
Using Personal Assistant Dialogs for Automatic Web Service Discovery
and Execution

Márcio Fuckner1, Jean-Paul Barthès1 and Edson Emilio Scalabrin2

1UMR CNRS 7253 Heudiasyc, Université de Technologie de Compiègne, Centre de Recherche de Royallieu,
60200 Compiègne, France

2Programa de Pós-Graduação em Informática - PPGIa, Pontifı́cia Universidade Católica do Paraná,
Rua Imaculada Conceição, 1155 - Prado Velho, Curitiba - PR, Brazil

Keywords: Web Services, Discovery, Execution, Natural Language, Personal Assistants.

Abstract: Web services and their standards have reduced the complexity of integration between heterogeneous systems,
having a widespread adoption by industry. Several semantic Web services techniques concerning automatic
discovery and execution are promising but still too complex to allow a large-scale adoption. Consequently,
such services require end users to use traditional software engineering practices, with complex and non-
intuitive interfaces in some cases. In this paper, we present an automatic approach for service discovery
and execution, using the Web service descriptor as the only source. The process could be summarized as a two
step process: (i) identifying candidates based on linguistic cues extracted from the Web service descriptor; (ii)
extracting from the user’s natural language sentences the necessary parameters to complete the action. The
generated proof-of-concept shows its viability for publishing independent Web services to end-users using
natural language sentences, giving only their descriptors as a source.

1 INTRODUCTION

Web services and their standards, such as the SOAP
message format (XML Protocol Working Group,
2007) and the WSDL interface definition language
(Web Services Description Working Group, 2007)
have gained widespread adoption and reduced the
complexity of integration between heterogeneous sys-
tems. Lightweight Web services, such as REST
(Fielding, 2000) also have encouraged the adoption
of basic and ad hoc integration scenarios. As a re-
sult, many industrial development tools adopted such
standards and now can reduce the complexity of de-
veloping such Web service applications.

The semantic Web vision proposed by (Berners-
Lee et al., 2001) has brought new opportunities to
leverage the Web services, moving them from a syn-
tactic to a semantic level. Standards such as OWL-S
(Web-Ontology Working Group, 2004) and WSMO
(WSMO Working Group, 2005) have created a com-
mon entry point to different proposals for discov-
ery, composition and execution of services. How-
ever implementing them using a bottom-up approach
is still complex, where thousands of services are al-
ready available within and outside enterprises (Vitvar

et al., 2008). Allowing the leverage of even simple
Web services from the syntactic level to the semantic
level at a large scale still remains a major challenge.
Service wrapping requires traditional software engi-
neering steps, in some cases leading to the creation of
complex and non-intuitive interfaces with end-users.

The paper of (Chai et al., 2001) presents a case
study aiming at validating the usage of natural lan-
guage by end users, in comparison with traditional
point-and-click systems. The study reveals a reduc-
tion of 33 percent in time to execute the same task, as
well as a reduction of 63 percent regarding the quan-
tity of mouse clicks. Companies are also working on
better end-users interfaces in order to improve their
efficiency. An example of this behavior was presented
in a recent post of MIT Technical Review Magazine
(Simonite, 2012): an international bank reveals that
around 65 percent of the time is used by their branch
staffers with customer information desk. As a re-
sponse, the bank is installing a new personal assistant
using natural language through a chat window added
as a mashup in their customer’s Internet banking soft-
ware. Thus, the customer could send sentences like
“How about my investments today?” to the assistant.

Having those issues in mind, we propose an ap-

189Fuckner M., Barthès J. and Emilio Scalabrin E..
Using Personal Assistant Dialogs for Automatic Web Service Discovery and Execution.
DOI: 10.5220/0004355001890198
In Proceedings of the 9th International Conference on Web Information Systems and Technologies (WEBIST-2013), pages 189-198
ISBN: 978-989-8565-54-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



proach for wrapping independent Web services to
end-users using a natural language dialog approach.
We call independent services, those services executed
directly, without semantic dependencies on other ser-
vices. We built a proof-of-concept system using
NLP techniques, running in a multi-agent environ-
ment with dialog-based human-interaction facilities.
The system allows end-users to make requests in nat-
ural language sentences representing what they are
looking for. The system identifies and understands
key concepts from the user’s input and conducts the
user towards an appropriate dialog, which is finished
when a service is executed. The proof-of-concept
shows the viability of usage, giving only the web ser-
vice descriptors as a source.

The rest of the paper is organized as follows: In
Section 2 we present some background information
regarding the techniques used in our work. In Section
3 we describe in detail our approach. The outcomes
of a usage example are shown in Section 4. A discus-
sion of related work is presented in Section 5. Some
conclusions presenting what we have learned from the
study and proposed future work are presented in Sec-
tion 6.

2 BACKGROUND

In this section we briefly describe two key areas re-
lated to this work: (i) Personal assistants, which use
multidisciplinary approaches to improve the interface
between a human and a software component, such
as natural language processing. (ii) Web service de-
scription languages, which present key information to
build the basic vocabulary and information model.

Personal Assistants. In Multi-Agent Systems, the
Personal Assistant Agent (PA) is an agent built to
be an assistant of one user or its master. The term
“digital butler”, coined by (Negroponte, 1996) is also
commonly used to describe a PA. It aims to sim-
plify the interface between a human and an agent in
a multi-agent system. This approach is promoted by
projects like the PAL Program (DARPA PAL Pro-
gram, 2012) (Personalized Assistant that Learns) pro-
posed by DARPA, with contributions from SRI and
several other laboratories with the CALO project (Tur
et al., 2010). The CALO framework provides assis-
tant components, such as the CALO Express (CE), a
lightweight personal desktop assistant that uses learn-
ing techniques to identify relevant information on the
desktop, such as documents, presentations, emails
and agenda. Meeting Express (ME) is another com-
ponent example, designed to help a user in a meeting.

One special interest to the personal assistant ap-
proach in this work is the frequent usage of natural
language (NL) written or spoken as a common inter-
face. Natural language processing (NLP) is a field of
computer science and linguistics concerned with the
interactions between computers and humans. In this
work we use the available tools to deal with NL and
also improve the personal assistant vocabulary. Tech-
niques such as stemming, part of speech tagging and
word sense disambiguation are explored in our proof-
of-concept application.

Web Service Description Languages. Several
specifications were proposed during the Web service
history. For the sake of clarity, we listed some impor-
tant standards using (Vitvar et al., 2008) taxonomy,
which proposes a two-level stack, namely a semantic
and a non-semantic level.

� At a non-semantic level, WSDL is the de-facto
standard for Web services specification. It spec-
ifies the interface, operations, the data types us-
ing XML Schema, and non-functional descrip-
tions, such as communication protocol and physi-
cal endpoint information. Behavioral aspects can
also be specified, for example, using WS-BPEL
(WS-BPEL Technical Committee, 2007).

� At a semantic level, OWL-S and WSMO pro-
vide a framework for describing semantics for ser-
vices, adopting a domain ontology, a formalism
to describe the service capabilities, the effects and
goals of Web services.

This clear separation between semantic and syn-
tactical information on Web services is only concep-
tual, revealing in practice a thin line between them
in industry. As a response to the difficulty to imple-
ment them in a large-scale, the work from W3C called
Semantic Annotations for WSDL and XML Schema
(SAWSDL Working Group, 2007) was initiated. It
provides a model where the WSDL could be anno-
tated with semantic information. It could be inter-
preted as a bridge between the non-semantic layer and
the semantic one, using the WSDL as a non-marginal
source of information. WSMO-Lite (Vitvar et al.,
2008) creates an extension of SAWSDL, addressing
the need of a concrete service ontology as its next evo-
lutionary step.

3 OVERALL APPROACH

In this section we present a detailed description of our
approach to Web service discovery and execution us-
ing a multi-agent platform. We could summarize it

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

190



in two high-level processes:

i service parsing, in order to create a knowledge
representation of the service and its dialog;

ii discovery and execution using a personal assistant
with natural language understanding skills.

First, we present the OMAS multi-agent platform
and its components, used to implement the proposed
solution. The subsequent sections describe each high-
level process separately.

3.1 Multi-agent Platform

To implement our proof-of-concept, we selected
OMAS1, as a multi-agent platform (Barthès, 2011b).
This platform was designed for building cognitive
agents and provides several types of agents: service
agents (SA), transfer agents (XA) and personal as-
sistant agents (PA). They are organized around a sin-
gle net local loop and share messages using broadcast
mode (UDP). A physical loop is called a local coterie
and transfer agents are responsible to connect differ-
ent physical loops or different platforms. A set of
loops in a particular application is called a coterie. All
the communications are P2P meaning that there is no
central directory or a single point of failure (SPOF).
These are mandatory features when talking about ser-
vice oriented and loosely coupled architectures. To il-
lustrate the architecture, a typical configuration of an
OMAS multi-agent system is shown in Figure 1 con-
taining service agents, transfer agents and personal
assistants.

Figure 1: A typical configuration of an OMAS multi-agent
system.

Personal Assistant Agents. An agent targeted to
this work is the personal assistant (PA). This agent
has a very specialized task: it makes an interface with
a person or its master and delegates more specific
tasks to other types of agents present in the environ-
ment. As a design principle, a PA has very super-
ficial technical skills and for technical problems re-
lies on other agents called service agents. This design

1The platform and the documentation are available at
http://www.utc.fr/�barthes/OMAS/.

approach leads to modularization and easier mainte-
nance, since the technical expertise is distributed in
separate agents. As a good design practice, service
agents answer their PA and no other agents. However,
a service agent can access any other agent.

A personal assistant agent in OMAS has a set of
functions to deal with the user through a natural lan-
guage dialog (NL). It has a standard top-level dia-
log that determines what the user wants to do: a re-
quest, an assertion or a command for example. The
agent reacts executing the underlying task or invokes
an ELIZA-like dialog to analyze the input and either
produces an adequate answer or tells the master that it
did not have enough information to process the input.
The ELIZA-like dialog is a special dialog inspired by
the work of (Weizenbaum, 1966).

Certainly, the top-level dialog is not enough to
model more complex applications. Therefore, the
framework allows the creation of nested sub-dialogs.
Such sub-dialogs are modeled by a conversation
graph, having a set of nodes representing states of the
conversation. Each node contains a set of rules that
apply to a fact base containing information obtained
from the master’s input or resulting from the analysis
steps of the previous states. The fact base is similar
to the fact base of a rule-based system. At a given
node, applying the rules triggers either a transition to
a new state or an action (e.g. a message sent to some
agent) (Barthès, 2011a). These features will be ex-
plored with more details in the next sections, when an
automatic dialog is created, based on the Web service
structure.

3.2 Service Parsing

This process aims at extracting relevant keywords and
structural information of Web services using a de-
scriptor as an input. Each step contributes to construct
a representation for service discovery and execution:
for the discovery point of view, a keyword construc-
tion and the mechanism to add synonyms; for the exe-
cution point of view, a structural representation of the
service and a dialog to extract the input from natural
language sentences. The diagram shown in Figure 2
provides an overview of the process and also of the
relevant information used and generated during each
step.

3.2.1 Extract Service Information

This is the starting step, which uses a Web service de-
scriptor as an input parameter, as shown in Figure 2.
The goals of this step are: (i) extract keywords from a
Web service descriptor; and (ii) build a tree represent-
ing the service. As presented in the Background Sec-

Using�Personal�Assistant�Dialogs�for�Automatic�Web�Service�Discovery�and�Execution

191



Figure 2: Service parsing diagram.

tion, there are many different standards for the Web
service specification. As a result, one must build spe-
cific parsers to provide input for the goals (i) and (ii).
By all means, we believe that a minimum documen-
tation and a description of the input and output pa-
rameters are a kind of least common denominator for
Web services. For example, standards such as OWL-
S and WSMO allow rich semantic specifications such
as capabilities, conditions and effects.

For our first prototype we created a parser for the
WSDL specification, focusing on the operations and
their parameters. For the operations, we extract the
values from the nested documentation tags. For the
parameters, we extract the input and output represen-
tation, described as XML Schema types.

The documentation tag value related to the op-
eration is used to build a set of raw phrases RP =
frp1;rp2; :::rpng. A raw phrase rp in this context is
interpreted as the original phrase with spaces and stop
words. Figure 3 shows a fragment of a WSDL doc-
ument with a documentation tag inside the operation.
In this case, the resulting set RP would be: f“Get a
share price quote on any listed NY stock”, ”Requires
one valid stock identifier”g.

During the breadth-first search, a service tree ST is
generated for each operation found containing a rep-
resentation of the complex types in the input and out-
put parameters. The tree will be used to build a com-
mon representation and an automatic goal-oriented
dialog, using natural language sentences.

The root of the tree is the operation, with two
branches representing the input and the output struc-

<wsdl:interface name="StockInterface">
<wsdl:operation name="getSharePrice" ... >

<wsdl:documentation>
Get a share price quote on
any listed NY stock. Requires
one valid stock identifier.

</wsdl:documentation>
...

</wsdl:operation>
</wsdl:interface>

Figure 3: A documentation fragment for an operation.

<element name="QuoteRequest">
<complexType>

<all>
<element name="id" ... >

<documentation>Identifier<...
</element>
<element name="dtStock" ...>

<documentation>Date<...
</element>

</all>
</complexType>

</element>

<element name="QuoteResponse">
<complexType>

<all>
<element name="stockPrice" ...

<documentation>Price<...
</element>

</all>
</complexType>

</element>

Figure 4: Types fragment.

ture. Finding the input and output structure is not a
complex task, once the complex types are described
with their respective types and documentation in the
WSDL structure, as can be seen in the fragment ex-
ample shown in Figure 4. The WSDL specification al-
lows the tag documentation in all element definitions.
We took the advantage of this feature to improve the
experience with the user and give him a user-friendly
description of such pieces of information in the di-
alog. If the documentation is not present, the name
defined in the type will be used. A resulting graphical
representation of the generated tree is shown in Fig-
ure 5, with the operation GetSharePrice as the root
of the tree, followed by the input and output branches
and their respective attributes.

To sum up, this step generates for each operation
a set of raw phrases RP that will be used to create
the keywords and a tree ST for creating a common
representation and an automatic dialog.

3.2.2 Words Preprocessing

After extracting the service information, a set of raw

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

192



GetSharePrice

Output

Price

Input

DateIdentifier
Figure 5: Generated tree.

phrases RP = frp1;rp2; :::rpng is used in this step as
an input. This process aims at preparing the set of
words using some NLP techniques, described in the
Background Section.

First, a word segmentation of each raw phrase (rp)
is processed, using white space, tabs and new line
characters as delimiters. Second, a filter removes all
the stop words. Third, in order to improve the accu-
racy of the word synonym lookup process, a Part of
Speech (POS) is executed for each word, identifying
nouns, verbs, adverbs and adjectives.

A phrase could be used to give an example about
the usage of the POS algorithm. For the phrase
fFinancial;Reserveg, the POS recognizes the word
“Reserve” as a noun instead of a verb. This approach
has a positive impact on the disambiguation qual-
ity and performance, thanks to the reduction on the
search space. The word “reserve” in this example has
7 senses for nouns and 4 senses for verbs in the Word-
Net 3.1 database. Without the POS algorithm, the
verb senses would represent noisy information and,
of course more information to process.

Finally, a stemming algorithm is invoked, trans-
forming the original words into root words. As a
result a new set of phrases called P = fp1; p2; png
is generated, where each p is a set of instances
f(w1; t1);(w2; t2); :::;(w j; t j)g, w is the word, t is their
respective type (noun, verb, adverb or adjective) and
j is the quantity of words in the given phrase.

3.2.3 Synonyms Discovery

The goal of this step is to collect as many synonyms
as possible for each word extracted from the service
descriptor. Discovering a word synonym is a complex
action, due to the multiple meanings of the same word
in different contexts (aka polysemy). Therefore, two
minimum components are necessary to work on this
problem of word sense disambiguation: (i) a dictio-
nary or a thesaurus; and (ii) a method of disambigua-
tion.

For (i), we chose WordNet (Miller, 1995) (Stark
and Riesenfeld, 1998): an electronic lexical database
for the English language, developed at Princeton Uni-
versity. WordNet groups noun, verbs, adjectives and
adverbs by means of conceptual semantic and lexical

relations. Each grouping is called synset, and a wide
range of tools is available to deal with these struc-
tures.

For (ii) we chose one of the first works related to
the theme, proposed by (Lesk, 1986). Lesk uses an
unsupervised method that disambiguates two words
by finding the pair of senses with the greatest overlap
in their dictionary definitions. This algorithm presents
a low computing overhead because it explores only
the sense of the words presented in the phrase, avoid-
ing a deep navigation in the graph.

The algorithm receives the set of phrases P gen-
erated in the previous section as an input. Then, for
each word processed, it looks for the set of senses in
WordNet. To clarify the concept of sense, each sense
has a dictionary definition that will be used by the
disambiguation process. Giving an example, we try
to disambiguate the word “risk” in the set of words
p = ffpro ject;noung;frisk;noungg. The word risk
has 6 senses for noun and each one points to at least
the original word plus one or more synonyms. Using
the algorithm, the chosen sense of risk was “a venture
undertaken without regard to possible loss or injury,”
instead of “the probability of being exposed to an in-
fectious agent.” This is an effect of the presence of
the word “undertaken” in both definitions (risk and
project). As a result two new words, related to the
same sense were added: “peril” and “danger,” ex-
panding the vocabulary.

Lesk’s approach is sensitive to the exact wording
of definitions. In certain cases, words in the definition
do not link in fact the words. The absence of a certain
word or a presence of a frequent word can radically
change the results. Several proposed methods achieve
good results for disambiguation, but require a prepro-
cessed dependency knowledge database as presented
in (Chen et al., 2009) or make deep explorations in
the glosses graph as presented in (Navigli and Velardi,
2005) and (Adala et al., 2011). They should be con-
sidered in future experiments.

In brief, at the end of this step, a set of keywords
are generated for the service called K = fk1;k2;kng,
where each kn is a word (original or synonym) and n
is the number of keywords for the underlying service.

3.2.4 Concepts Creation

A representation language is necessary to model the
services, the dialogs and the input and output param-
eters to deal with the service. We use a representa-
tion language called MOSS2 (Barthès, 2011b), sum-
marized in the next paragraphs.

2available at http://www.utc.fr/�barthes/MOSS/

Using�Personal�Assistant�Dialogs�for�Automatic�Web�Service�Discovery�and�Execution

193



MOSS. MOSS is a complex frame-based represen-
tation language, allowing the description of concepts,
individuals, properties, classless objects, default val-
ues, virtual concepts or properties. It includes an
object-oriented language, a query system, multilin-
gual facilities and many other features described in
the online documentation. MOSS is centered on the
concept of property and adopts a descriptive (typical-
ity) rather than prescriptive approach, meaning that
defaults are privileged and individuals may have prop-
erties that are not recorded in the corresponding con-
cept. Reasoning is done via a query mechanism. We
only present here the features used for the creation
of a general concept representing the service and its
structure.

Concepts, Attributes and Relations. The service
tree generated in Section 3.2.1, called ST , will be used
as a source to create a representation of the service
using the MOSS language. Given the tree, if a vis-
ited node is a leaf, then it will be transformed into
a final attribute. On the other hand, if the node is
intermediary, then it will be transformed into a new
concept, and also a relationship with this new concept
will be created in the current concept. This approach
could result in possible redundancies when a complex
type is used more than once. However it simplifies
the transformation and also prevents the occurrence
of circular references. To give an example of the cre-
ation of nested concepts, let’s use the tree of Section
3.2.1, changing the simple attribute date to one more
complex; for example a date type with a day, month
and year inside its structure. Figure 6 shows the re-
factored tree.

GetSharePrice

Output

Price

Input

Date

yearmonthday

Identifier

Figure 6: Modified tree.

In this example we have four nodes as candi-
dates to concepts: The toplevel node GetSharePrice,
the standard Input and Output nodes and the Date
node. Figure 7 shows the generated concepts using
the MOSS syntax. The Date node was transformed
into a concept called DateConcept, once the node is
intermediary. It also influenced the creation of the In-
putConcept, which had a relationship with the con-
cept DateConcept instead of a simple attribute.

(defconcept "GetSharePriceConcept"
(:rel "Input"

(:to "InputConcept"))
(:rel "Output"

(:to "OutputConcept")))

(defconcept "InputConcept"
(:att "Identifier")
(:rel "Date"

(:to "DateConcept")))

(defconcept "OutputConcept"
(:att "Price"))

(defconcept "DateConcept"
(:att "day")
(:att "month")
(:att "year"))

Figure 7: Generated concepts (:att specifies an attribute, :rel
a relation).

After the creation of the concepts (C), they are in-
corporated into the OMAS environment, allowing the
creation of individuals during any dialog session.

3.2.5 Dialog Creation

The goal of this step is to build an automatic sub-
dialog based on the concept set (C), created during
the previous step. To allow a conversation between
the user and the PA, this goal-driven dialog is mod-
eled as a finite state machine as shown in Figure 8.
The goal of this type of dialog is the fulfillment of all
of the attributes and relations of an individual repre-
senting the input.

Figure 8: Service execution state machine.

Selection State. The sub-dialog starts in the Selec-
tion state. This state aims at finding empty input at-
tributes. Our technique proceeds along the following

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

194



assumptions:

1. One individual or instance related to the service
context is created for each dialog;

2. For each relationship, at least one individual cor-
responding to the type of the relationship is cre-
ated and associated to the underlying individual.

If all of the attributes of the input are filled, the
next state will be Execution, responsible for the ex-
ecution of the service, as well as displaying the exe-
cution outcomes represented by the output individual.
The Selection state does not have interaction with the
user and only uses the input individual for making the
inference.

Fulfillment State. If an empty attribute n is found,
the control is transferred to this state, which aims at
asking the master to fulfill the information. A ques-
tion/answer dialog is started, asking the user to fill the
attribute n.

Update State. The control is transferred to this state
if the algorithm detects an update pattern. Knowledge
engineering processes using unstructured natural lan-
guage texts are still an expert task and are sensitive to
the context. We choose a discovery process that ex-
tracts the attribute value from the sentence based on
simple grammatical constructions. We used a small
subset of the proposal made by (Hahn and Schnat-
tinger, 1998) called Linguistic Quality Labels. Lin-
guistic quality labels reflect structural properties of
phrasal patterns in which unknown lexical items oc-
cur. We assume here that the type of grammatical con-
struction exercises a particular interpretative force on
the unknown item. Based on this idea, we used the
traditional triple noun-verb-noun phrase to detect sen-
tences like “My age is 23” or “The window has a size
of 3x5m.” Apposition is also a source of information.
The apposition almost unequivocally will determine
the attribute in our case. An example of apposition
phrase could be “The user Mary,” where user is the
attribute name and Mary is the correspondent value.

Abort State. When the PA detects abort patterns in
the master’s phrase, it interrupts the process confirm-
ing their action. If the user confirms, then the service
execution is aborted. If not, the control returns to the
Selection state. An abort pattern could be interpreted
as a set of words such as fcancel;quit; :::g. The sets
were made empirically during this preliminary phase
and must be evaluated in the future in order to im-
prove their accuracy.

Change State. This state enables the user to change
the sequence of the fulfillment and for example, ask to
change the value of any other attribute. Let’s use the
phrase “Sorry, I made a mistake when giving my age”
during the Fulfillment state. The sentence does not fit
in the requirements of the Abort state nor the Update
state. It also presents linguistic cues indicating the de-
sire to change something such as fmistake;sorry; :::g.
If the algorithm matches one attribute in the phrase,
then the control returns to the Fulfillment state. If
there is no correspondence, the control returns to the
Selection state.

Execution State. The control is transferred to this
state when the master has filled all the attributes.
Here, the PA sends a message to the service agent
(SA) responsible for the SOAP envelope creation,
transportation and response decoding. The PA waits
for the response and then presents the output to the
end user, terminating the sub-dialog.

3.3 Discovery and Execution

The discovery and execution process is tailored to
identify the user needs based on linguistic cues and
conduct a dialog conversation. This process was in-
spired by the work on multi-agents task selection and
execution using personal assistants dialogs described
in (Barthès, 2011a).

Figure 9: Discovery and execution activity diagram.

During this stage, we assume that the PA is cur-
rently associated with an end-user. That is to say,
the user now has a channel opened with the personal
assistant to make requests and also see the PA re-
sponses. It is important to point-out that the conversa-

Using�Personal�Assistant�Dialogs�for�Automatic�Web�Service�Discovery�and�Execution

195



tion between a PA and the end-user starts in a generic
top-level dialog, described in the diagram shown in
Figure 9. Any other dialog in the PA is considered
a nested or sub-dialog, even our special sub-dialog
used here. The starting point of the top-level dia-
log, namely Entry State allows users to input their re-
quests. The next state is called Service Discovery.

Service Discovery. Using the service keywords
(K), the service discovery is done as follows:

1. The user asks something to the PA (e.g., “Give me
the project risks and their financial reserves”)

2. The phrase is segmented into a set of words,
removing spaces, words separators and empty
words. For example, the resulting list of
words would be fgive; pro ject;risk; f inancial;
reservesg;

3. A stemming algorithm is executed for each word,
transforming them into root words.

4. For each known service, the PA matches the user
set of words with the set of keywords (K), using a
MYCIN-like formula to compute a score. This is
a simple but efficient approach, since each match
of a subexpression reinforces the overall match
score;

5. Services are then ordered by decreasing scores;

6. The service with the highest score is selected.

If a task cannot be determined, the PA enters in
the state Eliza, in order to analyze the input and either
produces an adequate answer or tells the user that it
did not have enough information to process the input.

Dialog Execution. Once the top-level dialog has
identified the target service to execute, a nested sub-
dialog associated with the service is instantiated and
started. The creation of this goal-oriented dialog was
detailed in Section 3.2.5. After the execution of the
sub-dialog the control is then returned to the main di-
alog.

4 A DIALOG EXAMPLE

In this section we present an utilization dialog exam-
ple extracted from one ready-to-use OMAS environ-
ment, since the details to build one dialog were pre-
sented in previous sections. Figure 10 shows the be-
ginning of the dialog, started with a welcome message
from the PA, followed with some interactions.

When the PA sends the greeting message to the
end-user, the conversation graph is currently in the

P: Good morning and welcome to the ACME Bank.
I am Ariberto, your personal assistant.
How can I help you?

U: I’d like to contract a health insurance.
P: Thank you for the interest in our

Health Insurance Quote service.
P: Could you please tell me your name?

Figure 10: A conversation fragment that triggered the ser-
vice identification.

Entry state. This state allows the interaction with the
user and is changed as soon as the user types the re-
quest. The next state, Service Discovery, will pro-
cess the user input, transforming the data into a set
of root words, without delimiters and stop words. A
matching process is then executed for each known ser-
vice in the environment, using a MYCIN-like formula
(a+ b� ab). Given the set of words provided by the
user, the selected service was the Health Insurance
Quote Service. For demonstration purposes the envi-
ronment had a few services, related to health, travel
and vehicle insurance quotes.

As a result, a sub-dialog related to the health ser-
vice was created. As a preparation process, one indi-
vidual representing the service concept were created,
as well as individuals to fill its relationships. To be
more specific in this case, one individual was created
for both input and output concepts, once the types re-
lated to this service are simple attributes. All service
sub-dialogs start in the Selection state. It means that
the sub-dialog behavior is to look for empty attributes
in the input individual. In this example, the PA found
the name and transferred the control to the Fulfillment
state, which always waits for the user input.

As shown in Figure 11, the user sent the sentence
“My name is John Doe” to the PA. The pattern found
by the PA was compatible with an update, which in
turn, extracted only the fragment “John Doe”. This
context information was then available in the Update
state. As a result, the PA changed the value to “John
Doe”, returning the control back to the Selection state.

The user can change the order of fulfillment at any
time. The same dialog of Figure 11 shows the PA
asking for the user’s age. In the dialog example, the
user refused the fulfillment answering: “No, sorry, the
name is not correct.” The pattern found in the phrase
matched with the Change state. This state found the
attribute name. Hence, the control was transferred
back to the Fulfillment state, which allowed the user
to change his name and transfer the control to the Up-
date state. The control was then returned back to the
Selection state. Finally, the Web service was executed
after the fulfillment process, as show in Figure 12.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

196



U: My name is John Doe.
P: Thank you for the information.

Confirming your name as John Doe.
P: Could you please tell me your age?
U: No, sorry, the name is not correct.
P: Your current name is John Doe. Could you

please tell me your name again?
U: The name is John Malbec Doe
P: Thank you for the information.

Confirming your name as
John Malbec Doe.
Could you please tell me your age?

U: I’m 23.
P: Your age is 23.

Figure 11: A conversation fragment that identifies a user
intervention.

P: Now, I have all of the information to
process your request.
I would like your attention to check
the following information before
confirming your request.

Name: John Malbec Doe
Age: 23
...

P: Could you please confirm the request?
U: yes
P: Service requested successfully.

Process number is 9992323231.
Insurance price: $ 150.00.

Figure 12: A conversation fragment that shows the service
execution.

5 RELATED WORK

Many research efforts have been made to propose
approaches for discovery, composition and execu-
tion of Web services. In general, the proposals use
semantic-based approaches on semantic descriptors
and domain-specific ontologies. To give some exam-
ples, (Rivera et al., 2011) presents a framework for
building applications targeted to end users who have
no previous technology experience. One of the fea-
tures is the service discovery, which is based on pre
and post-conditions expressed in RDF graph patterns.
It also presents a solution to service execution using
a wrapper figure. This approach uses a dummy ser-
vice execution in order to match the messages with
domain specific data and wraps it into an application
widget, which could be used as a common compo-
nent for application modeling. (Lim and Lee, 2010)
presents a sophisticated mechanism to discover and
execute web services using semantic Web service in-
formation described in OWL-S. Different workflow
templates are extracted, and then the algorithm selects

the most suitable workflow by calculating similarities
between sub-workflows. (Adala et al., 2011) uses a
similar Web service discovery mechanism, using NLP
techniques such as word disambiguation. However,
the approach used to match the user natural language
request and their knowledge representation is slightly
different. It uses SUMO (Suggested Upper Merged
Ontology) as a source to calculate the distance be-
tween the user request and the representation.

As could be seen, most of these solutions use
semantic descriptors as an input. We have a great
amount of services lacking semantic descriptors, nor-
mally found by third-party providers or even tradi-
tional Web services published in UDDI directories.
It opens an opportunity for other techniques based on
non-semantic information.

6 CONCLUSIONS

The work proposed in this paper provides an approach
for discovery and execution of Web services. The ap-
proach presented here is both simple and efficient,
particularly in environments with independent Web
services without a proper domain-ontology and se-
mantic annotations describing the service capability.
It presents a discovery mechanism based on expanded
keywords presented in a Web service descriptor and a
fulfillment process using natural language. The sen-
tences are provided by and end-user without previous
knowledge about the physical location and structure
of the service. The approach leverages the usage of
several Web services constructed in a bottom-up fash-
ion where only operational descriptors are available.

We are working on improvements of the approach
in order to: (i) allow more sophisticated dialogs, es-
pecially when dealing with complex representation of
input data and (ii) allow more complex scenarios us-
ing composite Web services.

The OMAS platform containing all the machin-
ery for implementing multi-agents and dialogs, and
the corresponding documentation can be downloaded
from http://www.utc.fr/�barthes/OMAS/

REFERENCES

Adala, A., Tabbane, N., and Tabbane, S. (2011). A frame-
work for automatic Web service discovery based on
semantics and NLP techniques. Advances in Multime-
dia - Special issue on Web Services in Multimedia ,
2011.

Barthès, J.-P. A. (2011a). Flexible communication based
on linguistic and ontological cues. In E-Technologies:
Transformation in a Connected World, volume 78 of

Using�Personal�Assistant�Dialogs�for�Automatic�Web�Service�Discovery�and�Execution

197



Lecture Notes in Business Information Processing,
pages 131–145. Springer.

Barthès, J.-P. A. (2011b). OMAS - a flexible multi-agent
environment for CSCWD. Future Generation Com-
puter Systems, 27(1):78–87.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
Semantic Web. Scientific American.

Chai, J., Lin, J., Zadrozny, W., Ye, Y., Stys-budzikowska,
M., and Horvath, V. (2001). The role of a natural lan-
guage conversational interface in online sales: A case
study. International Journal of Speech Technology,
4:285–295.

Chen, P., Ding, W., Bowes, C., and Brown, D. (2009).
A fully unsupervised word sense disambiguation
method using dependency knowledge. In Proceedings
of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, NAACL ’09,
pages 28–36. Association for Computational Linguis-
tics.

DARPA PAL Program, D. (2012). Personalized Assis-
tant that Learns. SRI International. Available at
https://pal.sri.com/Plone/framework.

Fielding, R. T. (2000). Architectural Styles and
the Design of Network-based Software Architec-
tures. Doctoral dissertation, University of Califor-
nia, Irvine. Available at http://www.ics.uci.edu/ field-
ing/pubs/dissertation/top.htm.

Hahn, U. and Schnattinger, K. (1998). Towards text knowl-
edge engineering. In AAAI ’98/IAAI ’98 Proceed-
ings of the fifteenth national/tenth conference on Ar-
tificial intelligence/Innovative applications of artifi-
cial intelligence, pages 524–531. American Associa-
tion for Artificial Intelligence.

Lesk, M. (1986). Automatic sense disambiguation using
machine readable dictionaries: how to tell a pine cone
from an ice cream cone. In Proceedings of the 5th an-
nual international conference on Systems documenta-
tion, SIGDOC ’86, pages 24–26. ACM.

Lim, J. and Lee, K.-H. (2010). Constructing composite Web
services from natural language requests. Web Seman-
tics: Science, Services and Agents on the World Wide
Web, 8(1):1–13.

Miller, G. A. (1995). WordNet: a lexical database for En-
glish. Communications of the ACM, 38(11):39–41.

Navigli, R. and Velardi, P. (2005). Structural semantic in-
terconnections: a knowledge-based approach to word
sense disambiguation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(7):1075–1086.

Negroponte, N. (1996). Being Digital. Knopf Doubleday
Publishing Group.

Rivera, I., Moller, K., Handschuh, S., and Zundorf, A.
(2011). Web service wrapping, discovery and con-
sumption - more power to the end-user. 7th Inter-
national Conference on Web Information Systems and
Technologies (WEBIST 2011).

SAWSDL Working Group, W. (2007). Semantic Annota-
tions for WSDL and XML Schema. W3C Recommen-
dation. Available at http://www.w3.org/TR/sawsdl/.

Simonite, T. (2012). Siri’s new cousin works as a bank
teller. MIT Technology Review - Business Re-

port - The Future of Work. Available at http://
www.technologyreview.com/news/428430/siris-new-
cousin-works-as-a-bank-teller/.

Stark, M. M. and Riesenfeld, R. F. (1998). WordNet: An
electronic lexical database. In Proceedings of 11th
Eurographics Workshop on Rendering. MIT Press.

Tur, G., Stolcke, A., Voss, L., Peters, S., Hakkani-Tur,
D., Dowding, J., Favre, B., Fernandez, R., Frampton,
M., Frandsen, M., Frederickson, C., Graciarena, M.,
Kintzing, D., Leveque, K., Mason, S., Niekrasz, J.,
Purver, M., Riedhammer, K., Shriberg, E., Tien, J.,
Vergyri, D., and Yang, F. (2010). The CALO Meet-
ing Assistant System. Audio, Speech, and Language
Processing, IEEE Transactions on, 18(6):1601–1611.

Vitvar, T., Kopecky, J., Viskova, J., and Fensel, D.
(2008). WSMO-Lite annotations for Web services. In
ESWC’08 Proceedings of the 5th European semantic
web conference on The semantic web: research and
applications, pages 674–689. Springer-Verlag.

Web-Ontology Working Group, W. (2004). OWL-S: Se-
mantic Markup for Web Services. W3C Mem-
ber Submission. Available at http://www.w3.org/
Submission/OWL-S/.

Web Services Description Working Group, W. (2007). Web
Services Description Language (WSDL) Version 2.0
Part 1: Core Language. W3C Recommendation.
Available at http://www.w3.org/TR/wsdl20/.

Weizenbaum, J. (1966). ELIZA - a computer program for
the study of natural language communication between
man and machine. Communications of the ACM,
9(1):36–45.

WS-BPEL Technical Committee, O. (2007). Web Ser-
vices Business Process Execution Language Version
2.0. OASIS Standard. Available at http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

WSMO Working Group, W. (2005). Web Service Model-
ing Ontology (WSMO). W3C Member Submission.
Available at http://www.w3.org/Submission/WSMO/.

XML Protocol Working Group, W. (2007). SOAP Version
1.2 Part 0: Primer (Second Edition). W3C Rec-
ommendation. Available at http://www.w3.org/TR/
soap12-part0/.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

198


