
Adaptable Service Level Objective Agreement (A-SLO-A) for Cloud
Services

Stefan Frey, Claudia Lüthje, Ralf Teckelmann and Christoph Reich
Furtwangen University, Faculty of Computer Science, Furtwangen, Germany

Keywords: SLA, Cloud Computing, Adaptive SLAs, Adaptable SLA Language Format.

Abstract: Reducing IT costs by using Cloud Computing is tempting for start up companies. To attract companies to
outsource their services to Clouds, Cloud provider need to offer Service Level Objectives specified in SLAs
individually for their customers. Cloud provider like Amazon can not afford to negotiate individual SLAs man-
ually. Therefore, it becomes important to develop a format for machine-readable SLAs which can easily adapt
to the individual Service Level Objectives requested by the customer any time. Because of its adaptability at
run time by each individual customer on demand, this comply with the characteristics of Cloud Computing
and to satisfies the customer’s requirements to be flexible. This paper describes an adaptable Service Level
Objective Agreement (A-SLO-A) format being machine-processed to offer the possibility to integrate the SLA
management into the highly automated processes of resource provisioning. Use cases show its applicability.

1 INTRODUCTION

Cloud providers do offer guarantees for QoS charac-
teristics like, bandwidth, data backup, etc on a best-
effort principal. But business requires QoS, moni-
toring and control of the Cloud services at any time,
as stated in the ”Architecture of Managing Clouds”
(Distributed Management Task Force, 2010) and oth-
ers e.g. Study Group Report of Cloud Computing
(ISO/IEC SC 38 Study Group, 2011).

Service Level Agreements (SLAs) are required
by the business customer to ensure risks and service
qualities are prevented respectively provided in the
way the customer wants. The the most a provider
offers is a global SLA for all customers. This is
insufficient because the individual customer require-
ments are not considered. The classical, manual ne-
gotiation process for SLAs is simply not feasible,
either, considering the quick and easy way of re-
sources allocation on demand. Cloud Computing
needs more flexibility and adaptability, which can be
accomplished by machine readable dynamic change-
able SLAs. Thereby an integration of the SLA man-
agement into the automated process of resource allo-
cation is required. Furthermore a transformation of
the negotiations, agreement of guarantees, implemen-
tations, monitoring and reactions of violations of the
SLAs must be achieved by technical measures.

Figure 1 depicts, how easy it could be for a cus-

tomer to change requirements (Service Level Objec-
tive (SLO)) for the Cloud service needed.

Figure 1: GUI for specifying customer SLOs.

After discussing related work in Section 2, the
new approach for SLA representation is described in
Section 3 and justified by a reference implementation
shown in Section 4. Section 5 illustrates applications
by presenting some major use cases and a conclusion
is drawn in Section 6.

2 RELATED WORK

As more and more companies are starting to use
Cloud services the need for SLAs is growing stronger.
NIST (Liu et al., 2011) has pointed out the necessity
of SLAs, SLA management, definition of contracts,
orientation of monitoring on Service Level Objects

457Frey S., Lüthje C., Teckelmann R. and Reich C..
Adaptable Service Level Objective Agreement (A-SLO-A) for Cloud Services.
DOI: 10.5220/0004356604570462
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 457-462
ISBN: 978-989-8565-52-5
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



(SLOs) and how to enforce them. However a clear
definition of a reference of a specific format is miss-
ing. This is also the case with the Internet Engineer-
ing Task Force (IETF) (Khasnabish et al., 2010). Be-
sides these approaches of the companies and organi-
zations there are further efforts to develop and to real-
ize Cloud management architectures and systems. A
basic discussion can be found in Service Level Agree-
ments for Cloud Computing (Happe et al., 2011), but
is mainly concerned about SLA definitions and nego-
tiations.

In 2003 IBM developed the Web Service Agree-
ment Language (WSAL) (Ludwig et al., 2003) with
the focus on performance and availability metrics, but
lacks expressiveness and therefore is simply not pow-
erful enough. Also the required flexibility is missing,
which is needed for dynamical changes at run time.
WSAL has been mainly developed for Web services,
the usage in other fields is questionable. It shows sig-
nificant shortcomings regarding content as it was fo-
cused mainly on technical properties. The structural
requirements, however, are met as discussed in Spill-
ner (Spillner et al., 2009).

WS-Agreement (WS-A) was developed by the
Open Grid Forum in 2007. The newest update, which
is based on the work of the European SLA@SOI
project, was done in 2011. The advantages are the ex-
pandability and the adaptability which is, on the other
hand, also one of its greatest disadvantages, because
it has not been specified in details by Kearney (Kear-
ney et al., 2011). Based only on technical transforma-
tions, structural transformations have not been taken
into account.

Although it has been enhanced within the
SLA@SOI project (SLA@SOI, ) the development is
unclear, because the SLA@SOI project developed its
own format SLA(T), which is supported by the Euro-
pean IT industry. A comprehensive project result has
been published on their web page but so far no inde-
pendent analysis of the advantages or disadvantages
of the SLA(T) format is available. SLA(T) provides
all structural requirements of SLAs and it has the
greatest intersection with regard to content. Therefore
we choose SLA(T) as the basis of the proposed ap-
proach in this paper. Further it should be accentuated
that a meta model SLA* is defined which simplifies
the extension and adaptability for SLA(T).

The Foundation of Self Governing ICT Infrastruc-
tures (FOSll)-Project (FOSII Team, 2012) is another
research project which aims at the usage of autonomic
principals for information and communication sys-
tems. Self determining infrastructures should be re-
alized and made available through Cloud based ser-
vices. Within the LoM2HiS autonomic SLA manage-

ment is realized by translation of system parameters
to abstract KPIs and SLOs (Brandic et al., 2009). The
SLA specification is based on WSAL. Also the exist-
ing monitoring tools are only designed for monitoring
of the system, but not for SLAs.

3 ADAPTABLE SERVICE LEVEL
OBJECTIVE AGREEMENT
(A-SLO-A) FORMAT

The reference implementation of the A-SLO-A for-
mat is based on the abstract SLA* model, developed
within the SLA@SOI project. The SLA* model is
an abstraction layer and follows the description of
the Meta Object Facility (MOF), specified by the Ob-
ject Management Group (OMG). The MOF describes
a special meta data architecture and itself uses the
highest abstraction layer M3. The SLA* model is
on layer M2, this corresponds to the Platform Spe-
cific Model (PIM). The A-SLO-A Format is one ab-
straction layer below (M2). This describes the Plat-
form Specific Model (PSM). So the A-SLO-A For-
mat is on the same level like SLA(T) description of
the SLA@SOI project, as shown in Figure 2. In the
reference model A-SLO-A, the primitive data types of
the SLA* model have not been used, instead the EMF
data types of the Eclipse Module Ecore are used. This
was necessary to get a functional prototype.

Figure 2: Model based development of A-SLO-A.

The main goal of the format is to develop
adaptable, adequate machine readable agreements
which are legally binding. To get customer-oriented,
runtime-adaptable SLAs the structure is divided into a
static and a dynamic part. The static part contains the
contract partner IDs, addresses, etc. while the more
interesting dynamic part focuses on SLOs like scal-
ing limits, backup periods, etc. This dynamic SLA
part must be monitor-able and is controlled by the
customer.

Within the A-SLO-A format its possible to define

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

458



Figure 3: Overview of A-SLO-A format.

Top-Level SLAs and A-SLO-Agreements (A-SLO-
As) which are single and dedicated for each SLO.

Top-Level-SLA to a SLO All Top-Level SLAs and
A-SLO-Agreements are based on an appropriated
template (see Figure 3). Also a Top-Level SLA al-
ways is displayed by a service which can have one
or more interfaces, which are the base of the agree-
ment. In contrast A-SLO-As are not based directly on
a service. Here technically or contractually responsi-
bilities can be modeled. Resulting characteristics of
the model are:

� Technical services are characterized by a one to
one assignment from a Top-Level-SLA to an SLO
template, called service oriented SLO template.
Also A-SLO-A templates can be referenced to an-
other A-SLO-A template and build a hierarchy.

� A-SLO-As can be grouped by a higher A-SLO-A
or a Top-Level SLA, building a hierarchical tree
where each entity is referenced to the next higher
A-SOL-A with an UUID and a naming conven-
tion.An entity directly references the low A-SLO-
A and monitoring can be done over all.

Top-Level SLAs and Top-Level SLA Templates.
Basically Top-Level SLA comprehend all the static
contractual information and only a few dynamic in-
formation. Also references can be made to link out-
sourced documents like general terms and conditions.
A Top-Level SLA necessary must contain informa-
tion about accounting of services, IT continuity plans,
service development plans, terminology, escalation
plans, guidelines for priorities, responsibilities of both
customer and company, data of both parties, service
times, accomplishment penalties, signing, an ID, how
reports have to been done and how they are displayed
and in which frequency, the interfaces with IDs and
descriptions, references of A-SLO-As with UUID and
naming conventions, and the termination reason.

For a legally binding A-SLO-A it has to con-
tain an A-SLO-A identifier, contact data and service
times. Also the SLO itself with an ID, a value and
data type which has exactly one interface, the prior-
ity and boundary and marginal values has to be in-

cluded. The A-SLO-A also should contain the A-
SLO-A reference, the accounting, accomplishment
penalties, monitoring, how and with with interface it
is done, how the reporting is done and the termination
clause.

Workflow for a Top-Level SLA or A-SLO-A. To
generate a Top-Level SLA or a A-SLO-A , the cus-
tomer first has to fill in the customer basic informa-
tion, service times, how it will be payed for and how
the reporting should be done with which interfaces. In
case of a A-SLO-A there also has to be filled in how
it should be monitored. After that a decision is made
whether if its an standard template or a customer ori-
ented template. For a standard template all informa-
tion will be checked and if necessary it is asked for
correction. Otherwise if its an customer oriented tem-
plate, it is asked for a special template. If the value
verification is accepted at the Top-Level SLA, all A-
SLO-A are filled in and the inferior references are
build. At the A-SLO-A template the reference to the
higher entity is build directly. After that the templates
gets signed and the contract is ready.

The incident an change management is mapped as
a inferior grouped A-SLO-A, so they can be used as
KPI. An extension of conditions and modality can in-
volve more actions, which always have a condition,
guidelines and postcondition, which describe how the
action will be triggered.

4 REFERENCE
IMPLEMENTATION

The SLA Format implementation was done at HFU in
the cloud research center (Cloud Research Center, ).
There have been made many extensions to the SLA
Templates proposed by the SLA@SOI project. One
important part of a SLA Template is the extension
of the attribute Type. It differs from the Type of the
SLA Template by the possibility to have 3 values: top-
level, service and customer. This causes an ’IF’ clause
to load a concrete structure into the SLA template or
SLA. This means, when Type is either service or cus-
tomer it is an A-SLO-A Template or A-SLO-A. For
the unique identification the UUID attribute is used.
Also the model version can be found in the attribute
modelVersion. The following subsections discuss the
main features of the A-SLO-A Model in more detail.

SLAs and SLA Templates. There are two seg-
ments, that contains the documentation part of the

Adaptable�Service�Level�Objective�Agreement�(A-SLO-A)�for�Cloud�Services

459



SLA/A-SLO-A Templates. The first segment descrip-
tions keeps the general terms of the agreement. The
second segment fuDocs (short for further Documents)
contains the interface description. Both structures
will be described later. Normally it is possible to use
SLA and SLA Templates without an agreement term
segment, but for compatibility reasons to SLA* re-
spectively SLA(T) this segment is included.

Description of Agreements. The class Agreement
Description as the segment description of SLA tem-
plates and SLA has its own structure, which differs
from the SLA* model. In the A-SLO-A Format the
segment descriptions contains exactly one element of
the class Property with the segment entries. These en-
tries use the class Entry, which has two attributes key
and value. The attribute key contains the type of the
following document in the attribute value. The type
can be either a CoverageDescr, a AgrementDescr or
a Disclaimer. The information itself is stored in the
attribute value.

Signatures in SLAs and SLA Templates. New at-
tributes are in the class SLATemplate the segment
ProviderSignature and in the class SLATemplate the
segment customerSignature. These containe the sig-
nature of the corresponding party, for signing a
SLA online. If the SLA is accepted by the cus-
tomer/provider, the signature will be added to the SLA
(segment customerSig) and/or SLATemplate (segment
providerSig).

Interface Declaration. The interface declaration is
part of the service description and is used to connect
the interfaces of a service and the SLOs. Also this is
needed for the reference of further documents. There
are two ways to implement that useing the abstract
class interface. First the class ResVersion is used to
keep further external documentation in the segment
endpoints. The class Endpoints contains the three
attributes location, id and protocol, to describe how
to access the document. The location represents the
location of the file, for example an URL, the proto-
col states the required protocol to access the file, for
an URL this could be HTTP or HTTPS. The id con-
tains an unique identifier for the document. The at-
tribute refProvider describes, who deposit the docu-
ment. Also the segment interface is represented by
the class with the same name, which contains through
the class ResourceType the type of the document. This
is in uppercase the type of the document. For exam-
ple for an PDF document the shortcut ’PDF’ is used.
Second the class SpecVersion, that can be defined by

Figure 4: Overview of Agreement Terms.

WSDL (Web Service Description Language). This is
also part of the SAL* interface specification.

Aggreement Terms. The AgreementTerm segment
is the core part of the SLA* Agreement because it
contains the states GuaranteedStates and the result-
ing actions GuaranteedAction and is a segment of
SLATemplate. A state describes the relation between
a SLO and a measure point based on an interface and
in general contain an attribute priority. Both (stats
and actions) have conditions. Thereby actions must
have a precondition and a postcondition, while a state
can have many preconditions. The representation of
conditions happens by the ground expressions of the
SLA* model. The actions have an attribute actorRef.
This field contains the unit, which is responsible to
work on it. The class AgreementTerm is contained in
the segment term of the top level SLAs or A-SLO-As.
This is a difference between the SLA* model and the
A-SLO-A Format. Important is the fact, that the class
AgreementTerm can have only the segment Guaran-
teedStates, when the type is not top-level. Therefore
three state rules exist: (1) Top-Level SLA (Template)
hold no states, (2) A-SLO-A (Template) hold one or
more states, and (3) A-SLO-A (Template) without
a state is a group KPI. For ActionRules it is essen-
tial that a Top-Level SLA (Template) or a A-SLO-A
(Template) can hold any number of actions.

Dependencies. The Dependencies of the docu-
ments itself are solved simply with the classes De-
pendency and Property. Also there are no existing
solutions in the SLA* model or SLA(T). The idea be-
hind this is, to set the documents itself in relation. All
Agreement Terms can have many superordinate (seg-
ments depending) and subordinate (segments ante-
ceding) Terms over the class Dependency as segment
dependency. To store the information below the class
Dependency the class Property is used. The attribute
key contains the name and the attribute value refer-
ences the document either as URI or as UUID. Also

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

460



rules can be applied. Important is the CustomerSLO-
ARule, which allows for non customer A-SLO-A (see
attribute type) only exactly one entry for anteceding.
This structure is quite simpler than the mechanism in
the SLA* model.

Service Level Objectives (SLOs). SLOs contain
two components: The first component is the declara-
tion of objectives and its values and the thresholds. A
threshold will be defined by the variable declaration.
This is a mechanism to define a name, a value and a
data type. Also the threshold values will be added,
so that all required information are available. The
state definition creates a connection between the val-
ues defined in the SLO and at the runtime estimated
value (measure point). The second component of the
SLAs is the state definition. This is done by the class
GuaranteedState, which has a Priority, and is an op-
tional set. This class connects the values defined in
the SLO and the measured real time values. These in-
formation are called measure point. Important is that
the name of a defined interface and a UUID of a top
level template are required. This relation is known by
the SAL* model but was extended. An association to
an interface of a A-SLO-A is possible by storing an
UUID of the top level SLA.

Action Definitions. The next part are the actions
of the A-SLO-As. In general there are two different
types: Business Level Guaranteed Actions and Pric-
ing Business Terms. The first one is from the point of
view of system functionality and is used for the ser-
vice provision. In that terms and templates are stored
as well as information that describes the execution of
the system functionality. When an event happens, this
information describes all further steps, which must be
executed. For example this could be an agreement
between provider and customer about the start time
of the monitoring or describe the automatic sending
of messages after an incident.

Business Level Guaranteed Actions. The Busi-
ness Level Guaranteed Actions has currently moni-
toring and reporting actions implemented. The mon-
itoring classes are extended for the A-SLO-As. Also
the attribute ParameterSource was added, which al-
lows to recognize properties through their names, data
types and its source (UUID). Also frequencies for the
definition of report, aggregation and acquisition inter-
vals have been added for triggering actions. For ex-
ample: onEvent: an event trigger, onTime: a constant
time stamp, perJob: runtime of a job, or perVolume:
volume of a resource (e.g. 30GB disk space is full).

A major change is the relation to the class Param-
eter. This was changed to composition with the 1:n
relation, where n must be at least 1. This allows the
declaration of multiple parameters and together with
the source of the parameter (SourceParameter) it is
possible to assign values of the depended A-SLO-As.

5 USE CASES

To illustrate possible applications this section presents
use cases and gives the corresponding sample imple-
mentations. Cloud Computing hugely benefits of the
underlying self-serve principle. Therefore it is par-
ticular important to give customers the possibility to
fill in the SLO templates with only a few steps and in
an self-explanatory way. The following use cases will
show the modeling possibilities of A-SLA-A:

Availability Use Case. For the first use case we as-
sume that a customer runs a Cloud application on an
specific regular basis. Therefore he wants to ensure
that the resources are available for this specific times
and can be used. We assume that the customer al-
ready has completed the initial process of creating a
valid SLA with an provider for the service. The con-
tract thereby covers the specific service times, in this
case every friday from 14:00 to 18:00. For repeating
ServiceTimes the customer additionally specifies an
interval and the associated day or calendar date. The
resulting XML file can be seen in Figure 5.

Lets assume due to the changing business environ-
ment the customer would like to change the created
SLA, because he needs the same service to be avail-
able on every wednesday from 09:00 to 14:00. There-
fore the customer loads the existing SLA and adapts
the ServiceTime so that his new requirements are met.
This however requires that the newly chosen param-
eters are inside the limitations given by the provider
and are valid. The validation is done automatic within
the adjustment tool. Did the validation succeed, the
SLA gets signed online by both parties and is then
legally binding. In the case of mismatching customer
demands and provider offerings the SLA can not be
signed and a manual negotiation process has to be per-
formed.

Additional KPI Use Case. As exemplary second
use case a customer cloud want to extend an exist-
ing SLA in order to match the advanced or varied re-
quirements of his services, so the service quality can
be better monitored and ensured. In such a case the
customer would want to add an additional KPI to the
existing SLA. That means another it AgreementTerm

Adaptable�Service�Level�Objective�Agreement�(A-SLO-A)�for�Cloud�Services

461



Figure 5: ServiceTime XML file.

has to be added to the SLA. Inside this it Agreement-
Term the it GuaranteedState, itGuaranteedAction, etc.
have to be specified, and a it ServiceLevelObjective
has to be created. For example if a customer wants
to add a guarantee for the minimum bandwidth his
service can use, the KPI and the corresponding it in-
terfaceDeclr can be easiliy added by using the graph-
ical interface like shown in Figure 1. Therefore the
customer chooses a representing KPI from an list of
available KPIs, fills in the appropriate values and so
adds the new contract clause to the existing SLA.
Again it has to be checked if newly added KPI val-
ues are within the providers range of offerings or not,
and based on that be signed online.

In terms of a pricing model providers could give
certain offers in regard of predefined KPI ranges. In
this way a provider would be able to achieve a bet-
ter resource allocation and usage prediction, while
customers could easily choose upon these predefined
sets.

6 CONCLUSIONS

In this paper we demonstrated how adaptable SLA
management is essential for companies that want
to use Cloud services and complies with the Cloud
Computing self-service, on-demand characteristics to
change SLAs during runtime. High utilization of the
infrastructure for the provider and an ideal pay per
use basis for the companies can therefore be achieved.
With A-SLO-A it is possible to get customer specific
SLAs automated in acceptable conditions for both

parties. But to get an economical efficient adapta-
tion, more automation is essential. It has been shown,
that the new adaptable SLA Agreement (A-SLA-A)
language can model static SLA information and dy-
namic SLA objectives to be the basis of an adaptable
SLA management. Use cases have been presented to
visualize the power of the A-SLA-A.

REFERENCES

Brandic, I., Music, D., Leitner, P., and Dustdar, S. (2009).
Vieslaf framework: Enabling adaptive and versatile
sla-management. In Proceedings of the 6th Inter-
national Workshop on Grid Economics and Business
Models, GECON ’09, pages 60–73, Berlin, Heidel-
berg. Springer-Verlag.

Cloud Research Center. University of Applied Science Furt-
wangen. http://www.wolke.hs-furtwangen.de.

Distributed Management Task Force (2010). Architecture
for managing clouds. http://dmtf.org.

FOSII Team (2012). Foundations of self-governing ict
infrastructures website. http://www.infosys.tuwien.
ac.at/linksites/FOSII.

Happe, J., Theilmann, W., Edmonds, A., and Kearney, K.
(2011). Service Level Agreements for Cloud Comput-
ing, chapter A Reference Architecture for Multi-Level
SLA Management, pages 13–26. Springer-Verlag.

ISO/IEC SC 38 Study Group (2011). Jtc 1/sc 38 study
group report on cloud computing. Technical re-
port, International Organization for Standardization.
http://isotc.iso.org.

Kearney, K. T., Torelli, F., and Kotsokalis, C. (2011). Sla*:
An abstract syntax for service level agreements. 11th
IEEE/ACM International Conference on Grid Com-
puting, pages 217–224.

Khasnabish, B., Chu, J., Ma, S., Meng, Y., So, N., and Un-
behagen, P. (2010). Cloud reference framework. Tech-
nical report, Internet Engineering Task Force. http://
tools.ietf.org/ html/ draft-khasnabish-cloud-reference-
framework-00.

Liu, F., Tong, J., Mao, J., Bohn, R. B., Messina, J. V., Bad-
ger, M. L., and Leaf, D. M. (2011). Nist cloud comput-
ing reference architecture. Technical report, National
Institute of Standards and Technology.

Ludwig, H., Keller, A., Dan, A., King, R. P., and Franck,
R. (2003). Web Service Level Agreement (WSLA)
Language Specification, v1.0.

SLA@SOI. SLA@SOI projekt website. http://
sla-at-soi.eu/.

Spillner, J., Winkler, M., Reichert, S., Cardoso, J., and
Schill, A. (2009). Distributed contracting and mon-
itoring in the internet of services. In Proceedings
of the 9th IFIP WG 6.1 International Conference
on Distributed Applications and Interoperable Sys-
tems, DAIS ’09, pages 129–142, Berlin, Heidelberg.
Springer-Verlag.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

462


