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Abstract: The use of cloud computing as a new paradigm has become a reality. Cloud computing leverages the use of 
on-demand CPU power and storage resources while eliminating the cost of commodity hardware ownership. 
Cloud computing is now gaining popularity among many different organizations and commercial sectors. In 
this paper, we present the scalable brain image analysis (ScaBIA) architecture, a new model to run statistical 
parametric analysis (SPM) jobs using cloud computing. SPM is one of the most popular toolkits in 
neuroscience for running compute-intensive brain image analysis tasks. However, issues such as sharing 
raw data and results, as well as scalability and performance are major bottlenecks in the “single PC”-
execution model. In this work, we describe a prototype using the generic worker (GW), an e-Science as a 
service middleware, on top of Microsoft Azure to run and manage the SPM tasks. The functional prototype 
shows that ScaBIA provides a scalable framework for multi-job submission and enables users to share data 
securely using storage access keys across different organizations. 

1 INTRODUCTION 

Over the last twenty years, cloud computing has 
emerged as a new business model leveraging the 
high level abstraction of hardware and software 
resources but with low capital costs and on-demand 
scalability of resources to consumers. The economic 
factors combined with the key characteristics such as 
simplicity, elasticity and availability make cloud 
services attractive to many users within a wide 
variety of organizations. Nowadays, the market is 
offering a large number of cloud-based services on a 
global scale for organizations and companies around 
the world to improve their efficiency and to reduce 
costs (Hwang et al., 2011). Furthermore, many 
enterprises and organizations are considering using 
cloud storage to store their data as a result of the 
data flood coming from their users or customers. 

In this paper we apply cloud computing to the 
functional analysis of 3D brain imaging data 
acquired mainly from Magnetic Resonance (MR) 
scanners  so-called fMRI analysis  and describe 
the design of a prototype system for that task. The 
problem at hand is to analyse which part of the brain 
is activated when subjects perform certain tasks. To 
find the activation pattern, a number of brain images 
are taken in a time series for several subjects, both 

when subjects are performing the task and when 
they are not doing so. The prototype has been 
developed based on an open source toolkit called 
Statistical Parametric Mapping (SPM) which utilizes 
MATLAB (SPM, 2011). We implemented our 
prototype using the generic worker (GW) on top of 
Microsoft Azure to bridge the gap between Platform 
as a Service (PaaS) and Software as a Service (SaaS) 
layers (VENUS-C FP7 Project, 2010), since Microsoft 
Windows is used as a de facto platform by many 
brain imaging research groups and communities. 

2 BACKGROUND 

In this section we give an overview of the 
neuroscience workflow involving SPM and describe 
the VENUS-C cloud architecture with a focus on the 
GW component used in our implementation.  

2.1 SPM Overview  

The goal of the functional analysis of brain images is 
to find the parts of the brain that are activated when 
people (subjects) perform certain tasks. Since the 
signals that can be measured from the brain are 
noisy and there is considerable variation between 
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individuals, many subjects, and many images of 
each subject’s brain, are required to get any 
statistically significant results from the analysis. 
There are also several parameters that need to be 
varied during the analysis. This means that the 
analysis normally has to be executed many times 
with different hypotheses and parameters.  

A typical study consists of hundreds to thousands 
of 3D images of each subject; the resolution of a 
single image is normally in the order of few 
millimetres which gives an image size of several 
MBytes. There are normally 10 to 100 subjects in 
each study, and it usually takes over a day for a 
single analysis on a normal PC. Hence there is a 
need for scalable compute and storage resources.  

A typical analysis of brain images generally 
consists of several steps as shown in Figure 1: 

 Re-align (compensate for subject head 
movement), 

 Co-register (align structural and functional 
images), 

 Normalize (transform to standard brain space), 
 Segment (remove the scull bone etc. and leave 

only the brain), 
 Filter (remove noise by low-pass filter), and 
 Apply statistic methods, which normally use the 

General Linear Model (GLM). 
 

 

Figure 1: A series of stages to do an fMRI data analysis 
over N subjects (S1, S2, …, SN) each subject i containing n 
images (IMGi,1, IMGi,2, …, IMGi,n). 

After running all stages required for an analysis 
described in Figure 1, users may try to make 
inference using different parameters in their model 
or do Bayesian analysis or several other methods on 
the results. As an example, Figure 2 illustrates 
results of the estimation stage  the last process in 
Figure 1  to make an inference by a user in a 
parametric approach.  

 

Figure 2: Resulting activation map of an experiment. 

In all of these steps, the analyses of different 
subjects are independent (except for the GLM-step 
in certain cases). In some steps, like filtering, the 
analysis of each image is also independent. This 
implies that it is possible to handle the subjects (and 
in some cases also the corresponding images) in 
parallel to speed up the analysis. 

The toolkit that is used most for this kind of 
analysis is SPM, which is an open source toolkit 
based on MATLAB. The toolkit provides a 
graphical user interface that allows the user to define 
and execute MATLAB scripts to run all single steps 
of the analysis. More advanced users can work 
directly in MATLAB and define their own scripts. 
One goal of the prototypic cloud-based 
implementation described in this paper was to 
maintain this flexibility. 

By using cloud technology, we can speed up 
individual analyses without having to invest in 
computing hardware. Running each subject in 
parallel speeds up the process by a factor that is 
roughly the number of subjects in the study. 
Moreover, by using the cloud, we can execute 
several analyses at the same time with different 
parameters. The above reasoning suggests that it is 
more economical to purchase computing capacity on 
demand, rather than building up a permanent 
infrastructure that could cope with the peak 
demands. 

Most neuroscience laboratories in the world have 
made little efforts to share data between researchers 
in the same laboratory, let alone to share data 
between different laboratories. Currently, many 
researchers in the field store their fMRI data and 
results on the local hard disk or network file system 
(NFS) home directory that slows down the process 
of sharing data among users corresponding to 
different organizations. In addition local storage 
restricts expanding the storage resources when data 
volume increases. As a result of this, experiments 
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may be repeated unnecessarily. Although data 
sharing was not the focus of this study, the prototype 
we developed has shown that cloud technology is a 
convenient way to simplify sharing of data in the 
neuroscience field. Hence, users will not be 
restricted to their organization’s boundary or 
technological bottlenecks to access the fMRI storage 
on-demand. 

2.2 VENUS-C  

Virtual Multidisciplinary EnviroNments USing 
Cloud Infrastructures (VENUS-C) was a project 
from July 2010 to June 2012 in the European 
Commission’s 7th Framework Programme (VENUS-
C FP7 project, 2010). The project aimed to develop, 
test and deploy an industry-quality, highly-scalable 
and flexible cloud infrastructure for e-Science. The 
overall goal was to empower the many researchers 
who do not have access to supercomputers or big 
grids, by making it easy to use cloud infrastructures. 
For this to be feasible, the project had to minimize 
the efforts that such researchers need to spend for 
development and deployment in order to do 
computations in the cloud, thereby also reducing the 
costs for operating the cloud. 

2.2.1 VENUS-C Architecture  

In order to achieve the goals, the project collected 
requirements from different scientific use cases and 
as a result designed a platform that is capable of 
supporting multiple programming models, such as 
batch processing, workflow execution or even 
Map/Reduce (Dean and Ghemawat, 2004) at the 
same time.  

 

Figure 3: VENUS-C architecture. 

Figure 3 illustrates the generalized VENUS-C 
architecture (VENUS-C Deliverable D6.1, 2011) 
and shows the basic steps that a researcher must 
perform in order to use VENUS-C.  These steps are 
independent of the programming model that is used. 
Firstly the researcher uploads the locally available 

data to the cloud storage. The next step is to submit 
a job. So called dedicated Programming Model 
Enactment Services (PMES) are provided for this 
purpose. These services enable the researchers to 
perform tasks such as managing jobs or scaling the 
resources used in the cloud, while simultaneously 
shielding the researchers from the underlying cloud 
infrastructure and the specific implementations of 
different infrastructures through open grid service 
architecture  basic execution services (OGSA-BES) 
compliant interfaces (Foster et al., 2007). OGSA-
BES is an open standard for basic execution services 
and widely used in grid communities for submitting 
jobs. The third step involves carrying out the 
required computations. For this, the necessary 
application and job specific data is transferred to the 
compute node. After the computation has finished, 
the fourth step consists of transferring the resulting 
data to the cloud storage. In the fifth and final step, 
the researcher can download the results from the 
cloud to local facilities. 

2.2.2 Generic Worker 

The GW module (Generic Worker Complete 
Documentation, 2012) has been developed in the 
VENUS-C project. Following the general VENUS-C 
architecture, the GW represents a reference 
implementation for a batch processing programming 
model and is available for public download. 

The GW is basically a worker process (similar to 
Windows Service or UNIX daemon processes) that 
can be started on virtual machines (VMs) in the 
cloud. Being able to run many VMs at the same time 
with a GW worker process provides great horizontal 
scaling capabilities and allows work items to be 
distributed across the machines according to the 
user’s requirements. 

 
 

Figure 4: Simplified internal GW architecture. 

Figure 4 shows how the GW is designed 
internally. In a similar way to that described in the 
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general VENUS-C architecture, the researcher 
uploads applications and data to storage, which is 
connected to the Internet so that the GW can also 
access it. The GW design supports a broad selection 
of different protocols and storage services. In 
addition to the data and the application that should 
be run, the GW also needs a description of this 
application containing metadata about it. This 
information allows the GW to understand 
parameters like input and output files enabling a 
proper execution of the application by the GW. 

Jobs are submitted using the PMES. To make 
this safe, different security mechanism  such as a 
Security Token Service (STS) to validate, issue and 
exchange security tokens based on the well-known 
WS-Trust protocol (Djordjevic and Dimitrakos, 
2005) and username / password  can be used. The 
PMES stores all the incoming jobs in an internal job 
queue based on a table (Job Index); an additional 
table is used for the job details. The GW driver 
processes continuously look for new jobs in this 
queue. As soon as a driver process finds a job in the 
queue, it will pull the job from the queue, and check 
the application and data storage to find out if 
everything that is needed is available, namely all the 
required input data and the relevant application 
binaries. If these are in place, the job can be 
executed. The driver process that found the job 
marks the job as being processed by that particular 
driver in the “job details”-table (JDT), and starts 
downloading the input data to the local hard disk of 
the VM. If application or data are not yet available, 
the job will be put back into the queue to wait for the 
missing files. The driver process also checks 
whether the application is already present on the VM 
and, if necessary, the application will be downloaded 
as well. Thus the GW process follows a data-driven 
pull model, allowing simple workflows where jobs 
rely on the output of other jobs. 

Once the application is available, the driver 
process retrieves information on how to call the 
application and then launches it. After the 
application terminates, the results are made 
persistent by uploading them to the data storage. 
Finally, the driver process uses the JDT to mark the 
job as either completed or failed, depending on the 
exit code of the application. Researchers who used 
the PMES client-side notification will be notified 
about this event. There are several notification-plug-
ins available e.g. sending mails or putting messages 
in a queue for every event. Researchers can also 
query the PMES to check the current state of a job. 

2.3 Related Work 

Several research groups made attempts to optimize 
the execution time of SPM scripts, including 
parallelizing it. For instance, Parallel SPM (PSMP) 
is a package that has been developed using Message 
Passing Interface (MPI) to provide parallelism in 
SPM (PSPM and MPI, 2011). Beno is another 
package that can be deployed on a local cluster to 
run SPM single subject analyses in parallel. (Beno, 
2011). However, it creates bottlenecks when parallel 
nodes try to access the external storage. Both PSPM 
and Beno rely on multi-CPU clusters to run a single 
subject in parallel and do not address scalability 
related to the number of subjects. While these efforts 
provide increased efficiency for studies on local 
infrastructures, they lack the resource scalability 
provided by cloud infrastructures. By using cloud 
infrastructures analysis can be scaled to computing 
resources typically not available in local 
environments. To the best of our knowledge, this 
work is the first attempt to perform SPM analysis on 
cloud infrastructures.  

3 CLOUD BRAIN IMAGING 

As we wanted to make it easy for researchers to use 
the cloud, we aimed to design a system that would 
not require the end user to be aware of the 
complexity of cloud computing or of any 
dependencies on GW libraries. It was important to 
preserve the job execution style of SPM, so that 
users could run their brain imaging jobs using the 
MATLAB command line. Thus, in our architecture, 
we opted for a user-friendly interface, with minimal 
necessary dependencies on third party libraries (to 
provide a secure communication channel between 
the GW endpoint and the clients).   

3.1 ScaBIA Architecture 

To enable users to communicate with and submit 
brain imaging tasks to the GW, we integrated three 
main components into our prototype: an application 
manager, a job manager and a data manager, as 
illustrated in Figure 5. Client interaction is based on 
STS to ensure that only authorized users are allowed 
to register applications and submit jobs. We divided 
the certificates into two different categories: one for 
users, and the other for management purposes. In 
principle, user certificates are used when invoking 
commands to submit jobs to the GW end-points or 
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when establishing secure channels and encrypted 
communication to the Azure cloud platform, e.g. 
using management certificates for scaling the 
number of VMs running at the same time (Generic 
Worker Complete Documentation, 2012). 

 

Figure 5: Architectural view of the ScaBIA system. 

3.2 ScaBIA Components 

Generally, the user requirements for execution of 
cloud-based SPM can be divided into three major 
areas. Users need to be able to prepare the execution 
infrastructure without experiencing difficulties 
caused by the cloud middleware. Secondly, the users 
need to be able to execute their jobs and keep track 
of all submissions. Finally users need to be able to 
transfer and share data between the cloud storage 
and their local hard disk securely over the Internet 
without encountering cross-organizational 
restrictions introduced by the network services. 

3.2.1 Application Manager 

Prior to accepting any requests from users, the cloud 
environment has to set up any mandatory libraries 
and software. To successfully install an application 
in GW, the Application Manager (AM) packs all the 
files that are necessary for running that application 
into a compressed file. The AM then creates an 
application description which defines the command 
line execution format for the application. Next, the 
AM uploads the application to the application 
repository that is based on the Azure blob storage. 
To do this, the AM has to serialize the application 
description into an XML structure that is uploaded 
to the application repository. Users need to 
remember the location of both the application and of 
the description for job submission purposes. The 
AM archives different user pre-requisites (for 
running a library-dependent job) into a single zip-
file and uploads it to the pre-defined cloud storage. 

3.2.2 Job Manager 

To submit SPM jobs, the user provides a job 
description defining the arguments for the job and 
their values, in addition to the SPM script created by 
the user through the SPM GUI (which is the real job 
that will is be executed). The Job Manager (JM) 
compresses all the brain images, together with the 
SPM scripts and job description, to submit to the 
GW endpoint.  The GW job description API 
implements the job submission description language 
(JSDL) that is a specification to define submission 
aspects of jobs such as job name, resource 
requirements and so on (Savva, 2005). There are 
some scenarios where data, such as brain images, are 
already stored in the data storage in the cloud and 
there is no need to re-transfer the input data. For 
instance, in a chain of SPM tasks, the results from 
task N-1 will be used as input for a new task N. In 
such scenarios, the user only needs to use the JM as 
a job submitter and provide the location of the input 
files within the data storage. 

Furthermore, the JM provides functions to check 
the status of submitted jobs and to terminate jobs in 
any stage of execution. To check the status of jobs, 
the JM periodically polls the GW with the job id 
returned from the earlier job submission steps. Thus 
the JM can notify the job owner when a job is 
completed. Moreover, the JM is able to get the status 
of a list of jobs, or of all the jobs in the job table that 
belong to a specific user. 

3.2.3 Data Manager 

Each SPM job requires hundreds of granular images 
that must be present for the job execution. 
Therefore, we require an effective data transfer 
solution and also have to be able to download results 
with names that humans could read. The Data 
Manager (DM) enables users to upload or download 
data results from/to their local hard disk, and lets 
them rename data in the data storage. An excellent 
example can be a scenario where user completes the 
analysis stages (Figure 1) and wishes to download 
the results locally to visualize the results within the 
SPM toolkit. 

Furthermore, in a distributed environment, which 
is typical for the research world since users are 
scattered between different organizations, the DM 
provides a useful facility for sharing brain images 
between users and cloud applications. The DM acts 
as a cross-boundary client enabling users to perform 
create, read, update and delete (CRUD) operations. 
External users who wish to access the brain imaging 
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data can easily invoke the client independently of 
their geographical locations.  

Prior to any attempts by users to access the 
storage, the data owner must grant access privileges 
to the storage according to users storage access keys 
through the Azure management portal. Azure 
storage requires two sorts of access keys known as 
primary and secondary storage keys to authenticate 
users. The primary storage key is a mandatory 512-
bits symmetric key that will be used as the main 
authentication key. The secondary storage key is 
optional to have and it can be generated 
independently from the primary key to act as backup 
with similar access rights. A designated host with a 
management certificate is allowed to add or remove 
users belonging to different domains. 

4 IMPLEMENTATION 

The GW provides a Microsoft .NET API for 
applications to implement all functionality that is 
needed to execute SPM job successfully. We 
integrated the GW and SDK assemblies (DLLs) into 
the MATLAB R2011a environment. To relax the 
licensing issues, we used the MATLAB Compiler 
Runtime (MCR) Windows 64-bits version 7.15 
associated with MATLAB R2011a (MCR, 2011). 

4.1 Deploying the Generic Worker 

As a preliminary step, we deployed SPM using GW 
on top of Azure to facilitate deployment, 
initialization, and invoking SPM stand-alone over 
Azure without any modification of the SPM API. 
The Windows Azure management portal provides 
user interfaces to upload security credentials, along 
with the GW and configurations. The GW is 
provided in different deployable packages: extra 
small, small, medium, large and extra-large. We 
deployed a production-hosted service composed of 
20 medium-sized dual core machines and 3.5 
Gigabyte memory with a bandwidth of 200 Mbit/s 
(Microsoft Windows Azure, 2012). 

This hosted service also required an XML 
service configuration file that defines how the hosted 
service should run, for example, specifying the 
number of running instances or user and 
management certificate thumbprints, or other 
information (such as the job submission to GW end-
points). We issued two self-signed OpenSSL 
certificates, one for management and one for job 
submission: both based on their distinguished 
names. We added the thumbprint of these 

certificates to the hosted service configuration file 
and uploaded the certificates to the management 
portal. The uploaded certificate contains both public 
and private keys in a single file, with a protected 
private key defined by the user’s secret. 

4.2 Building the Application 

GW instances search for the MCR and standalone 
SPM dependencies during the initialization process. 
Therefore, prior to running the GW instances, we 
have to upload the MCR v7.15 and standalone SPM 
for Microsoft Windows 64-bits platform (VENUS-C 
Software and Document Resources, 2012).  

We implemented a MATLAB function to act on 
behalf of the user to compress the SPM 
dependencies and to upload them to the application 
repository using the following command line:  

install_application(mcr_path,spm_path, 
app_rep) 

The first argument of this command is the location 
of the MCR. The second and third arguments are the 
SPM standalone location, and the name of the 
application repository where the user pre-requisites 
should be stored. After successful installation of the 
application pre-requisites, the GW will load and 
install the pre-requisites for all new VMs. 

4.3 Job Submission 

For job submission purposes, we developed two 
MATLAB functions. The user enters these on the 
command line to submit a job, either for a single 
subject, or for several subjects to run in parallel to 
ensure scalability for scenarios with a large number 
of subjects. The signature of the function to submit 
SPM jobs is as below: 

submit_job(job_script,data_path, 
output_name, flag) 

This function needs the following arguments: the 
real SPM script as the execution job, the path to the 
brain images, the name to be used for the output 
results, and a flag that is set in cases of multiple job 
submission (where an SPM job will be iterated over 
several subjects within different running GWs). To 
clarify, the SPM job is a script where the user 
creates an iteration of a set of instructions over a 
number of brain images for a group of one or more 
subjects. The second argument specifies the 
directory path where the images from that subject 
reside. Those images need to be uploaded with the 
submission of the SPM job. This command adapts 
the local file system names according to the GW 
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standard by eliminating the root directory and 
replacing that with the current working path in GW. 
Figure 6 illustrates the process of creating SPM 
scripts by the user through the GUI and making 
them compatible to run on Azure by JM, in respect 
to the GW file addressing conventions. 

 

Figure 6: Process of creating SPM scripts and making 
them compatible with GW. 

In order to store the result of the executions in 
the cloud storage, the user should define a name in 
the third argument that will be used for the output. 
There are some cases that do not require uploading 
of data when the clients submit jobs, for instance, in 
a specific scenario where job n-1 produces results 
that are required by the next job n as input. In such 
cases, the user can pass an explicit “no_data”-
signal in the flag argument. This notifies the 
application to fetch the input data from the storage. 

To fulfil other job management tasks, we 
implemented the following functions to track the 
status of submitted tasks, and to cancel a specific 
submitted job on GW when required by user: 

poll_status(id) and terminate_job(id) 

The first function resolves a job identifier that is 
returned from the submit_job function and 
periodically polls the status of a defined job.  The 
status could be: Pending, Running, Finished or 
Cancelled. Furthermore, the client is also able to 
terminate any job using its job identifier.  

These two additional commands are very useful 
when an SPM user needs to submit a large number 
of jobs in parallel together on different running 
instances of the GW. All the submitted jobs can 
easily be tracked, and terminated instantly if needed, 
using these commands. 

4.4 Data Management 

In order to upload, download or delete brain images 
on the cloud storage, we developed a set of functions 
to enable SPM users to run those functions from the 
MATLAB command line. In the first step, the DM 
acquires a container reference from the storage using 
a GW API according to the container’s name: 

GetContainerReference(container) 

The argument of this function refers to the 
container that the user provided to invoke the data 
transfer functions. We also increased the default 
time-out of the client (by setting the TimeSpan to a 
reasonable value) so that large amounts of data 
could be transferred successfully even if there were 
delays in the underlying communication networks or 
storage server timeouts.  

To upload a file (that is, a set of brain images as 
a single file) to a specific container, the client should 
issue the command:  

upload_subject(container, file_name, 
local_path) 

Moreover, to facilitate the distributed access of 
data for a set of results, the client can query the 
container that stores a particular file. For this 
purpose, user needs the file name that is stored in the 
container and the local path to save the result. The 
user must define at least a 512-bits storage access 
key as primary key, based on Azure management 
portal in combination with the storage account name 
to authorize user requests to storage services:  

download_subject(container, file_name, 
local_path) 

SPM users can issue another command to 
remove the storage contents associated with file 
names in distinguished containers. We implemented 
the following function with the same interaction 
pattern, with upload/download provided by the GW 
API: 

delete_subject(container_name, 
file_name)  

5 CONCLUSIONS AND FUTURE 
WORK 

In conclusion, cloud computing as an enabling 
technology helps eliminating the barriers such as 
restricted resource scalability imposed on 
researchers by the existing systems in the brain 
imaging area. Our prototype demonstrated that cloud 
computing, and specifically Microsoft Azure, can 
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enable neuroscientists to exploit the benefits of 
cloud computing. Users and organizations no longer 
need to be concerned about hardware requirements 
or storage capacities as the cloud provides scalability 
on demand. Also, our implementation shows that it 
is feasible to share data securely between users 
belonging to different organizations. 

However, while implementing our solution, we 
faced compatibility issues with the GW SDK and the 
MATLAB environment, and we had to adapt the 
.NET API according to the SPM settings. We were 
also interested in integrating the Cloud Data 
Management Interface (CDMI) implementation 
(Livenson and Laure, 2011) for transferring our data 
to the cloud, but it was not feasible with our solution 
since the CDMI implementation on Azure storage 
services missed some features and the .NET CDMI 
client library was not as functional as the Java 
version. Therefore we had to opt for a solution that 
transferred our granular files as a single unit to the 
cloud storage.  

As we mentioned earlier in section 2.1, each 
SPM job is composed of several steps and in real life 
it would be interesting to measure the overheads 
associated with using Microsoft Azure for deploying 
the SPM. For instance, a thorough performance 
analysis could be carried out to compare the stage-
in/stage-out time for data, the length of time that 
jobs stay in the queue before being run, and other 
metrics such as the execution or completion time for 
jobs. Also, it could be useful to run real SPM jobs in 
different VMs with different memory capacities and 
CPU cores to discover the limitations that our 
prototype might pose in real life. The possibility of 
designing parallel jobs through breaking the SPM 
jobs into smaller tasks that can be run in parallel also 
can be interesting to achieve better performance. 
Finally, to empower users with browsing and data 
management capabilities of the storage, 
implementing a MATLAB GUI would be useful. 
This feature will enable users to see contents of the 
containers that belong to different research groups 
for data sharing purposes. 
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