walrus attaches all data until the end of the
DELETE /bucket Delete bucket transfer to the object.

HEAD | bucket Retrieve metadata Another problem of Walrus is that in the version

. . that is part of Eucalyptus 1.6, inside each bucket an
Object-related Operations object with the keyone exists, which is incorrect. As
GET I'bucket / obj ect Retrieve object this object cannot be erased Octopus need to ignore it.
PUT I bucket / obj ect Upload object When using Amazon S3 or Walrus, inside

- - the HTML form and the related policy docu-
DELETE /bucket/object Delete object ment!, the developer has the freedom to use

HEAD /bucket/object Retrieve metadata either die attribute redirect or alternatively
PCST I bucket/ obj ect Update object success_action_redirect to set the page, the
browser will be redirected to, if the upload was suc-
cessful. Google Cloud Storage in contrast just makes
use of the attributeuccess_action_redirect and
ignoresr edi rect .

The basic functionality of all S3-compatible stor-

age services is more or less identical, but the exact
behavior is often slightly different.
4.1.1 Amazon Web Services 21The policy document contains i.a. the object’s name,
a description of the content, the bucket and the destination
Amazon S3 supports multi-part uploads to break address to which the browser will be redirected if the upload
larger objects into chunks of smaller size and upload was successful.

326

Octopus - A Redundant Array of Independent Services (RAIS)

414 GoogleCloud Storage distributes data over the internet to provide a persis-
tent, und durable data store.
An issue of Google Cloud Storage is that the submit ~ (Chun et al., 2006) discusses replication strate-
button, that is used inside a HTML form to transfer gies for distributed storage systems. It focuses on the
objects to the storage service must not contain the development of algorithms permitting to store data
nane attribute. Amazon S3 and Walrus both ignore durably at low bandwidth costs. A basic implementa-
thename attribute. tion of the presented algorithm using distributed hash
tables is presented and detailed.
HAIL (Bowers et al., 2009) is no storage system,
but a system to ensure that a file, stored with storage
5 RELATED WORK services, is still intact and retrievable. It is a remote-

))] . file integrity check protocol that extends the princi-
Various systems to avoid vendor lock-in and to im-pjes of RAID to work in cloud settings.

prove availability have been developed. Bermbach et (Dabek et al., 2004) provides background infor-
al. developed MetaStorage (Bermbach et al., 2011), mation about the design of an efficient distributed

which is a federated cloud storage system that dis- h,sh table providing high-throughput and low-latency
tributes data across different cloud storage servicespanvork storage.

and relies on some mechanisms from Amazon’s Dy-

namo (DeCandia et al., 2007) for cross-provider repli-

cation to achieve higher levels of availability as well

as of fault tolerance and scalability. It relies on a dis- 6 CONCLUSIONSAND FUTURE
tributed hashtable and extends the (N,R,W)-quorum WORK

approach to include providers as a supplemental di-

mension. MetaStorage consists of multiple compo- we have described the concept of a Redundant Ar-
nents, of these the most important ones are: storageay of Independent Services (RAIS) to realize a fault-
nodes, distributors and coordinators. Storage nodesig|erant cloud storage. The application of RAIS may
provide an abstractionfromthg underlying infrastfuc— improves data storage availability as well as secu-
ture, i.e. cloud storage services or just hard-disks. rity. Octopus is a first implementation that can be de-
Distributors are in charge of the replication and of the scribed as a meta-storage service that allows to store
retrieval of files using the underlying storage nodes. gata using storage services of different providers si-
To avoid a bottlneck, multiple distributors can be used multaneously.
but have to be managed. Coordinators provide this The Octopus service is licensed as open source ac-
management and assure that every distributor has thQ:ording to the Apache License v2.0 and the source
same configuration. code is available at the project gfe The graphical
RACS (Abu-Libdeh et al., 2010) is a system that yser interface currently supports the English and Ger-
uses RAID-like techniques to distribute data across man language. Due to the design of the application, it
multiple cloud storage providers to, for example, re- js straightforward to implement additional languages.
duce costs in case of a provider switch or to avoid A useful extension of Octopus would be some
vendor lock-in. By striping data across multiple ind of proxy or buffer storage into which objects
providers3 provider changes become ea_sier; also erazre uploaded by Octopus from the client side be-
sure coding provides redundancy against outagesfore they are distributed to the storage services. The
Thereby data objects are broken down imdrag- Google Datastore is not suitable as proxy, because ob-
ments and mapped to a larger setdfragments of jects inside the Datastore can have a maximum size
the same size, in a way that the original fragments of 1 MB. The Blobstore is another storage service of
can still be obtained by certain subsets of the the Google infrastructure, that can be used by appli-
fragments. RACS is designed as a proxy between cations running inside the App Engine. It allows the
a client application and potentially different cloud persistent storage of data in form of so-called BLOBs
providers. It provides an Amazon’s S3 interface and (Binary Large Objects), each with up to 2GB. An-
therefore enables usage by S3-compatible software.qther possible basis for a proxy is the Google Cloud
To avoid a bottleneck, multiple RACS proxies can gstorage. Objects inside Google Cloud Storage can be
interact concurrently with the same storage systems. 3ccessed directly from web applications that run in
Apache ZooKeeper is used to provide distributed syn- the App Engine, which is a requirement for transfers

chronization primitives to avoid data races. via HTTP POST to the other storage services used. A
OceansStore (Rhea et al., 2003) is another storage

service that uses multiple layers of replication and 2?http://code.google.com/p/cloudoctopus/

327

CLOSER 2013 - 3rd International Conference on Cloud Computing and Services Science

disadvantage of the App Engine in general is that out-

going data connections are limited to 1 MB for each
transfer.
As the objects are transferred directly from the

customers browser to each storage service used, the
amount of data that need to be transmitted increases

linearly with each additional storage service. Even

large objects must be transferred at least two times,

tency and high throughput. INSDI'04: 1st Sympo-
sium on Networked Systems Design and Implementa-
tion. USENIX.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. (2007). Dynamo: ama-
zon’s highly available key-value store. BOSP’07:
21st Symposium on Operating Systems Princjples
New York. ACM.

if they should be stored in a redundant way. For this Harmer, T., Wright, P., Cunningham, C., Hawkins, J., and

reason, the use of multiple storage services leads to

extended transfer times.

Our next steps in the development of Octopus
foresee the evaluation of further approaches to imple-
ment a proxy to upload the objects to the storage ser-

vices in parallel to improve the performance.

REFERENCES

Abe, Y. and Gibson, G. (2010). pWalrus: Towards better
integration of parallel file systems into cloud storage.
In Cluster10: Int. Conf. on Cluster Computing 2010
IEEE.

Abu-Libdeh, H., Princehouse, L., and Weatherspoon, H.
(2010). Racs: a case for cloud storage diversity. In
SoCC'10: 1st Symposium on Cloud computid@M.

Baun, C. (2011). Untersuchung und Entwicklung von
Cloud Computing-Diensten als Grundlage zur Schaf-
fung eines Marktplatze®hD thesis, Universitat Ham-
burg.

Bermbach, D., Klems, M., Menzel, M., and Tai, S. (2011).

Metastorage: A federated cloud storage system to

manage consistency-latency tradeoffsSCllOUD’11:
4th Int, Conf. on Cloud Computin¢EEE.

Bowers, K. D., Juels, A., and Oprea, A. (2009). Hail: a
high-availability and integrity layer for cloud storage.
In CSS’09: 16th Conf. on Computer and communica-
tions security ACM.

Bresnahan, J., Keahey, K., LaBissoniere, D., and Freeman,

T. (2011). Cumulus: An open source storage cloud
for science. InScienceCloud’11: 2nd Int. Workshop
on Scientific Cloud Computind\CM.

Bunch, C., Chohan, N., Krintz, C., Chohan, J., Kupferman,
J., Lakhina, P., Li, Y., and Nomura, Y. (2010). An

evaluation of distributed datastores using the appscale

cloud platform. InCloud10: Int. Conf. on Cloud Com-
puting IEEE.

Chohan, N., Bunch, C., Pang, S., Krintz, C., Mostafa, N.,
Soman, S., and Wolski, R. (2009). Appscale: Scal-

able and open appengine application development and

deployment. 1st Int. Conf. on Cloud Computing.

Chun, B.-G., Dabek, F., Haeberlen, A., Sit, E., Weather-
spoon, H., Kaashoek, F., Kubiatowicz, J., and Mor-
ris, R. (2006). Efficient replica maintenance for dis-
tributed storage systems. MSDI'06: Symposium
on Networked Systems Design and Implementation
USENIX.

Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M. F.,
and Morris, R. (2004). Designing a dht for low la-

328

Schwab, D. (2012).

Perrott, R. (2010). An application-centric model for
cloud management. IISERVICES'10: 6th World
Congress on ServicekEEE.

Keahey, K., Tsugawa, M., Matsunaga, A., and Fortes, J.
(2009). Sky computing.Internet Computing, |IEEE
13(5):43-51.

Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S.,
and Kunze, M. (2011). Cloud federation. @LOUD
COMPUTING 2011: 2nd Int. Conf. on Cloud Com-
puting, GRIDs, and Virtualizatian

Marshall, P., Keahey, K., and Freeman, T. (2010). Elas-
tic Site Using Clouds to Elastically Extend Site Re-
sources. IICCGrid: 10th Int. Conf. on Cluster, Cloud
and Grid ComputinglEEE/ACM.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-
man, S., Youseff, L., and Zagorodnov, D. (2008a). Eu-
calyptus: A technical report on an elastic utility com-
puting architecture linking your programs to useful
systems. INUJCSB Computer Science Technical Re-
port Number 2008-10

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-
man, S., Youseff, L., and Zagorodnov, D. (2008b).
The eucalyptus open-source cloud-computing system.
In CCA'08: Cloud Computing and Its Applications
workshop

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-
man, S., Youseff, L., and Zagorodnov, D. (2009). The
eucalyptus open-source cloud-computing systhkrh.
Symposium on Cluster Computing and the Grid

Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B.,
and Kubiatowicz, J. (2003). Pond: The oceanstore
prototype. INFAST’03: 2nd Conf. on File and Storage
TechnologieSUSENIX.

Implementierung eines redundanten

Datenspeichers fir die Hybride Clouddochschule

Karlsruhe

