
Different Approaches for Development Tools for Natural Computers
Grammar Driven vs. Model Driven Approaches

David Fernández, Francisco Saiz, Marina de la Cruz and Alfonso Ortega
Departamento de Ingenierı́a Informática, Escuela Politécnica Superior,

Universidad Autónoma de Madrid, Madrid, Spain

Keywords: Natural Computing, Bio-inspired Models of Computation, Nets of Evolutionary Processors, Software
Engineering.

Abstract: In this paper we will compare our first steps in two different approaches to define programming languages for
NEPs (one bio-inspired model of computation in which our research group is interested). The classic approach
proposed by the literature several decades ago is focused on the grammar of the syntax of the language being
defined. Recently the focus is moved to a formal description (model) of the model of computation for which
the programming language is being designed. This approach is called model driven. The designer simply
adds syntax, semantics checks and translation routines to the different elements of the model that are applied.
Programming is usually understood as instantiating the model. After introducing the main characteristics of
each model for this particular case some conclusions and further research tasks are discussed.�

1 MOTIVATION

Our research group is interested in providing the sci-
entific community with powerful tools to develop
software applications to solve problems by means of
new computing devices (most of them inspired by
the way in which Nature solves difficult tasks). One
of these new computing paradigms are Networks of
Evolutionary Processors (NEPs) that mainly consist
of a set of processors each of which performs a very
simple process on the set of strings that they con-
tain. These computing processors are connected as
nodes of a graph. NEPs are not allowed to dynam-
ically change the topology of their nets. The com-
plete system alternates computing and communicat-
ing steps. In the computing or evolving step the pro-
cessors change their contents simultaneously. In the
communicating step they share some of their strings
with the rest of the processors to which they are con-
nected in the net. An important component of NEPs
are the filters used by the processors to decide which
strings enter and leave the nodes. The classic family
of NEPs uses two kinds of filters (input and ouput)

�Work partially supported by the Spanish Ministry of
Science and Innovation under coordinated research project
TIN2011-28260-C03-00 and research project TIN2011-
28260-C03-02 and by the Comunidad Autónoma de Madrid
under research project e-madrid S2009/TIC-1650

each of which is defined by means of a couple of
components (forbidden and permitted strings) One of
the main characteristics of NEPs is that they are in-
trinsically parallel and some instances of them have
the same computational power of Turing’s machine
giving the possibility of designing algorithms for NP-
problems that improve the temporal performance of
their Turing counterparts. More detailed formal defi-
nitions and properties could be found in (Castellanos
et al., 2003)

One of the most interesting features of bio-
inspired computers, like NEPs, is their intrinsic paral-
lelism. We can design algorithms for them that could
improve the exponential performance of their classic
versions, but, unfortunately there are neither no real
computers nor programming languages and software
engineering tools for almost any bioinspired model.
So, running the algorithms usually involves simulat-
ing the model in a conventional (von Neumann) com-
puter and their design depends on the simulator and is
far for being a standard procedure: some simulators
read configuration files, some others only offer the use
of their graphical interface. This paper compares two
different approaches (grammar and model driven) that
our group is following to design programming lan-
guages and development environments for NEPs.

487Fernández D., Saiz F., Cruz M. and Ortega A..
Different Approaches for Development Tools for Natural Computers - Grammar Driven vs. Model Driven Approaches.
DOI: 10.5220/0004360004870493
In Proceedings of the 5th International Conference on Agents and Artificial Intelligence (LAFLang-2013), pages 487-493
ISBN: 978-989-8565-38-9
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 INTRODUCTION

2.1 Grammar Driven Approach

We could name the traditional approach to design
programming languages and develop their processors
(compilers and interpreters) as grammar driven ap-
proach (GDA)

GDA takes the following steps (Aho et al., 2007):

� Design a context free grammar for the complete
syntax of the language

� Add the semantics and code generator routines
by means of an attribute system. In this way the
initial context free grammar becomes an attribute
grammar

� Choose the parsing technique more adequate to
the complexity of the language. There are mainly
two types of parsing families: top-down and
bottom-up. The most popular and powerful of
their algorithms are respectively LALR(1) (from
look ahead L(eft to right) R(ightmost derivation)
taking into account just 1 symbol from the in-
put) and LL(*)(Parr, 2007)(from L(eft to right)
L(eftmost derivation) using as many terminals
symbols (*) from the input as needed)

� Develop the compiler-interpreter usually with
the help of automatic generators of compil-
ers like bison (http://www.gnu.org/) or CUP
(http://www.cs.princeton.edu/) (LALR) or
ANTLR (Parr, 2007) (LL(*))

2.2 Model Driven Approach

One of the most promising and powerful approaches
to software engineering, including the definition of
program languages, is the so called model driven ap-
proach (MDA).

This approach is based on a formal description of
the model of computation (for example, and typically,
an extension of an UML 2 model). The model is en-
riched with the syntax that will be used by the pro-
grammer in his programs.

There exists some software applications or devel-
oping environments that support this approach. These
environments usually works as follows:

The system offers a module to describe the (UML)
model. Different options, modules or plug-ins are
available to add different kinds of syntax (textual,
visual) to each component of the model. Once the
model and its syntaxes are refined and finished, a new

2Unified Modelling Language is a standard language
widely used to model in computer science

development environment is provided by the systems
that is particularized and specialized to describe spe-
cific cases of the model of interest, that is, the user
can write its own programs using its own new syn-
tax. This new development environment is usually
run under the control of the system (by means of, for
example, a new graphic canvas or a new text editor
window) offering, in this way, all the functionality of
the system. When the user is writing his programs, the
system is actually instantiating the model underlying
and keeping in memory an image of the program be-
ing written. It can check the syntax at the same time
the program is written. Semantic constraints could be
added (and checked) in a similar way to syntax and
it is also possible to add the procedure by means of
which each element of the model is translated into a
different representation. The reader can easily under-
stand that the results provided by these kind of tools
could include the compilers or interpreters for the pro-
gramming language defined as well as development
environment specialized for the language defined.

3 GRAMMAR DRIVEN
APPROACH FOR NATURAL
COMPUTERS: FOR EXAMPLE
NEPs

Some of the authors of this paper have previously fol-
lowed the first steps of this approach for NEPs. They
have proposed NEPsLingua as a possible syntax for
NEPs (de la Cruz et al., 2011) and checked the viabil-
ity of building its parsers with ANTLR.

NEPsLingua proposes a syntax for NEPs close to
the mathematical notation used in their formal speci-
fication. Further details of the complete syntax can be
found in (de la Cruz et al., 2011)

The following listings show, as examples, some
NEPsLingua versions of NEPs:

Examples of a NEPsLingua Program

@A={A,B}
@N={ n{i}: 0 <= i <= 1}
@c{n{0}}={A,B}
@r{n{0}}={B-->#}
@r{n{1}}={#-->B}
@S={@max_steps = 8 }
@C={@complete}

(This very simple example of NEP has two nodes that delete
and insert the symbol B. The initial word AB travels from
one node to the other. The first node removes the symbol B
from the string before leaving it in the net. The other node
receives string A and adds symbol B again. The resulting

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

488

string comes back to the initial node and the same process
takes place again.)

@A={X,S,a,b,o,O} // Alphabet
@N= {final}+ {n{symbol}:symbol->{X,S,O}}
/* Nodes associated with non terminal symbols */
@c{n{X}}={X} // Initial content of the axiom node
@r{n{X}}= {X-->SO} // Deriving rules for the axiom
@r{n{S}}= {S-->aSb, S-->ab}
@r{n{O}}= {O-->o, O-->oO, O-->Oo}
@C=@complete // The graph is complete
@S={ @non_emtpy_node={final} }
// Stopping conditions

(NEPsLingua program for a NEP for parsing the grammar
implicit in the rules of the nodes, X is the axiom)

Figure 1 shows an example of ANTLR with the
grammar defined for NEPsLingua. You can see the
rules defining some of the elements of a NEP. Specifi-
cally you can see a fragment that describes the differ-
ent classes of set of nodes in NEPsLingua: individual
and indexed.

4 AN EXAMPLE OF MODEL
DRIVEN APPROACH FOR NEPs

One of the platforms that supports MDA is
conformed by the modelling plug-ins of Eclipse
(http://www.eclipse.org). Although the reader could
find in its website different options, this paper only
describes the following:

� Emfatic, for the model extended with visual syn-
tax

� Xtext, for adding textual syntax

� Some features added by Eclipse to the integrated
development environment

We will show in this paper some fragments of
Eclipse files describing our languages for NEPs. A
complete description of the characteristics of these
tools is out of the scope of this work and can be found
in http://www.eclipse.org

Definition of the Basic UML Model

Eclipse provides a graphic interface to draw the ba-
sic UML model. It contains the typical elements of
every UML classes diagram (classes, interfaces, re-
lationships, attributes, etc.). This models are named
Ecore diagrams by Eclipse.

In the present work we have not defined an explicit
Ecore diagram. We describe above the technique used
instead.

Definition of the UML Model and its
Visual Appearance

In this paper we will show how to define he model
(with its visual appearance at the same time) by means
of the Emfatic plug-in. When the model is defined as
an Ecore diagram, the user has to manually add to
the textual representation of the Ecore diagram some
emfatic annotations to add the visual syntax.

In our example we will represent the processors,
the filters and the rules by means of respectively rect-
angles, round rectangles and ovals. Permitting filters
are coloured in green, while forbidden in red.

It is easy to find in the following fragment of Em-
fatic code the annotations that specify these visual ap-
pearances (in particular rules and colours of filters).

@gmf.node(label = "contentName", figure="ellipse")
class ContentRules {

attr String contentName;
@gmf.link(style="dash")
ref Processor ownerRules;
@gmf.compartment(foo="bar")
val Rule[*] rules;

}
...
@gmf.node(border.color = "0,255,0")
class PermittingInputFilter extends InputFilter{}

@gmf.node(border.color = "255,0,0")
class ForbbidingInputFilter extends InputFilter{}

(A fragment of the emfatic code with visual annotations for
NEPs)

Adding the Textual Appearance

Eclipse provides a procedure to automatically asso-
ciate the following default textual syntax for its mod-
els: each element should be preceded by its name and
its possible contents appears between brackets.

It is easy to realize after reading the following
fragment of the Xtext file for NEPs that it is very
similar to the context free grammar associated with
the default syntax. It is easy also to identify the
standard Xtext syntax: words ’NEP’, ’processors’,
’rules’, ’Processor’ and symbols ’{’, and ","
have to be literally written in the programs and could
be (easily) changed by simply editing this file.

NEP returns NEP:
{NEP} ’NEP’

’{’ (’processors’ ’{’ processors+=Processor
("," processors+=Processor)* ’}’)?

...
(’rules’ ’{’ rules+=ContentRules

("," rules+=ContentRules)* ’}’)?
... ’}’;

Different�Approaches�for�Development�Tools�for�Natural�Computers�-�Grammar�Driven�vs.�Model�Driven�Approaches

489

Figure 1: ANTLR window showing some of the elements of the LL(*) grammar for NEPsLingua.

Rule returns Rule:
InsertRule | DeriveRule | DeleteRule
| RegularExpresionRule | SubStitutRule;

Processor returns Processor:
{Processor} ’Processor’
name=EString ’{’ ... ’}’;

(A fragment of the Xtext code for NEPs showing the simi-
larities with the context free grammar for the default syntax)

Although it is very easy to modify some aspects
of the Xtext syntax (you can, for example, freely
change the delimiters to use other symbols different
from brackets or the tags used to identify each el-
ement) it is difficult to include big changes without
modifying the model. This is one of the main draw-
backs we encounter in this approach. GDA gives total
freedom in the design of the syntax but in MDA (be-
cause of the tight relationship between the model and
the syntax) some syntactic constructs should be trans-
lated into new elements in the model. This elements
have obviously only syntactic meaning, that is, they
do not actually belong to the model itself because a
different syntax could exclude them.

The following examples show the difficulties to
make the Xtext default syntax more similar to NEP-
sLingua.

In NEPsLingua, for example, it is not mandatory
to put together all the components (initial contents,
rules, filters) of each node, while the default Xtext
syntax put all these elements inside their node.

You can compare in the following listings how
the contents of node n0 (of the simplest example of
NEP described previously) have to be together in the
default Xtext version while this is not mandatory in
NEPsLingua.

@c{n{0}}={A,B}
@r{n{0}}={B-->#}
@r{n{1}}={#-->B}

@c{n{0}}={A,B}
@r{n{1}}={#-->B}
@r{n{0}}={B-->#}

(Two equivalent ways of specifying the contents of a couple
of nodes using NEPsLingua)

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

490

Figure 2: Eclipse windows showing both, the visual and Xtext default textual appearance of the simplest example of NEP.

In figure 2 the simplest example of NEP is
(re)described with our visual syntax and also with the
default textual Xtext syntax. It is easy to find the dif-
ferences between NEPsLingua and the default Xtext
syntax, and the difficulties to make them similar.

Other Interesting Features of Eclipse
Modelling Plug-ins

Eclipse provides us with very interesting features. We
will comment two of them: getting a specific devel-
opment environment for writing code with the new
language and the possibility of integrating different
views of the programs in a synchronized way.

One of the goals of Eclipse is to generate an in-
stance of the development environment (Eclipse it-
self) that recognizes the languages just defined for
the new model as one of its languages. This new en-
vironment offers all the features to the programmer
that Eclipse has, for instance, it highlights and checks
the syntax, auto-completes the code and suggests by
means of pop-up menus different options to the pro-
grammer while he is working.

If the new instance of Eclipse includes the mod-
elling plug-ins in such a way that allows the synchro-
nization of different views (we have described in this
paper a textual and a visual appearance for NEPs) of
the same program, the user (programmer) of this de-
velopment environment could change from a view to
the other (between the visual and the textual editor)
and, when he changes a view, the environment will
automatically update the other.

Figures 3, 4 and 5 show this circumstance: firstly
(fig. 3) you can see the new instance of Eclipse spe-
cific for NEPs showing a new (empty) NEP both in
the textual and in the visual editor.

Once the programmer adds a new processor to the
NEP by means of the visual editor (fig. 4), after sav-
ing this file, the environment automatically updates
the textual view accordingly (fig. 5). We could have
proceeded in the opposite way, modifying and saving
the textual view and getting an automatic update of
the visual view.

Figure 4: Visual editor window showing a NEP with only
one processor: it contains the strings ”A” and ”B”.

Figure 5: Textual editor window automatically updated by
the environment.

5 CONCLUSIONS

Grammar Driven Approach. Among the advantages
of GDA, we can highlight the solid theoretical model

Different�Approaches�for�Development�Tools�for�Natural�Computers�-�Grammar�Driven�vs.�Model�Driven�Approaches

491

Figure 3: Eclipse windows showing both, the visual and textual editors for a new (and hence, empty) NEP.

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

492

on which it is based, the power of its results and
the soundness of the tools that have been checked
for years. From our viewpoint, its main disadvan-
tages are that its results do not usually include to offer
a friendly development environment. The available
tools are often libraries that are conceived to be called
from the host code of the application in which the lan-
guage will be included.

Model Driven Approach. MDA offers to the designer
a higher level of abstraction to define the model. The
formalism (usually based on UML) could be more in-
tuitive than grammars. Platforms that support MDA
usually include providing the programmers with de-
velopment environments, among their goals. Never-
theless, the novelty of the approach actually causes,
in our opinion, its main drawbacks. The big amount
of research effort that is being done in this domain
produces lots of software tools that are neither always
well documented nor properly supported. They are
often tricky and obscure to handle and (what could be
worse) nobody guarantees that the tools will be still
supported after their learning process.

6 FURTHER RESEARCH LINES

Regarding the MDA, in the future, we plan to focus
our efforts in the design of a Xtext textual syntax more
similar to NEPsLingua but which allows, in addition,
to keep the model as free of syntactic artefacts as pos-
sible. Once we finish the design of the syntax (both
textual and visual) we have to add semantics checks
and translator routines. With respect to GDA we have
to complete also the semantic analyser and the code
generator. Both approaches (MDA, GDA) could be
compared then for programming NEPs. Our conclu-
sions will be useful when facing other bio-inspired
models of computations. We are currently interested,
for instance, in grammar systems, linguistics gram-
mar systems or membrane based systems.

REFERENCES

J. Castellanos, C. Martin-Vide, V. Mitrana, and J. M. Sem-
pere.: Networks of evolutionary processors. Acta In-
formatica, Vol. 39(6-7): 517-529, 2003.

A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman, : Compilers:
Principles, Techniques, and Tools, 2/E Prentice Hall
2007

T. Parr: The Definitive ANTLR Reference: Building
Domain-Specific Languages The Pragmatic Book-
shelf Raleigh. Norh Carolina. Dallas. Texas 2007

http://www.gnu.org/software/bison/

http://www.cs.princeton.edu/�appel/modern/java/CUP/
manual.html

de la Cruz, M., Jiménez, A., del Rosal, E., Bel-Enguix,
G., Ortega, A.: NEPs-lingua: a new textual language
to program neps. In: Proceedings of ICAART 2011
(2011)

Different�Approaches�for�Development�Tools�for�Natural�Computers�-�Grammar�Driven�vs.�Model�Driven�Approaches

493

