
Migrating to the Cloud
A Software Product Line based Analysis
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Abstract: Identifying which part of a local system should be migrated to a public Cloud environment is often a difficult
and error prone process. With the significant (and increasing) number of commercial Cloud providers, choos-
ing a provider whose capability best meets requirements is also often difficult. Most Cloud service providers
offer large amounts of configurable resources, which can be combined in a number of different ways. In the
case of small and medium companies, finding a suitable configuration with the minimum cost is often an es-
sential requirement to migrate, or even to initiate the decision process for migration. We interpret this need as
a problem associated with variability management and analysis. Variability techniques and models deal with
large configuration spaces, and have been proposed previously to support configuration processes in industrial
cases. Furthermore, this is a mature field which has a large catalog of analysis operations to extract valuable
information in an automated way. Some of these operations can be used and tailored for Cloud environments.
We focus in this work on Amazon Cloud services, primarily due to the large number of possible configura-
tions available by this service provider and its popularity. Our approach can also be adapted to other providers
offering similar capabilities.

1 INTRODUCTION

Infrastructure as a Service (IaaS) enables the dy-
namic provisioning of computational & data re-
sources (often on-demand), and as an alternative
to private and expensive data centers. Recently, a
number of companies are deciding whether to mi-
grate their internal systems to a Cloud environment,
or to utilise Cloud-based infrastructure directly for
building and deploying new systems. Among other
benefits, IaaS reduces costs (for short term work-
loads), speeds up the start-up process for many com-
panies, and decreases resource and power consump-
tion. However, there are a number of providers cur-
rently available – Cloud Harmony (clo, ) identifies
over 100 public Cloud providers currently on the mar-
ket. As each user/company intending to make use of
Cloud computing infrastructure is likely to have their
own (specific) requirements, a process is necessary to
identify the most relevant provider and subsequently
a suitable configuration that must be used on a par-
ticular provider. In this work we focus on the sec-
ond of these requirements – i.e. better understanding
whether a requirement of a user/company can be met

through the offerings of a particular provider.
IaaS configuration process is often challenging –

due to the variety of possible options that many Cloud
providers offer (at different prices). Cloud providers
offer highly configurable IaaS capabilities, like com-
puting instance size, operating system, database type
or storage features (and recently, availability of spe-
cialist accelerators). Therefore, users have to under-
stand and navigate through a very large configura-
tion space to identify whether their particular require-
ments are likely to be met. For instance, Amazon Web
Services (AWS) provides, just for computing services
(EC2), 1758 different configurations 1. Identifying
compatibility within such a large space of possible op-
tions is a tedious and error-prone task. Although on-
line configuration and cost estimation tools are pro-
vided – such as the Amazon.com calculator (ama, ),
they do not let the users specify their preferences to
find a suitable configuration. Often within such sys-
tems a user needs to look through the various pos-
sible offerings and assess whether the capability is

1Additional information at https://dl.dropbox.com/u/
1019151/addinf.pdf
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suitable (or not) for their own requirements. Other
more user friendly approaches are also available, such
as (Khajeh-Hosseini et al., 2011) – which make use
of a spreadsheet for assessing suitability of a particu-
lar provider and possible configuration options. Such
an approach relies on a dialogue between the various
individuals within a company responsible for decid-
ing what and when to migrate to the Cloud, involving
managers, system administrators, etc. The assessment
outcome is however made manually based on the out-
come of the people-based interaction.

We consider an alternative approach in this work,
based on the observation that management of large
configuration spaces is a common task in the domain
of the Software Product Lines (SPLs). SPLs are fam-
ilies of related software products (or configurations),
which share a set of common assets. Variability mod-
els, and specifically Feature Models (FMs), are an
extended way to represent commonalities and differ-
ences of SPLs in terms of functional features. They
can also include additional information, represented
as a set of attributes, and identified as being an Ex-
tended Feature Model (EFM). In addition to repre-
senting variabilities, FMs also contain valuable infor-
mation about the configuration space they depict, e.g.,
the set of configurations they represent or the optimal
configuration given certain criteria. This information
extraction has been defined and organized by means
of a catalog of analysis operations through an Auto-
mated Analysis of Feature Models (AAFM).

We propose applying Software Product Line-
based techniques to the IaaS configuration process,
in order to overcome some of the challenges asso-
ciated with determining whether a particular Cloud
provider is able to meet a customer requirement. We
model several services of AWS as an FM, focusing
on this particular provider due to the widest range
of possible configuration options that are available
in AWS, and due to the largest user community (of
any other Cloud provider) using these services. We
have also identified analysis operations of the AAFM
to automate the search of suitable AWS configura-
tions. Although works like (Dougherty et al., 2012) or
(Schroeter et al., 2012) propose to model Cloud sce-
narios as FMs, this is the first work to use AAFM to
support a user-driven IaaS configuration process. A
prototype, the associated analysis operations, a case
study and the outcome of analysis are presented in
this paper.

Approaching the IaaS configuration process from
a SPL perspective has several benefits. The use of
EFMs provides us with a compact and easy to man-
age representation of the whole configuration space.
It also allows the user to choose by means of abstract

features and non-functional attributes, instead of se-
lecting specific AWS features. For instance, a user
would only need to specify a Linux-based operating
system and does not need to identify a particular type
(i.e. if this is the only requirement he has). Currently,
the user would need to identify a particular type, such
as Suse or RedHat, for instance. Moreover, the anal-
ysis operations of AAFM gives us support to validate
user choices and to determine suitable configuration
options. Alternatives to FMs also exist, such as the
use of spreadsheets (Khajeh-Hosseini et al., 2012), a
relational database or the development of a model in
the Unified Modelling Language (UML). Both SQL
queries and spreadsheets enable the representation of
costs depending on the required features. They are
a similar approach to the Amazon calculator (ama, ).
Given a configuration, we could identify the associ-
ated cost and other related information. However, the
opposite (and more useful) process is not possible,
i.e. given constraints about functional features and
non-functional properties (based on the requirements
of a user), obtaining suitable configurations given the
feature set and configuration options available. UML
could be an alternative to model the AWS scenario,
using class diagrams. However, UML is not oriented
to variability modelling and information extraction,
and also lacks analysis operations such as those pro-
vided in AAFM.

The rest of the paper is structured as follows: Sec-
tion 2 briefly describes the various Cloud services that
Amazon provides, while in Section 3 we present these
services modelled as a FM. Section 4 describes the
process we propose to extract information from the
AWS model. A study case is presented in Section 5 to
demonstrate how our proposed approach can be used
in practice. Related work is described in Section 6,
and Section 7 concludes the paper with a discussion
of lessons learned and possible future work.

1.1 SPL Background

SPLs (Clements and Northrop, 2002) are a software
engineering and development paradigm focused on
re-utilization and cost optimisation of software prod-
ucts. In essence, a SPL is a family of related soft-
ware products which share a set of common assets
(capabilities), but each of which can also include a
number of variations. It may be viewed as a way to
achieve mass customization, the next step after mass
production in software industry. SPLs have been ap-
plied to multiple industrial experiences and research
(Rabiser et al., 2010), including Cloud environments
(Dougherty et al., 2012). Assets, also named fea-
tures, of a SPL are represented using variability mod-
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Figure 1: Example of a FM.

els. The most common variability model used in SPL
is the FM, proposed in 1990 by K.Kang (Kang et al.,
1990). A FM is a tree-like data structure in which
each node represents a feature. All nodes taken to-
gether represent all the possible types of products
(also named configurations or variants) of the SPL.
However, not every feature has to correspond with
a specific functionality. There may be abstract fea-
tures (Thum et al., 2011), which represent domain
decisions, but not concrete functionalities made avail-
able within a particular product. A FM also may
contain attributes linked to features, representing non-
functional properties. Figure 1 is a FM that represents
general features of an IaaS provider. ComputingIaaS
is the root node, which has two children, an optional
feature (white circle) named Storage, and a manda-
tory feature (filled/black circle) named OS. Both fea-
tures present group relationships, but Storage has an
Or relationship, where one or more features should
be selected, while OS has an Alternative relationship,
where exactly one child must be selected.

FMs contain valuable information about the con-
figurations and the whole product line. From the
FM of a SPL we can deduce a number of possible
outcomes, such as the total list of possible products,
the set of common features of every product, the set
of products that meet a given criteria and the prod-
uct with the minimum associated cost. However,
analysing the FM manually is a tedious and error-
prone task, and for computers can become computa-
tionally intractable in case of large sized FMs. Hence,
various research has focused on the AAFM (Bena-
vides et al., 2005) (Benavides et al., 2010), using
modelling and constraint programming techniques.
Various analysis operations have been proposed and
implemented since 2005 (Benavides et al., 2010), sev-
eral of them usable within our approach.

2 AMAZON WEB SERVICES

Amazon Web Services (AWS) 2 provides a number of

2http://aws.amazon.com/products/

capabilities, such as the ability to execute and store
software/data in the Amazon Cloud, and on pay-
per-use basis. Amazon generally provides a per in-
stance price and has recently also started to offer a
“spot” price option (to make better use of spare ca-
pacity). Although in the last few years the number
and types of Cloud service providers has increased
(Rackspace/OpenStack, Flexiant, Microsoft Azure
are good examples), AWS still has the largest, most
configurable & mature services available on the mar-
ket – especially for IaaS Clouds. For this reason, sev-
eral PaaS and SaaS providers, like Heroku 3 or Netflix
4, run over AWS. Among others, AWS provides ser-
vices for computation, storage, databases, clusters or
content delivery. Moreover, users can choose options
like datacenter location, resource reservation or man-
aged support.

In this paper, we have focused on four of the most
well-known Amazon services: EC2 (Elastic Compute
Cloud), EBS (Elastic Block Storage) which makes
use of EC2 instances, S3 (Simple Storage Service)
for common storage, and RDS (Relational Database
Service). EC2 provides resizable computing capac-
ity, available at different instance sizes. Instances can
be reserved, or run on demand, and several versions
of Windows and Linux are available as OS. Instance
size can vary in granularity from small to extra large.
Additionally, there are instances for special needs,
which have boosted CPU, RAM, or IO performance,
and even clusters of instances. Options like detailed
monitoring of instances, data center location or load
balancing are also available. EBS provides storage
linked to the EC2 instances. Furthermore, the user can
also configure the storage as on-demand or provision-
ing IOPS (Input Output Operations per Second). For
simple storage, we can configure S3, which presents
two types of storage: standard (more durable) or re-
duced redundancy (less durable than standard). Fi-
nally, RDS provides different DB instances, in a sim-
ilar way to EC2 providing compute/CPU instances.
We can choose between different DB engines, like
Oracle, SQLServer or MySQL; instances sizes, from
a small standard instance to a high memory quadru-
ple extra large instance; deployment type, between
single or multi-availability zone deployment; config-
urable storage and reserved instances.

The two main concerns a user has when relying
on IaaS in general and AWS in particular are cost and
risk of failure. Cost is easier to measure and control.
All the configurable options have an impact on the
cost. That impact could be looked up at the AWS

3www.heroku.com
4www.netflix.com
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EC2 

usage: % month 
cu: compute units 
ram: GB 
dataOut: GB 

Requests: IOPS 
size: GB 

cost: $ 

size: GB 

Figure 2: AWS Extended Feature Model: EC2, EBS and S3.

website 5. However, risk is harder to measure and
control. AWS provides a Service Level Agreement
for some of its services, which guarantees a monthly
uptime percentage and penalties in case these uptime
guarantees cannot be met. For detailed information
about the availability, a website 6 with the current and
historical status of services is provided by AWS.

3 MODELLING AMAZON WEB
SERVICES

In this work, we have modelled Amazon EC2, EBS,
S3 and RDS as an EFM, as Figure 2 and Figure 3
show. A set of configurable aspects of the previous
services is depicted at Figure 4. Functional aspects,
like OS or instance type, have been modelled as fea-
tures, while non-functional aspects, such as cost or
usage, have been modelled as attributes. Both fea-
tures and attributes present constraints to model the
real behaviour of AWS. However, just some of them
have been represented in the figures to make these fig-
ures readable. A working version of the AWS EFM
is presented, in FaMa notation format, in Section 4.1.

The EC2 EFM is shown in Figure 2. Two main
sets of features, instance type and OS represent most
of the variability in EC2. The OS is composed by
Windows and Linux variants, while instance types
contain features such as standard, high mem, high
CPU, high IO and cluster instances. Both instance
type and OS feature groups are modelled as alterna-
tive features, i.e. only one feature within this group

5http://aws.amazon.com/pricing/
6http://status.aws.amazon.com/

must be selected. Detailed monitoring is also present
as an optional feature. EC2 feature has four attributes:
usage, ram, cu, and data out. Ram represents
the memory in GB, usage the percentage of use per
month, cu the Amazon Compute Units7, and data out
the amount of data transferred to outside AWS. Al-
though all of them are configurable, the value of cost,
ram and cu depends on the instance type and the OS.
Cost also depends on the detailed monitoring, and on
the usage attribute. These dependencies between at-
tributes and features are modelled using constraints.

EBS and S3 services are also represented in Fig-
ure 2. EBS, a child feature of EC2 in the model, is the
storage linked to EC2 instances. Its features represent
the two types of storage, standard or provisioned. The
associated attributes include cost (in dollars), storage
(in GB) size and IOPS (Input/Ouput Operations Per
Second). S3 is a child of the root feature, at the same
level of EC2. For this service, the two storage alterna-
tives, standard storage and reduced redundancy stor-
age, are represented. Cost of the S3 service, modelled
as an attribute, depends on the configured storage size,
also an attribute, of each of the alternatives.

The last group of features of Figure 2, named Spe-
cialReqs, shows a set of options to satisfy specific
user needs. They do not correspond directly with any
AWS service instance, but their selection/de-selection
implies addition/removal of other features. Prefer-
ences about IO performance, 64/32 bit OS, Solid State
Disk (SSD) storage or GPU capabilities are provided
within this group.

RDS (shown in Figure 3) contains four main con-

7A EC2 Compute Unit provides the equivalent CPU ca-
pacity of a 1.0-1.2 GHz 2007 Opteron
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RDS 

requests: IOPS 
size: GB 

cost: $ 
usage: $ 
dataOut: GB 

Figure 3: AWS Extended Feature Model: RDS.

figurable parameters: DB engine, instance class, de-
ployment type and storage capacity. Three different
engines (MySQL, Oracle ad SQLServer) are avail-
able with different licenses, and even a Bringing Your
Own License (BYOL) capability has been included.
Instances have been split into two groups: standard
class (small, large and extra large) and high memory
class (extra large, double extra large and quadruple
extra large). Two alternative deployments are avail-
able: a standard deployment, and a multi-zone avail-
ability deployment, which is maintained for planned
or unplanned outages. The storage has the same op-
tions as EBS, standard or provisioned IOPS. For the
non-functional aspects of RDS, we have defined cost,
usage, and out data attributes for the whole RDS ser-
vice, and size and IO operation attributes for the RDS
storage.

We show in Figure 4 the extra-functional aspects
related to several of the Amazon services. Both EC2
and RDS instances could be reserved for periods of
one to three years. This supposes a fixed cost per
year, but a reduced cost per hour of usage. Such a
fixed price option may be suitable for users who have
a heavy computational requirement over a longer time
frame. The location of the data center is another as-
pect that increases or decreases the price of the ser-
vices, and which we use to measure the risk associ-
ated with deployment.

Both cost and risk have been taken into account
when defining this model. Cost is represented by cost
attributes associated with EC2 and RDS. It is calcu-
lated by means of constraints, based on the informa-
tion at the AWS website, and it depends on the se-
lected features and attribute values. Risk is modelled
by considering the location, the service type and the

AWS status website. Status website has a historical
availability status (and therefore the associated down-
time) for the last month for each service and location.
We use this data to infer the values of the EC2, RDS
and S3 issue rate attribute.

Attributes and abstract features (features which do
not correspond directly to any AWS instance) are the
main reasons for making our model suitable for user
configuration. Using abstract features and attributes,
a user can express general preferences without spec-
ifying concrete AWS service instances. For exam-
ple, a user who needs an EC2 instance with high IO
performance can express it by just selecting EC2 and
HighIoPerformance features. He can also express his
RAM and CPU requirements, by identifying suitable
constraints associated with the ram and cu attributes.
In the analysis phase that follows such a requirement
description, we can search and identify the most suit-
able EC2 instance for the user.

3.1 Configuring the AWS Feature
Model

Usually, users need to configure more than one in-
stance of some of the previously presented services,
example, different EC2 (e.g. standard or cluster) or
RDS instances. Often, just one variant is not enough.
We allow a user to configure several instances, as
many as they need, of the AWS EFM. However, this
implies the total cost is now the sum of the cost asso-
ciated with every instance. We define a new attribute
named global cost, with a global scope, to store
and configure this value.

To identify a configuration that meets the user re-
quirements, it is necessary to select features, iden-
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Extra aspects 

fixedCost: $ 
EC2IssuesRate: % 
RDSIssuesRate: % 
S3IssuesRate: % 

Figure 4: AWS Extended Feature Model: Reserved instances and location.

tify constraints associated with attribute values and
define an optimisation criterion. Each configuration
instance is composed of a set of feature selections/de-
selections, and constraints associated with attribute
values. If a certain feature is needed, it should be
marked as selected. If it is forbidden, it should be
marked as removed. However, if a user does not care
about a feature, it can be left unmodified in the model.
Constraints are expressed using relational operators
(<;�;>;�;=; and 6=) to exclude or force the selec-
tion of certain values. For example, our requirements
is to find, a linux cluster with at least 15 cu, with a
cost constraint of 400 dollars, to maximise the usage.
We have to mark as selected the cluster feature, in the
group of instance type, and the linux feature, in the
group of OS type. We must also constrain the cost
to be less than 400 dollars, and set the EC2 usage at-
tribute as the maximisation criterion. If we also want
another EC2 instance (in addition and different to the
linux cluster), we have to configure another instance.

In addition to the global cost attribute, all in-
stances are linked by the optimisation criteria. Hence,
the optimisation criteria is what determines which
configuration is the most suitable for a user. This
optimisation maximises or minimises the value of a
certain attribute, which could be an instance specific
attribute, like the usage or the cu, or the global cost.

4 ANALYSIS METHODOLOGY

A key objective of this work is to identify the most
suitable AWS configuration that meets a set of user
requirements. When undertaken manually, the user
has to navigate through a very large search space – a
task that becomes untenable as the complexity of the
search space increases. In addition, it is also useful
to identify (as a boolean outcome) whether a given
provider (in this case AWS) is able to support a re-
quired capability. For example, a user requires a Red
Hat Cluster instance, but AWS does not provide sup-

port these at all. Subsequently, it is also necessary to
evaluate functional (features) and non-functional (at-
tributes and optimisation) information, and look for
the variant which best suit user requirements. To over-
come this challenges, we propose the use of AAFM
techniques.

(Benavides et al., 2010) define AAFM as the pro-
cess of ”extracting information from feature models
using automated mechanisms”. As input, a FM, an
analysis operation (e.g. filter, list, etc) and optionally
one or more configurations, are provided. Each anal-
ysis operation leads to different types of information
being retrieved from the model. Some examples are
the set of products that a FM represents, checking if a
configuration over the FM is valid, or checking if the
FM contains errors. Subsequently, depending on the
input parameters, the FM is translated into a specific
logical paradigm, like Propositional Logic, Satisfia-
bility problem (SAT) or Constraint Satisfaction Prob-
lem (CSP), and mapped to a solver. Finally, the result
is mapped again to the FM domain to present it in
a comprehensible way. The choice of the solver de-
pends on the type of analysis required over the FM–
for instance a SAT solver would be used to undertake
boolean satisfiability checking, etc.

The AAFM can include over 17 analysis opera-
tions, therefore our first step is checking if some of
these operations are suitable for our analysis require-
ments (which include configuration validation and op-
timisation). Fortunately, Valid partial configuration
and Optimisation analysis operations provide us the
analysis we need. Valid partial configuration takes a
FM and a partial configuration as input and returns
a value indicating whether the partial configuration
(identified by a user) meets the FM. When the out-
come is negative, we could also identify to the user
what changes need to be made to make the configura-
tion valid, as suggested by (White et al., 2010). The
optimisation operation takes a FM and an objective
function (involving the maximisation or minimisation
of an attribute value – such as memory, number of
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CPUs, etc) as inputs and returns the configuration ful-
filling the criteria identified by the objective function.
Figure 5 shows our proposed approach, based on the
use of AAFM, and with the support of the aforemen-
tioned operations. The inputs are the AWS model,
the user preferences (as partial configurations) and the
optimisation criteria. Using the AAFM operations,
first we ensure the user preferences are valid. If they
are, we use the optimisation operation to obtain the
most suitable configurations. Finally, the model con-
figurations are translated to AWS configurations and
returned to the user.

The standard optimisation process in AAFM takes
as inputs a FM and a optimisation criteria, and option-
ally a partial variant too – and generally returns a sin-
gle outcome. However, a user configuring AWS may
need more than one instance – for example if he needs
two EC2 or RDS instances. It is therefore necessary
to enable the user to configure as many instances as
needed as part of the optimisation operation. These
instances are related by attribute constraints and op-
timisation criteria. We have an optimisation where
the user provides several related instances which we
must identify, at the same time, and in the same search
space.

Due to the relatively large size of the search space
(involving 1758 possible configurations in AWS), the
performance of the optimisation operation is a key is-
sue. We propose a pre-processing step to obtain the
subset of variants which are able to support user re-
quirements in terms of features. Those variants which
cannot fulfill user needs are removed. For this task,
we use the filter AAFM operation, which takes as in-
put a FM and a partial variant, and returns the set of
variants including the input variant that can be derived
from the model. This subset is then used within the
optimisation operation.

We propose using Boolean Satisfiability Prob-
lems (SAT) techniques for the pre-processing phase
and Constraint Satisfaction Optimization Problems
(CSOP) techniques – both paradigms have been ex-
tensively used in AAFM. SAT provides a better per-
formance than CSP, but is limited to the use of
boolean variables. For the optimisation, we use
CSOP, a variant of the classic Constraint Satisfaction
Problem (CSP) with optimisation capabilities. A CSP
is a three tuple composed of a finite set of variables,
domains (for each variable) and constraints. CSOP
has been chosen because it has a high degree of ex-
pressivity about variable domains and operators, and
a large tools support. Additional discussion and map-
ping over SAT and CSP can be found in (Benavides
et al., 2005) and (Benavides et al., 2010).

4.1 Prototype

We have developed a prototype of the proposed pro-
cess, supporting the Valid Partial Configuration and
Optimization operations. To develop this prototype,
we have extended FaMa8 (Trinidad et al., 2008), a
Java-based tool for AAFM. FaMa includes several
plugins around a central core. The tool supports dif-
ferent variability metamodels (FMs, EFMs, Orthogo-
nal Variability Models, etc) and also reasoners, which
implement most of the defined AAFM analysis oper-
ations.

Valid Partial Configuration for EFMs is supported
by default in FaMa, we have therefore developed the
optimization operation (without pre-processing) for
multiple variants. This analysis operation receives the
AmazonEFM, a set of partial variants, an optimisa-
tion criteria, and optionally an execution time limit as
inputs, and returns the set of optimal AWS variants
found. Choco 9, one of the FaMa reasoners, is the
CSP solver we have used for the implementation. It
provides a set of heuristics, which are useful to cus-
tomise the search in complex problems like this.

The AmazonEFM is provided in FaMa text for-
mat 10. Syntax and details about the format are avail-
able in the FaMa user guide 11. We have simpli-
fied the model removing the content of figure 4, it
means, removing location and reserved instances. At-
tributes have been modelled as integer variables, and
cost variations (depending on features and attributes
selected) have been modelled as constraints. User
configuration, optimisation criteria and time limit are
specified using the FaMa programmatic interface.

5 CASE STUDY

In order to validate our configuration and analysis ap-
proach, we consider a case study involving the mi-
gration of computational resources at a University re-
search group interested in: (i) expanding their exist-
ing computational capability; (ii) using additional re-
sources to support a demand peak; (iii) understanding
the cost implications of using a Cloud environment
for hosting their computational infrastructure (with
reference to upgrading in-house resources). Fully un-
derstanding cost implications – for (iii) – is often a
difficult task in practice – as cost associated with ad-
ministrative staff has to be considered over a partic-

8www.isa.us.es/fama
9http://www.emn.fr/z-info/choco-solver/

10https://dl.dropbox.com/u/1019151/AWS.afm
11http://famats.googlecode.com/files/

FaMa%20Manual.pdf
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Figure 5: Automated analysis support for AWS configuration.

Table 1: Computational infrastructure of the research group.

Name Processor RAM Disk OS DB Usage
Labs 2.8 GHZ (1 core) 2 GB 20 GB Red hat MySQL on demand

Clinker 2.8 GHZ (1 core) 4 GB 40 GB Red hat MySQL on demand
Cluster 2.33 GHZ (8 cores) 10 GB 500 GB Linux MySQL on demand

ular time frame. This scenario has been chosen as it
is representative of a small to medium scale organisa-
tion, often operating under a tight budget, and repre-
sents on-demand computing requirements. Our inten-
tion is to check if our approach is useful in this context
and if AWS is a realistic choice for these cases.

The computing infrastructure is shown in Table 1.
Although we have four machines, we want to migrate
just two of them, the non-critical ones. These com-
puters (labs and clinker) are used for pre-production
tasks, so their usage is on-demand. Furthermore, the
group has requirements for using a cluster to execute
large experiments. Since the budget is limited, our
objective is to find the minimal cost solution that sat-
isfies these requirements.

Table 2 shows the configuration of the machines
over the AWS FM. Labs and Clinker both perform
with RedHat OS, while the cluster would require a
Linux distribution. To configure the computing ca-
pacity, a conversion to Amazon Compute Units is re-
quired. Dividing each desired CPU capacity by the
standard cu, we obtain the values in the table. RAM,
storage, and DB engine properties are translated di-
rectly. To estimate usage we calculate the hours per
month we need to make use of these resources (as fol-
lows): 40 staff working hours per week, divided by

168 hours per week, is approx. 24%. We use a value
of 30% to cover extraordinary events. For the cluster,
we estimate that the demand for experiments could
be about 10%. Finally, we have set IO operations per
month to 100 million.

Analysis results are shown in Table 3. The op-
timal cost per month, obtained after 308 seconds, is
118 + 152 + 148 = 418 $. Additional decisions also
need to be made, such as the selection of a High CPU
medium instance for labs, instead of a standard large
one. Although we require just 16 cu, we can only use
(as a minimum) an instance with 34 cu. A similar case
holds for storage capacity for EC2 instances.

Currently, the configuration process has to be
manually specified by a user – we do not provide a
user interface for interacting with the prototype. It is
useful to note that identifying the values for data out,
usage or IOPS need prior evaluation by a user. Deter-
mining what the values for these should be is often a
non-trivial process.

5.1 Performance Preliminary Results

To evaluate the feasibility of our prototype for more
realistic (larger scale) scenarios, we calculate the
overall performance associated with undertaking the

Migrating�to�the�Cloud�-�A�Software�Product�Line�based�Analysis

423



Table 2: Machines configuration over AmazonEFM.

Name OS Instance.cu Instance.ram Instance.usage Storage.size Storage.IOPS
Labs RedHat � 3cu � 2GB � 30% � 20GB � 200M

Clinker RedHat � 3cu � 4GB � 30% � 40GB � 200M
Cluster Linux � 16cu � 10GB � 10% � 500GB � 300M

Table 3: Case study analysis results.

Name EC2 Instance EC2 OS EC2.cu EC2.ram EC2.storage RDS instance Cost
Labs High CPU - M Red Hat 5cu 2GB 350GB Small 118

Clinker Standard - L Red Hat 5cu 8GB 850GB Small 152
Cluster Cluster - 4XL Linux 34cu 23GB 1690GB Small 148

analysis on the FM. Our experiment involves running
optimisation operations from one to four configura-
tions and measuring the associated time for finding
the optimal configuration(s). Experiments have been
executed on a Core 2 Duo 2.00 Ghz laptop, with 2GB
Ram and Windows 7 Business Edition OS.

Table 4 shows the preliminary performance re-
sults. As we can see, the execution time growth is
exponential for the selected optimisation operation.
For one configuration, the time is less than 6000 ms,
to 32000 ms for two configurations, and 370000 ms
for three configurations. However, identifying Valid
Partial Configuration shows a different, linear time
growth. Therefore, efforts must be focused on im-
proving the Optimisation performance.

6 RELATED WORK

Configuring and analysing Cloud plaftorms/providers
is continuing to receive significant attention from both
the research and business community. For instance,
CloudHarmony 12 is a startup which looks for obtain-
ing metrics about cloud providers performance, and
provides a comparison framework for many services
providers. PlanForCloud 13 is another startup, fo-
cused on configuring and simulating cost of several
cloud platforms, like Amazon, Azure or Rackspace.
They provide interesting options, like creating elastic
demand patterns, and filtering by options like OS or
computing needs. Increasingly, there has also been a
recognition that Cloud performance can vary signif-
icantly over time (Iosup et al., 2011) – based on the
workload currently running on a particular provider.

Several research efforts focus on optimising de-
ployment over a cloud infrastructure. (Clark et al.,
2012) propose an Intelligent Cloud Resource Alloca-
tion Service to evaluate the most suitable configura-
tion given consumer preferences. (Tsai et al., 2012)

12http://cloudharmony.com/
13http://www.planforcloud.com/

considers a similar approach, choosing between dif-
ferent Cloud providers using data mining and trend
analysis techniques, and looking for minimising cost.
In a related research, (Sundareswaran et al., 2012)
propose indexing and ranking Cloud providers using
a set of algorithms based on user preferences. (Ven-
ticinque et al., 2011) describe an approach to collect
Cloud resources from different providers that contin-
uously meet requirements of user applications. The
related work of (Borgetto et al., 2012) is oriented to
software reallocation in different Virtual Machines in
order to decrease energy consumption. Several on-
tologies have been also proposed in the last years
for cloud services discovery and selection (Androcec
et al., 2012).

Applying SPL techniques to Cloud services has
also been considered – for instance, (Quinten et al.,
2012) propose using FMs to configure IaaS and PaaS,
and also use the AAFM to extract information from
the model. In a more specific work, (Schroeter et al.,
2012) use extended FMs to configure IaaS, PaaS and
SaaS, and also present a process to manage the con-
figuration of several stakeholders at the same time.
(Dougherty et al., 2012) also uses FMs to model IaaS,
but the goal in this case is reducing energy cost and
energy consumption, towards the development of a
“Green Cloud”. In a different way, (Cavalcante et al.,
2012) proposes the extension of traditional SPL with
Cloud computing aspects. Our work differs from
these approaches in two key ways: (i) we focus on
one specific provider – to better understand the range
of capabilities that this provider offers. We have cho-
sen AWS as it is the most widely used and config-
urable provider currently on the market; (ii) we focus
on using specialist analysis approaches – such as use
of SAT and CSP solvers – in order to automatically
analyse the resulting feature model.

The optimisation operation has been the focus of
several research works related to AAFM. Recently,
(Roos-Frantz et al., 2012) propose the optimisation
of a radio frequency warner system using Orthog-
onal Variability Models (OVM), an alternative to
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Table 4: Average execution time of operations for 1, 2, 3
and 4 configurations.

Time in ms
1 conf 2 confs 3 confs 4 confs

Optimisation 5615 31799 363578 1h30+
Valid Conf. 135 260 267 302

FMs. (Guo et al., 2011) approach the optimisation for
EFMs from a more general perspective, using genetic
algorithms.

7 CONCLUSIONS AND FUTURE
WORK

In this work, we have modelled several AWS services
using FMs. Modelling the configuration space of a
large Cloud provider like AWS provides a useful and
compact representation to express user preferences.
The resulting model still contains lots of information
and required data, it is therefore necessary for be clear
about their requirements and needs. Therefore al-
though the AWS FM eases the configuration process,
it is still necessary to have an indepth understanding
about the infrastructure requirements to interpret the
analysis results. However, this kind of information is
near to the users domain, and allows them to express
their problem in a way more conducive to their own
understanding of it, and not in the terms of a specific
provider catalogue.

We have also proposed the use of several analy-
sis operations of the AAFM, some of them tailored to
assist the user in the configuration process. With the
support of these operations, user preferences (func-
tional and non-functional) can be validated, and used
to obtain suitable AWS configurations. From the
variability management perspective, we have demon-
strated the applicability of AAFM to Cloud services.

Finally, we have presented a prototype of the anal-
ysis operations, based in the FaMa tool, and a case
study. Although the prototype and its performance
are at a premliminary stage, additional work is being
carried out to improve their performance. The proto-
type has revealed the need for improving performance
by using pre-processing and heuristics to execute the
optimisation operation in a reasonable time.

Our approach could be extended and gen-
eralised to providers other than AWS, like
Rackspace/OpenStack or Microsoft Azure. Most
of the AWS FM structure is reusable, enabling us
to adapt some of the attributes and cost to other
providers. We believe there is a need to create
a FM of an abstract Cloud provider which has a
minimal core set of features and attributes common

across providers, and where existing cloud services
ontologies could be considered for a better result.
Subsequently, FMs can be specialised based on the
particular provider being considered. This would
also provide a useful basis for comparing between
providers. A friendly way to configure the AWS
FM is also required, by means of a Domain Specific
Language or at a minimal the development of a
user interface. In this sense, an integration with a
platform like www.planforcloud.com would be really
interesting. Applying metaheuristic techniques, such
as (Guo et al., 2011), could also be used as a basis to
improve the performance in real-time scenarios. A
deeper experimentation is also required. Modelling
and analysing an small-medium company case, and
comparing performance and optimality of different
implementation techniques are mandatory tasks for
further work.
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