
A Distributed Ranking Algorithm for the
iTrust Information Search and Retrieval System

Boyang Peng, L. E. Moser, P. M. Melliar-Smith, Y. T. Chuang and I. Michel Lombera
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, U.S.A.

Keywords: Distributed Ranking, Search and Retrieval, Peer-to-Peer Network, iTrust.

Abstract: The iTrust system is a decentralized and distributed system for publication, search and retrieval of information
over the Internet and the Web, that is designed to make it difficult to censor or filter information. In the
distributed ranking algorithm for iTrust presented in this paper, a source node that publishes a document
indexes the words in the document and produces a term-frequency table for the document. A requesting node
that issues a query and receives a response uses the URL in the response to retrieve the term-frequency table
from the source node. The requesting node then uses the term-frequency tables from multiple source nodes
and a ranking formula to score the documents with respect to its query. Our evaluations of the distributed
ranking algorithm for iTrust demonstrate that the algorithm exhibits stability in ranking documents and that it
counters scamming by malicious nodes.

1 INTRODUCTION

Our trust in information accessed over the Internet
and the Web depends on benign and unbiased admin-
istration of centralized search engines, indexes and
repositories. Search and retrieval of information over
the Internet and the Web are centralized for efficiency
and economy of scale. However, the administrators
of those centralized facilities, as well as government
agencies and officials, can cause information accessed
over the Internet and the Web to be selectively filtered
or censored completely.

An alternative distributed search and retrieval sys-
tem, without centralized mechanisms and centralized
control, can reduce people’s concerns about filtering
and censoring of information on the Internet and the
Web. Such a system can provide assurance to its users
that a small number of administrators or officials can-
not prevent them from distributing their ideas and in-
formation and from retrieving the ideas and informa-
tion of others.

The iTrust information search and retrieval system
(Badger et al., 2012; Chuang et al., 2011; Melliar-
Smith et al., 2012; Michel Lombera et al., 2013) is
a distributed system for search and retrieval over the
Internet and the Web, and over social and mobile net-
works, with no centralized mechanisms and no cen-
tralized control. The iTrust system allows people to
distribute information, and to search for and retrieve

information, within a peer-to-peer network without
fear of censorship of information.

When searching for information, people generally
prefer to be presented with small sets of ranked doc-
uments, rather than unordered sets of all of the doc-
uments found. However, selecting and ranking doc-
uments in a distributed manner is difficult, because
decisions must be made locally.

Most conventional search engines, and other in-
formation search and retrieval systems, rely on in-
dexing keywords, because doing so is the most vi-
able way to process large amounts of text. Typically,
they rank documents based on a similarity measure
between the documents and the user’s query, and then
return a list of documents that appear to be relevant
to that query. After viewing the list of documents, the
user can then retrieve the documents of interest.

Our objective for the iTrust search and retrieval
system is to provide useful and compact ranking of
information for textual documents, so that the user
can quickly interpret the information and retrieve the
documents of interest. We also aim to counter the ac-
tions of malicious nodes in the network by distribut-
ing the responsibilities of indexing, scoring and rank-
ing among the nodes in the network.

In our distributed ranking algorithm for iTrust,
a source node that publishes a document indexes
the words in the document and produces a term-
frequency table for the document. A requesting node

199Peng B., Moser L., Melliar-Smith P., Chuang Y. and Michel Lombera I..
A Distributed Ranking Algorithm for the iTrust Information Search and Retrieval System.
DOI: 10.5220/0004355601990208
In Proceedings of the 9th International Conference on Web Information Systems and Technologies (WEBIST-2013), pages 199-208
ISBN: 978-989-8565-54-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



that receives a response for its query uses the URL in
the response to retrieve the term-frequency table from
the source node. The requesting node then uses the
term-frequency tables from multiple source nodes to
score the documents with respect to its query using
a ranking formula. Thus, in our distributed ranking
algorithm for iTrust, the documents are ranked at the
requester based on the user’s query.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the iTrust system. Sec-
tion 3 presents the distributed ranking algorithm for
iTrust. Section 4 discusses trustworthiness as it re-
lates to the distributed ranking algorithm, and Section
5 presents an evaluation of the distributed ranking al-
gorithm. Section 6 discusses related work, and Sec-
tion 6 concludes the paper and presents future work.

2 THE ITRUST SYSTEM

The iTrust system (Badger et al., 2012; Chuang et al.,
2011; Melliar-Smith et al., 2012; Michel Lombera
et al., 2013) is a decentralized and distributed infor-
mation publication, search and retrieval system that
aims to combat censorship in the Internet and the
Web. The iTrust system operates over a peer-to-peer
network that comprises amembershipof participat-
ing nodesin the network.

Some of the participating nodes, thesource nodes,
publish information and make it available to other par-
ticipating nodes. The source nodes generate metadata
that describes the information they publish and dis-
tribute the metadata along with the URL of the infor-
mation to a subset of the participating nodes chosen
at random. Other participating nodes, therequesting
nodes, request and retrieve information. The request-
ing node nodes generate requests (queries) that con-
tain keywords, and distribute their requests to a subset
of the participating nodes chosen at random.

Nodes that receive a request compare the key-
words in the request with the metadata they hold. If
a node finds a match (also called anencounter), it re-
turns the URL of the associated information to the re-
questing node. The requesting node can then use the
URL to contact the source node. Amatchbetween
the keywords in a request and the metadata held by a
node might be an exact match or a partial match, or it
might correspond to synonyms.

The steps for the operation of iTrust, with the dis-
tributed ranking algorithm, are described below and
are illustrated in Figures 1-4.

1. Nodes with information (the source nodes) dis-
tribute their metadata at random to a subset of

the participating nodes. With a given probabil-
ity, those nodes might forward the metadata they
receive to other nodes in the network.

2. Nodes that need information (the requesting
nodes) distribute their requests at random to a
subset of the participating nodes. Again, with a
given probability, those nodes might forward the
requests they receive to other nodes in the net-
work.

3. When a node receives both the metadata and a re-
quest, the node determines whether the metadata
and the keywords in the request match.

4. If a node finds that the keywords in the request
match the metadata it holds, the matching node
provides, to the requesting node, the URL where
the requesting node can retrieve the information.

5. Subsequently, the requesting node can retrieve the
information from the source node using the URL
provided by the matching node.

This paper focuses on the distributed ranking al-
gorithm for iTrust, and describes what happens when
the requesting node receives a response to its request
or query containing the URL, as shown in Figure 4.

3 THE DISTRIBUTED RANKING
ALGORITHM

Like conventional centralized search engines, iTrust
needs an algorithm to rank documents by their rel-
evance to a query. Traditional search engines such
as Google, Yahoo, and Bing use spider bots to crawl
the Internet looking for Web pages and indexing them
prior to a query. However, for a distributed search
and retrieval system like iTrust, it is both unrealistic
and inefficient for every node to index all of the doc-
uments of every other node especially in a dynamic
network where nodes are frequently joining and leav-
ing. Thus, iTrust needs a ranking algorithm different
from that of traditional search engines.

To design an effective distributed ranking algo-
rithm for iTrust, we must consider:

• What metrics the ranking algorithm will use and
what the ranking formula is.

• What information the ranking algorithm needs
and how to retrieve that information.

3.1 Ranking Formula

The formula that we use in iTrust to rank documents
employs a term frequency factor and an inverse doc-
ument frequency factor, both of which are commonly

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

200



Figure 1: A source node distributes metadata for its docu-
ments to randomly selected nodes in the iTrust network.

Figure 2: A requesting node distributes requests containing
keywords to randomly selected nodes in the iTrust network.
When a node in the network receives a request containing
keywords that match metadata it holds, an encounter occurs.

found in ranking formulas based on the vector space
model (Lee et al., 1997; Cohen et al., 2007; Perez-
Iglesias et al., 2009). The information needed to rank
a document is essentially a table of all of the distinct
terms and their corresponding frequencies of occur-
rence in the document. We refer to this table as the
term-frequency tableor the f reqTable(d) for the doc-
umentd. Each entry in the table consists of a term
found in the document and the number of occurrences
of the term. In iTrust, we adopt the following formula
to score a documentd with respect to a queryq:

Score(d,q) = norm(d)×∑
t∈q

t f (t,d)× id f (t)

where:

• norm(d) is the normalization factor for document
d, computed as:

log(1+
numbero f uncommonterms(d)
1+numbero f commonterms(d)

)

• t f (t,d) is the term-frequency factor for termt in
documentd, defined as:

log(1+ f req(t,d))
log(1+avg( f req(d))

Figure 3: The node that matches the keywords in a request
with metadata it holds reports to the requesting node that a
match has occurred and supplies the URL of the document
at the source node to the requesting node.

Figure 4: The requesting node retrieves the term-frequency
tables from the source nodes.

• id f (t) is the inverse document frequency factor
for termt, computed as:

1+ log(
numDocs

1+docFreq(t)
)

The normalization factornorm(d) for a document
d uses the following definitions:

• numberof commonterms for a documentd is
|s∩c|, wheres is the set of all terms in the docu-
mentd andc is the set of common terms.

• numberof uncommontermsfor a documentd is
| f reqTable(d)| − numbero f commonterms
or the number of entries in the term-
frequency table for documentd minus the
numbero f commonterms.

The common terms list is provided for the user,
or by the user if preferred. The common terms list
is like a stop word list. However, the terms in the
common terms list are not simply removed like the
words in a stop word list; instead, the common terms
are used to marginalize the efforts of malicious nodes
to undermine the accuracy of the ranking algorithm.

In particular, a malicious node might distribute a
fabricated term-frequency table containing the most

A�Distributed�Ranking�Algorithm�for�the�iTrust�Information�Search�and�Retrieval�System

201



common terms used in documents to achieve a higher
rank for a document by increasing the probability of
matching a query term. However, with high prob-
ability, many of the terms in the fabricated term-
frequency table are also part of the list of common
terms. Thus, the score of a documentd will be low,
because thenumbero f uncommonterms(d) is small
relative to thenumbero f commonterms(d).

If the common terms were removed from the
query, there might not be a match between the query
terms and any of the terms in a document’s term-
frequency table, which would result in a zero docu-
ment score. The document corresponding to the fab-
ricated term-frequency table might have a low score
but be ranked higher than legitimate documents with a
zero document score. However, if the common terms
remain in the query, the documents with a zero score
might actually have a non-zero score and be ranked
higher than the document corresponding to the fabri-
cated term-frequency table.

The term-frequency factort f (t,d) for term t in
documentd measures how often termt occurs in doc-
umentd. The rationale behind the formula is that the
score oft f (t,d) is proportional tof req(t,d) and in-
versely proportional toavg( f req(d)).

The inverse document frequency factorid f (t) for
term t measures how often termt occurs in all of the
documents. The more frequently a termt occurs in
all of the documents, the less that term contributes to
the score of the document. Consequently, the more
uncommon terms are more significant than the more
common terms.

3.2 Retrieval of Information

As discussed in the previous section, the ranking for-
mula usesf reqTable(d) to score a documentd based
on a queryq. However, the following questions
arise: What node is indexing documentd to gener-
ate f reqTable(d)? What node is applying the ranking
formula to score the documentd?

Because iTrust is a distributed peer-to-peer search
and retrieval system, we must consider the possibility
that some of the participating nodes in the iTrust net-
work are malicious. With network fidelity in mind,
we require the requesting node to rank the documents
using the ranking formula, because the requesting
node represents a user who is searching for informa-
tion and inputting queries.

The question then arises: How does a requesting
node obtain thef reqTable(d) corresponding to a re-
sponse to its query that contains a URL for a docu-
mentd? As mentioned previously for a peer-to-peer
network like iTrust, it is both unrealistic and ineffi-

cient for every node to index all available documents.
The indexing of documents must be done in a dis-
tributed manner. We considered the following alter-
native approaches:

1. The requesting node downloads all of the docu-
ments from the source nodes corresponding to the
URLs in the responses it received for its query.
The requesting node indexes the downloaded doc-
uments. From the information it extracted in the
indexing process, the requesting node ranks the
documents.

2. The requesting node uses the keywords in its
query and the metadata for the documents, con-
tained in the responses it received for its query, to
rank the documents.

3. The requesting node supplies the query to the
source node and the source node determines the
frequency of occurrence of the keywords in the
document it holds and then informs the request-
ing node.

4. The source node indexes the documents. On a re-
quest for a particular documentd, the source node
supplies the term-frequency tablef reqTable(d)
of the documentd to the requesting node.

The first approach is simple but inefficient and
problematic. The documents downloaded can be large
and, consequently, the time needed to present the re-
sults to the user can be unreasonably long. Further-
more, the network bandwidth consumed by each re-
quest can be large. More importantly, the user might
select only a few of the returned results and, thus,
downloading all of the documents before the user
chooses a few of the results is inefficient.

The second approach has the advantage that the
requesting node needs to download only a small
amount of data. However, it has the disadvantage that
the metadata consists of only a short list of keywords
which might not be a good representation of the docu-
ment described by the keywords, and determining the
importance of the keywords to the document can be
difficult.

The third approach appears to be appealing, be-
cause it is relatively simple and the amount of infor-
mation that needs to be exchanged between the source
node and the requesting node is minimal. This ap-
proach would work well if there were no malicious
nodes in the network. However, we cannot make such
an assumption and one of the goals of iTrust is to be
resistant to malicious attacks. If the query is given to
the source node, the source node can easily claim that
a document it holds has a high number of occurrences
of the keywords in the query. Thus, giving the source
node the query can result in a malicious source node

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

202



falsifying and exaggerating information to achieve a
higher rank for its document at the requesting node.

The fourth approach utilizes more effectively the
distributed peer-to-peer nature of the iTrust system
and, thus, it is the approach we use. In our dis-
tributed ranking algorithm, the source node performs
the indexing of the documents that it holds. For each
such documentd, the source node maintains a term-
frequency table,f reqTable(d), for d in the form of an
SQL table. The table is sorted by the frequency of oc-
currence of each term, from the most frequent to the
least frequent. When the requesting node receives a
response to its query, the requesting node retrieves the
term-frequency table,f reqTable(d), from the source
node using the URL in the response it received from
the matching node, as shown in Figure 4.

4 TRUSTWORTHINESS

Now we consider the possibility of malicious nodes
that attempt to subvert the distributed ranking algo-
rithm of iTrust. A malicious node might falsify or ex-
aggerate information to render the ranking algorithm
ineffective, as described below.

4.1 Falsifying Information

A malicious node can choose to distribute a term-
frequency table containing a list of every word known
in the English language, thus scamming the ranking
algorithm at the requesting node and causing the doc-
ument that it is trying to distribute to be ranked high
at every requesting node.

To mitigate this problem, we adopt the policy that
the requesting node retrieves only a top numberT of
the entries in the term-frequency table from a source
node. If the document does not haveT distinct terms,
then the requesting node simply retrieves the number
of distinct terms less thanT that the document does
have. Thus, the numberT serves as an upper bound
on the number of entries in the term-frequency table
retrieved from a source node.

The sizeT of the term-frequency table retrieved
is, of course, less than the total number of words in
the English language. It should be large enough so
that it can represent the content of the document. For
documents of reasonable size (100 - 10,000 words),T
is set between 100 and 200.

A scammer might distribute a term-frequency ta-
ble consisting of a list of most frequently occurring
terms to obtain as many matches between the terms
in the term-frequency table and the query. For our ex-
periments, the scam document corresponding to such

Figure 5: The percent time that a document is ranked last,
as a function of the number of keywords in the query. Each
line, referenced by a letter of the alphabet, represents a dif-
ferent document. The scam document is referenced by the
letter S.

a term-frequency table contains a list of the most com-
monly used words in textual documents.

The graph in Figure 5 illustrates the ranking of 28
documents of various lengths, of which one document
is a “scam” document. The size of the term-frequency
table for all of the documents is 200. From the graph,
we see that, by employing the policy that the request-
ing node retrieves only a top numberT of terms from
the term-frequency table, the percent time the scam
document is ranked last increases dramatically as the
number of keywords in the query increases.

4.2 Exaggerating Information

A malicious node can also exaggerate the information
about a document it is distributing by replacing the
actual frequencies in the term-frequency table with
larger frequencies, in an attempt to achieve a higher
ranking at the requesting nodes. Such an attempt to
scam the ranking algorithm is futile, due to the calcu-
lation of thet f (t,d) factor for termt in documentd.
How much the term-frequency factor adds to a doc-
ument’s score is relative to the average frequency of
terms found inf reqTable(d). Thus, if a malicious
node tries to scam the ranking algorithm by multiply-
ing the frequencies inf reqTable(d) by a factorF ,
the overall average frequency off reqTable(d) is also
increased by a factorF, thus decreasing thet f (t,d)
factor by the factorF as well.

Even though a malicious node can exaggerate the
statistics of a document by a factor of, say,F = 5 or
F = 10, the resulting score and the score of the origi-
nal document are similar, as shown in Figure 6.

A�Distributed�Ranking�Algorithm�for�the�iTrust�Information�Search�and�Retrieval�System

203



Figure 7: The mean percent time of 1000 rankings that a set of documents (Document Set 1 at the left and Document Set 2 at
the right) are ranked the top four, as a function of the numberof keywords in the query. At the left, Document Set 1 contains
4 documents, whereas Other Documents comprise the 4 documents in Document Set 2 and the 20 documents in Document
Set 3. Similarly, at the right, Document Set 2 contains 4 documents, whereas Other Documents comprise the 4 documents in
Document Set 1 and the 20 documents in Document Set 3.

Figure 6: The mean score of 1000 rankings of a document,
as a function of the number of keywords in the query. The
lines, Document× 5 and Document× 10, correspond to
the frequencies in the term-frequency table of a document,
multiplied by a factor of 5 and 10, respectively.

5 EVALUATION

Because iTrust is a distributed and probabilistic sys-
tem, for reproducibility of results, we evaluate the ef-
fectiveness of the ranking algorithm by simulation,
separate from the iTrust system implementation. We
will see that, as the number of keywords used in the
query increases, the accuracy of the results increases.

5.1 Document Similarity

Three sets of documents were used to evaluate the ef-
fectiveness of the distributed ranking algorithm for
iTrust. Document Set 1 consists of documents that

are similar in content, as does Document Set 2. Doc-
ument Set 3 consists of documents of various lengths
that are not similar in content to the other documents
in the third set and not similar to the documents in the
first two sets.

The three document sets contain 28 documents,
but Document Set 1 and Document Set 2 each con-
tain only 4 documents. We want Document Set 1 and
Document Set 2 to contain only a small proportion
of the total number of documents, so that a document
in Document Set 1 or Document Set 2 is not ranked
high by chance, which might happen if they contained
a higher proportion of the total number of documents.

To ensure that the queries are comparable, the
queries include keywords randomly selected from one
of the documents in either Document Set 1 or Docu-
ment Set 2. If the ranking formula works correctly,
the documents in the set of documents containing the
document from which the keywords are randomly se-
lected should be ranked higher than the rest. This
holds true regardless of whether a document is se-
lected from Document Set 1 or Document Set 2.

The ability of the ranking algorithm to rank sim-
ilar documents together can be seen in both graphs
in Figure 7. When a document in Document Set 1 is
chosen, the documents in Document Set 1 are ranked
higher than the rest of the documents and, similarly,
when a document in Document Set 2 is chosen.

5.2 Document Ranking Stability

Given an appropriate number of keywords in a query,
the rank of a document should not differ much when
a similar query is supplied.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

204



Figure 8: The cumulative distribution of the percent time a document is ranked at a certain position, with term-frequency
tables containing 200 entries. The x-axis represents the rank of a document, where 0 represents the top rank. The y-axis
represents the percent time that a document is at a particular rank or higher rank. Each line, referenced by a letter of the
alphabet, represents the cumulative distribution of a document.

The graphs in Figure 8 show a more comprehen-
sive view of the stability of ranking as the number of
keywords in the queries increases, for term-frequency
tables with 200 entries. These graphs display cumu-
lative distributions for ranked documents. In partic-
ular, for a documentd, the graphs display the cumu-
lative distributionP(X ≤ x), wherex is the rank of
documentd andP(X ≤ x) is the probability thatx is
greater than or equal to a specific rankX. In the top
graph, a line corresponds to the average of the values
of P(X ≤ x) of a document for queries containing 1 to
5 keywords. In the bottom graph, a line corresponds
to the average of the values ofP(X ≤ x) of a document
for queries containing 6 to 10 keywords.

In the top graph, the percent time a document is
ranked at some rankx or higher varies considerably.
This behavior is undesirable, because the documents
should be ranked at similar positions, given similar

queries. The position at which a document is most
likely to be ranked is unclear and unpredictable.

In the bottom graph, the rank of a document is
more predictable. For each line representing a ranked
document, there exists a distinct rank such that the
percent time the document is ranked at that rank or
higher, dramatically increases, which indicates that
the document is most likely to be ranked at that rank.
This behavior can be more methodically quantified, as
the number of ranking position changes between the
20th percent time and the 80th percent time of the cu-
mulative distribution graph of the ranked document.
Better behavior of the ranking algorithm corresponds
to fewer position changes between the 20th percent
time and the 80th percent time. The fewer number of
position changes between the 20th percent time and
the 80th percent time corresponds to less ambiguous
queries and more accurate rankings of the documents.

A�Distributed�Ranking�Algorithm�for�the�iTrust�Information�Search�and�Retrieval�System

205



Figure 9: The mean number of position changes between
the 20th and the 80th percent time for a set of documents,
as a function of the number of keywords in the query.

The behaviors seen in the top graph and the bot-
tom graph of Figure 8 are as expected. With a greater
number of keywords in a query, the query is less am-
biguous and the results are more accurate.

The graph in Figure 9 shows a condensed view of
how the number of words in a query affect the rank
stability of a document and, therefore, the accuracy
of the ranking of that document. The graph shows the
mean number of ranking position changes between
the 20th percent time and the 80th percent time in the
cumulative distributionP(X ≤ x) for a documentd, as
shown in Figure 8.

In Figure 9, note the steep decrease in the num-
ber of position changes from 1-5 keywords in a query.
This decrease slows down at 5 or more keywords in a
query. That is, a query containing 1-5 keywords cre-
ates ranks that are less stable and, thus, less accurate
than queries containing 6-10 keywords. This behavior
is expected because, as the number of keywords in a
query increases, the query becomes less ambiguous.

We conclude that, as the number of keywords in
the queries increases, the more stable the ranking of
documents becomes which, in turn, makes the ranking
algorithm more accurate. From Figure 8 and Figure 9,
we conclude that the number of keywords in a query
should be at least 5.

5.3 Appropriate Size of the
Term-frequency Table

With the policy that a requesting node retrieves only
a numberT of entries from a document’s term-
frequency table, the question remains: What is an
appropriate size of the term-frequency table? The
graph in Figure 10 depicts the mean number of po-
sition changes, as a function of the size of the term-
frequency table, among a set of documents between
the 20th percent time and the 80th percent time in the

Figure 10: The mean number of position changes of the
rank of the documents in a document set, as a function of
the size of the term-frequency tables of the documents in
the document set.

cumulative distributionP(X ≤ x) for a documentd,
shown in Figure 8. The set of documents consists of
documents of various lengths.

From the graph in Figure 10, we see that the mean
number of position changes of the rank of a docu-
ment in a document set is the least when the term-
frequency table contains about 200 terms (entries). A
term-frequency table of size 200 is a good choice, par-
ticularly for a set of documents with various lengths.
A term-frequency table of size 200 diminishes the
occurrence of erratic document length biases in the
ranking process which are responsible for the insta-
bility of ranking. Thus, to achieve stability and ef-
fective behavior of the ranking algorithm, the size of
the term-frequency tables should be around 200 for
reasonsable size documents.

6 RELATED WORK

Although a lot of research has been conducted on
ranking formulas, very little research has been con-
ducted on distributed ranking algorithms. We discuss
some of this research below.

The Lucene ranking formula (Lucene, 2009) is
used in the Apache Web server, and several groups of
researchers (Cohen et al., 2007; Perez-Iglesias et al.,
2009) have proposed improvements to it. We adopt
many of the improvements they suggest in our rank-
ing formula to improve its effectiveness and accuracy.
However, the scoring they consider is targeted toward
traditional centralized search engines, and is not dis-
tributed. In their systems, all of the available infor-
mation is located in one central location, rather than
being distributed among many nodes as in iTrust.

The vector space model (Lee et al., 1997) has been
widely used for ranking, by the information retrieval
research community. The vector space model allows
a document that contains a subset of the query terms

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

206



to be ranked relatively high if the terms in the subset
occur infrequently in the entire corpus but frequently
in the document.

PlanetP (Cuenca-Acuna et al., 2003) is a content-
based, peer-to-peer search system that uses the vector
space model. Nodes store vectors locally, but gossip
digests of their local content. Queries are evaluated by
first ranking the nodes and then evaluating the queries
at the top-ranked nodes.

Other researchers (Gopalakrishnan et al., 2007)
have extended a class of well-known information re-
trieval ranking algorithms to decentralized systems,
including both structured and unstructured networks.
Their distributed ranking algorithm for keyword-
based queries employs approximation techniques that
use the vector space model and uniform random sam-
pling to estimate term weights. Their sampling-based
algorithm has the advantage that the cost of the algo-
rithm remains constant as the size of the network in-
creases. However, it does not address the possibility
of malicious nodes, like our distributed ranking algo-
rithm for iTrust does.

The TileBars system (Hearst, 1995) allows a user
to view the length of the retrieved document, the
number of query terms in the document, and the fre-
quency of each term. Our distributed ranking algo-
rithm for iTrust allows the requester to retrieve the
term-frequency table from the source node and view
it, in relation to the requester’s query. Based on the
term-frequency tables obtained from different source
nodes, it ranks the documents at the requester. The
user can then retrieve the documents of interest. The
TileBars system allows the user to view the placement
of terms in the text and the overlapping of terms in the
document, which currently our distributed ranking al-
gorithm for iTrust does not do.

Other researchers (Kalogeraki et al., 2002) have
described an intelligent search mechanism for dis-
tributed information retrieval for the Gnutella file
sharing network (Gnutella, 2000). Their mechanism
requires a node in the network to maintain profiles of
the peers that are directly connected to it. A profile
contains the most recent past responses of the peer.
A peer ranks its peers using the profiles and a spe-
cific query, and then sends the query to the peer that
is most likely to provide an appropriate response. Un-
like our distributed ranking algorithm for iTrust, their
mechanism does not consider malicious nodes that at-
tempt to undermine or scam the system by falsifying
or exaggerating information.

The Distributed WWW Index Servers and Search
Engine (D-WISE) (Yuwono and Lee, 1997) consists
of a set of index servers, instead of a single index
server. D-WISE addresses the scalability issue that

arises in the case of a single index server due to the
large number of documents on the Web. In iTrust, we
carry this idea further in that every source node acts
as an index server. However, for iTrust, the issue is
not so much scalability as it is trust. A single index
server might be malicious and might demote or cen-
sor documents and might promote its own documents
to higher ranks. Therefore, in our distributed ranking
algorithm for iTrust, the requester is given the respon-
sibility of scoring and ranking the documents from
different source nodes, based on its query.

Other researchers (Melnik et al., 2001) have con-
structed a distributed inverted index for a collection
of Web pages. The inverted index consists of a set of
inverted lists, one for each word (index term) in the
collection. The inverted list for a term is a sorted list
of locations where the term appears in the collection.
A location consists of a page identifier (which might
include the number of occurrences of the term in the
page) and the position of the term in the page. To
speed up index construction, the system uses pipelin-
ing. However, their focus is somewhat different than
ours, and they do not consider malicious nodes.

Other researchers (Shi et al., 2003) have described
Open System PageRank and two distributed page
ranking algorithms, derived from the Page-Rank al-
gorithm used by the centralized Google search engine
(Page et al., 1998). Page ranking is based on the idea
that, if a pageP1 has a hyperlink to another pageP2,
thenP1 is implicitly conferring some kind of impor-
tance toP2. The distributed page ranking algorithms
employ a set of page rankers. To divide the Web pages
among the page rankers, a hash code of the URLs is
used. Because the system is iterative, synchronization
messages must be sent periodically between the page
rankers. The distributed ranking algorithms are in-
tended for structured peer-to-peer networks, whereas
iTrust is an unstructured peer-to-peer network, which
lacks the hyperlink structure for page ranking and,
thus, must employ other ranking mechanisms.

Like our distributed ranking algorithm for the
iTrust system, many of the systems described above
perform indexing prior to search. However. in iTrust,
the indexing of a document is the responsibility of
the source node and not another independent en-
tity. Moreover, some of those systems (Yuwono and
Lee, 1997; Melnik et al., 2001) use a set of index-
ing servers to index the documents and process the
queries. In iTrust, all of the source nodes serve as the
indexers for the documents they hold and the request-
ing nodes perform the ranking based on the queries
that they have made.

A�Distributed�Ranking�Algorithm�for�the�iTrust�Information�Search�and�Retrieval�System

207



7 CONCLUSIONS

We have presented a distributed ranking algorithm
for the iTrust information search and retrieval sys-
tem. A source node that publishes a document in-
dexes the words in the document and produces a term-
frequency table for the document. It also distributes
metadata and the URL for the document to a set of
randomly chosen nodes in the iTrust network. A re-
questing node issues a query containing keywords to
a set of randomly chosen nodes in the iTrust network.
For all responses that the requesting node receives
for its query, the requesting node retrieves the term-
frequency tables from the source nodes. It then uses
the term-frequency tables to score the documents with
respect to its query using a ranking formula. Finally,
the requesting node retrieves the documents of inter-
est from the source nodes. Our evaluations of the dis-
tributed ranking algorithm for iTrust demonstrate that
it exhibits stability in ranking documents and that it
counters scamming by malicious nodes.

The distributed ranking algorithm for iTrust pre-
sented in this paper ranks the documents in terms of
their relevance to the query. In the future, the repu-
tation of a document or the reputation of the source
node holding the document might be taken into ac-
count when scoring the document. Future work also
includes evaluating the distributed ranking algorithm
on a larger and more varied set of documents. It
also includes postulating additional schemes that ma-
licious nodes might use to gain an unfair advantage in
the ranking process and devising countermeasures to
those malicious schemes.

ACKNOWLEDGEMENTS

This research was supported in part by the U.S. Na-
tional Science Foundation under grant number NSF
CNS 10-16193 and by an REU supplement to support
the first author.

REFERENCES

Badger, C. M., Moser, L. E., Melliar-Smith, P. M.,
Lombera, I. M., and Chuang, Y. T. (2012). Declus-
tering the iTrust search and retrieval network to in-
crease trustworthiness. InProceedings of the 8th In-
ternational Conference on Web Information Systems
and Technologies, pages 312–322.

Chuang, Y. T., Michel Lombera, I., Moser, L. E., and
Melliar-Smith, P. M. (2011). Trustworthy distributed
search and retrieval over the Internet. InProceed-

ings of the 2011 International Conference on Internet
Computing, pages 169–175.

Cohen, D., Amitay, E., and Carmel, D. (2007). Lucene
and Juru at Trec 2007: 1 million queries track.
In Proceedings of the 16th Text REtrieval Con-
ference, http://trec.nist.gov/pubs/trec16/papers/ibm-
haifa.mq.final.pdf.

Cuenca-Acuna, F. M., Peery, C., Martin, R. P., and Nguyen,
T. D. (2003). PlanetP: Using gossiping to build
content addressable peer-to-peer information sharing
communities. InProceedings of the 12th Symposium
on High Performance Distributed Computing, pages
236–246.

Gnutella (2000). http://gnutella.wego.com/.
Gopalakrishnan, V., Morselli, R., Bhattacharjee, B., Kele-

her, P., and Srinivasan, A. (2007). Distributed ranked
search. InProceedings of High Performance Comput-
ing, LNCS 4873, pages 7–20. Springer.

Hearst, M. A. (1995). TileBars: Visualization of term dis-
tribution information in full text information access.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 59–66.

Kalogeraki, V., Gunopulos, D., and Zeinalipour-Yazti, D.
(2002). A local search mechanism for peer-to-peer
networks. In Proceedings of the Eleventh Inter-
national Conference on Information and Knowledge
Management, pages 300–307.

Lee, D. L., Chuang, H., and Seamons, K. (1997). Document
ranking and the vector space model.IEEE Software,
14(2):67–75.

Lucene (2009). http://lucene-apache.org/java/docs/.
Melliar-Smith, P. M., Moser, L. E., Michel Lombera, I., and

Chuang, Y. T. (2012). iTrust: Trustworthy informa-
tion publication, search and retrieval. InProceedings
of the 13th International Conference on Distributed
Computing and Networking, LNCS 7219, pages 351–
366. Springer.

Melnik, S., Raghavan, S., Yang, B., and Garcia-Molina,
H. (2001). Building a distributed full-text index for
the Web.ACM Transactions on Information Systems,
19(3):217–241.

Michel Lombera, I., Moser, L. E., Melliar-Smith, P. M., and
Chuang, Y. T. (2013). Mobile decentralized search
and retrieval using SMS and HTTP.ACM Mobile Net-
works and Applications Journal, 18(1):22–41.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998).
The PageRank citation ranking: Bringing order to
the Web. InTechnical Report, Stanford University
Database Group.

Perez-Iglesias, J., Perez-Aguera, J. R., Fresno, V., and Fe-
instein, Y. Z. (2009). Integrating the probabilistic
model BM25/BM25F into Lucene. InarXiv preprint
arXiv:0911.5046v2 [cs.IR].

Shi, S., Yu, J., Yang, G., and Wang, D. (2003). Distributed
page ranking in structured P2P networks. InProceed-
ings of the 2003 International Conference on Parallel
Processing, pages 179–186.

Yuwono, B. and Lee, D. L. (1997). Server ranking for
distributed text retrieval systems on the Internet. In
Proceedings of the Fifth International Conference on
Database Systems for Advanced Applications, pages
41–50.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

208


