
Pre-order Compression Schemes for XML in the Real Time Environment

Tyler Corbin1, Tomasz Müldner1 and Jan Krzysztof Miziołek2

1Jodrey School of Computer Science, Acadia University, Wolfville, B4P 2A9 NS, Canada
2IBI AL, University of Warsaw, Warsaw, Poland

Keywords: XML, Online Compression, Network Performance.

Abstract: The advantages of using XML come at the cost, especially when used on networks and small mobile devices.
This paper presents a design and implementation of four online XML compression algorithms, which exploit
local structural redundancies of pre-order traversals of an XML tree, and focus on reducing the overhead of
sending packets and maintaining load balancing between the sender and receiver. For testing, we designed
a suite consisting of 11 XML files with various characteristics. Ten encoding techniques were compared,
compressed respectively using GZIP, EXI, Treechop, XSAQCT and its improvement, and our algorithms.
Experiments indicate that our new algorithms have similar or better performance than other online algorithms,
and have only worse performance than EXI for files larger than 1 GB.

1 INTRODUCTION

The eXtensible Markup Language, XML (XML,
2012) is a World Wide Web Consortium (W3C) en-
dorsed standard for semi-structured data. XML is
simple, open-source, and platform independent, and
has become the most popular markup language for
the interchange and access of data between heteroge-
neous systems. Because of its textual format, XML’s
data sets may increase as much as ten-fold. A naive
solution to reduce the XML format overhead uses a
general-purpose data compressor, e.g., (GZIP, 2012).
However, such compressors do not take advantage of
the XML structure, thereby increasing first order en-
tropy of the data. Therefore, there has been consid-
erable research on XML-conscious compressors, e.g.,
XMill (Hartmut and Suciu, 2000), XGrind (Tolani
and Haritsa, 2002) and XQueC (Arion et al., 2007).

XML-conscious compressors can be homomor-
phic, in which each node is processed during a
pre-order traversal thereby preserving the original
tree structure in the compressed representation, or
permutation-based, in which the structure is sepa-
rated from content to which a partitioning strategy is
applied to group content nodes into a series of data
containers compressed using general-purpose com-
pressor (a back-end compressor). A specific class of
XML compressors consist of queryable XML com-
pressors, which answer queries using lazy decom-
pression, i.e., decompressing as little as possible;

e.g., (Lin et al., 2005), and (Ng et al., 2006). Here,
querying is based on path expressions, see (XPath,
2012) and (XQuery, 2012). Finally, another subset of
XML compressors, which we focus on in this paper, is
centred on real-time network activities. Online XML
compressors are defined as compressors that work
in real time, therefore the encoder or decoder pro-
cesses chunks of data whenever possible rather than
doing it offline when the entire document is available.
Online XML compressors are particularly useful for
streaming data, especially in conditions where the en-
tire document may never be available without sub-
stantial buffering or on devices with limited hardware
resources. For online compression, the efficiency of
an algorithm involves several factors, including com-
pression ratio, encoding/decoding times and network
bandwidth. Therefore a collection of algorithms that
can be tuned is often desired.
Contributions. This paper presents a design and im-
plementation of four online XML compression algo-
rithms, which exploit local structural redundancies of
pre-order traversals of an XML tree. Our algorithms
focus on reducing the overhead of sending packets
and maintaining load balancing between the sender
and receiver with respect to encoding and decoding.
Specifically, we present (1) a SAX-Event based en-
coding scheme; (2) its improvement using bit pack-
ing; (3) path-centric compression, and its improve-
ment with variable size buffers. For testing, we de-
signed a suite consisting of 11 XML files with vari-

5Corbin T., Müldner T. and Krzysztof Miziołek J..
Pre-order Compression Schemes for XML in the Real Time Environment.
DOI: 10.5220/0004365100050015
In Proceedings of the 9th International Conference on Web Information Systems and Technologies (WEBIST-2013), pages 5-15
ISBN: 978-989-8565-54-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ous characteristics. In order to take into account net-
work issues, such as its bottleneck, we took two mea-
sures of the encoding process. Ten encoding tech-
niques were compared, using GZIP, EXI, Treechop,
XSAQCT and its improvement, and our new algo-
rithms. Experiments show that our algorithms have
similar or better performance than existing online al-
gorithms, such as XSAQCT and Treechop, and have
only worse performance than EXI for files larger than
1 GB.

This paper is organized as follows. Section 2 pro-
vides a description of related work and Section 3 de-
scribes our algorithms. Section 4 gives a description
of the implementation and results of testing aimed at
evaluating the efficiency of our algorithms, and finally
Section 5 provides conclusions and future work.

2 RELATED WORK

Treechop (Leighton et al., 2005) is a queryable, on-
line XML compressor, which allows streaming XML
files. XQueC (Arion et al., 2007) is queryable, on-
line XML compressor that given a query workload
(a set of queries) can be tailored to decide the best
method of compressing. However, a complexity anal-
ysis in (Leighton and Barbosa, 2009) showed that the
problem of selecting an optimal compression config-
uration is NP-hard. XSAQCT(Müldner et al., 2009)
is a queryable and updateable compressor. Although
the original version of XSAQCT was offline, there is
a more recent online version of XSAQCT (Müldner
et al., 2012b) and (Müldner et al., 2012a). The Effi-
cient XML Interchange, EXI (EXI, 2012) provides a
very compact XML representation thereby optimizing
performance and efficiently utilizing computational
resources. While (Snyder, 2010) determined that us-
ing EXI can double a bandwidth potential and it is
well-suited for the real-time network.

For a detailed comparison and evaluation of some
of above-mentioned XML compressors, and other
offline-variants, see (Sakr, 2008). Now, we will de-
scribe previous research on characteristics of XML
files. (Qureshi and Samadzadeh, 2005) described
the complexity of XML documents using the num-
ber of elements, the number of distinct element, the
size of the document, and the depth of the docu-
ment. (Measurements, 2012) adds two more char-
acteristics, namely (1) content density defined as the
ratio of the sum (in characters) of all texts and at-
tribute values, over the size of the entire document
in characters; (2) the structure regularity defined as
one minus the ratio of the total number of distinct el-
ements over the total number of elements in the XML

document (documents with a few distinct elements
have high structure regularity, while documents us-
ing many different elements have low structure reg-
ularity). Furthermore, Structure Regularity provides
a meaningful value only when the distribution of
element-occurrences is uniform. Otherwise the dis-
tribution of occurrences would provide more insights
to the regularity of occurrence. In addition, (Ruel-
lan, 2012) considers the first order entropy, and finds
that while the entropy of XML documents is lower
than the document’s size, the compressed size (using
GZIP) is sometimes lower than the entropy, showing
that the entropy value does not represent the quan-
tity of information contained in a XML document (the
symbols used to compute the first-order entropy are
not independent).

3 ONLINE ALGORITHMS

Our work on online compression is partially based on
the XSAQCT compression process, therefore we start
by recalling the basic terminology, based on (Müldner
et al., 2012b) and (Müldner et al., 2012a).

3.1 Introduction to XSAQCT
Compression

This section recalls the first phase of offline compres-
sion, in which the compressor transforms the original
XML document into a more compressed form, called
an annotated tree. Then it strips all annotations to
a separate container and finally compresses all con-
tainers using a back-end compressor. These actions
are performed using a SAX compliant parser (SAX,
2012).

Definition 1. An annotated tree of a XML document
is a tree in which all similar paths (i.e., paths that are
identical, possibly with the exception of the last com-
ponent, which is the data value) of a XML document
are merged into a single path labeled by its tag name
and each node is annotated with a sequence of inte-
gers (referred to as an annotation list).

Definition 2. Character data is data that must be as-
sociated with the correct parent node no matter what
transformation of the input XML document is used.
Conversely, Markup Data is data used to provide self
documenting structure of the character data.

For character data (and not markup data), com-
pression must be strictly lossless; e.g., the text defined
by XPath query /a[1]/b[101]/text() never changes.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

6

Definition 3. A text container of a XML path P is an
ASCII zero delimited (and possibly indexed) list of all
character data for all paths equal to P.

Given an XML document as shown in Figure 1,
its associated annotated tree is shown in Figure 3.
Because of space limitations, we refer the reader to
(Müldner et al., 2008) for the algorithms to create an
annotated tree and to (Müldner et al., 2009) for the de-
scription of how cycles (consecutive children X ;Y;X)
are dealt with. For a XML document to be uniquely
represented by a single annotation tree, it has to sat-
isfy the full mixed content property, i.e., all tags in
an XML document have to be separated by character
data (see (Müldner et al., 2012a)).

An example of full mixed content is shown in Fig-
ure 1 and one that does not exhibit full mixed content
would be when the node t3 from the same document
was missing (i.e. the document ended). To
achieve full mixed content the encoder inserts empty
text, consisting only of ASCII zero, whenever a text-
node is missing; the decoder will neglect such empty
texts.

3.2 Online Compression

Although the annotated tree represents a permutation-
based representation of an XML document, it is a
lossless representation of the XML document. For
network transfers, assuming the annotated tree is al-
ready constructed, the encoder would first encode the
tree using a left-child/right-sibling encoding scheme
followed by the annotation list for each path in depth
first order, and finally the actual compressed text for
each text container (again in depth first order), thereby
creating the compressed output O. Since the mapping
which converts the input XML document to an anno-
tated tree is one-to-one, after rebuilding the annotated
tree, the receiver can decompress O to produce the
original XML document D, query O using lazy de-
compression or write O to persistent storage for later
use. Although this technique can satisfy soft-real time
requirements, it is not scalable (i.e., the entire tree
needs to be created) and does not translate well to

<?xml version="1.0" encoding="UTF-8"?>
<a>(t1)

(t4)
<d>(t8)</d>(t5)

(t2)
(t6)

<e>(t9)</e>(t7)
(t3)

Figure 1: A sample XML document D. (t#) represents (pos-
sibly whitespace) character data.

Figure 2: Tree representation of Figure 1.

Figure 3: The annotated tree for the document D.

hard-time requirements.

Definition 4. Online Compression or real time com-
pression is defined as an encoding or decoding
scheme where the encoder operates on data as it is
being received and the decoder is not forced to wait
until the entire encoded document has been received;
instead decoding of the document can be started as
soon as the beginning of the encoded data stream is
received.

The majority of online compressors are homomor-
phic. While existing work on real time compres-
sion has focused on maximizing compression ratios;
processing-time and (least frequently considered) bot-
tleneck effects caused by network bandwidth have not
been considered.

Definition 5. There are two basic applications of the
decoder: (1) restoration, the decoder restores the
original XML document, and (2) querying, the de-
coder saves or transforms the data into a represen-

Pre-order�Compression�Schemes�for�XML�in�the�Real�Time�Environment

7

tation suitable for subsequent queries.

In case of offline algorithms, for restoration the
encoder builds a model/compressed representation of
the original XML document; the decoder decom-
presses the compressed data and restores the original
XML document. If this approach were used on a net-
work, we would have singular-processing, i.e., the en-
coder/decoder would be inactive for the time it takes
for decoding/encoding, and the network would be in-
active during encoding and decoding. For querying,
the encoder performs the same actions as for restora-
tion, while the decoder stores the compressed data (or
queries the compressed data). Therefore, depending
on processing powers and bottleneck effects, in some
cases offline compression in the networked environ-
ment would be beneficial.

In the case of online algorithms, for restoration,
the encoder node produces encodings while the de-
coder node receives this encoding and outputs (to a
network application or storage device) the original
XML document, or in most of our applicative cases
the annotated representation of the original XML doc-
ument. From a network perspective, three situations
can occur: (1) Perfect network utilization, in which
the encoder and decoder are never bottlenecked by a
network, or by one another and never have to wait or
the process has to sleep for data to process; (2) De-
coder starvation, in which the decoder (or its associ-
ated process) is often located on its associated operat-
ing system I/O wait queue, because the encoding pro-
cess or the network bandwidth is limited; (3) Encoder
starvation, in which the encoder (or its associated pro-
cess) is often located on its associated operating sys-
tem I/O wait queue, which can arise when the de-
coding process (or the network bandwidth) is lagging
and the encoding socket is waiting for a RR or ACK
request for specific TCP/UDP packet/frame. There-
fore, cases (2) and (3) often occur in parallel on low-
bandwidth networks. However, in terms of processing
load, online algorithms have intersection processing
loads. For querying, the encoding node produces en-
codings while the decoding node translates these en-
codings into a format that can be used to answer spe-
cific queries. In any case, an encoding can be trans-
lated back into its original XML representation and
be queried using tools such as SOAP (soap, 2012),
the encoding can directly interface with the Query
Streams design pattern as described in (Leighton
et al., 2005), or the encoding could be directly con-
verted into an annotated representation and be queried
as well. Regardless of situation, the processing load
negatively favours the decoder.

The offline XSAQCT compression algorithm de-
scribed in (Müldner et al., 2008) will be used as a

i. {-1, a, t1, b, t4, d, t8}

ii. {1, t5}

iii. {1, t2, b, t6, e, t9}

iv. {1, t7}

v. {1, t3}

vi. {EOF} // End of File

Figure 4: Example of XSAQCT online encoding.

baseline for comparison for two reasons. First, un-
der most circumstances, the client receiving this data
will be building the annotated tree for future query-
ing (and use). Therefore if an online algorithm can
transfer less encoded data than what an annotation al-
gorithm produces, we will consider the online algo-
rithm to be efficient. Second, while the scope of com-
pression is greater for the annotated algorithm (i.e.,
a model is developed for the entire XML document,
while for online compression a model is developed
for specific branches of tree), compression may not
necessarily be optimal for entire document modelling.
For example, the zeros in Figure 3 tell the decoder
that this specific subtree has no tag element. There-
fore the goal of our approach to online compression
will be to produce an encoding for XML that is more
space efficient than the offline XSAQCT counterpart.
This comparison will mostly revolve around the num-
ber of bits in representing the structure of an XML
file, as character data (defined in Section 3.1) is of-
ten not manipulated. This is because learning gram-
mars, caching substrings can incur severe space/time
overheads, where-as using a real-time text compres-
sor could be just as beneficial.
Encoding. Figure 4 shows the encoding generated
by the algorithm discussed in (Müldner et al., 2012b)
for the document in Figure 1. The encoding is cre-
ated by a pre-order traversal on the non-text nodes and
whenever there is traversal up the tree, a new encod-
ing packet is created. For the sake of brevity, the first
element of each block (packet) of data is used to rep-
resent the number of elements required to be popped
off from a stack (number of traversals going up the
tree). In general, within a XML document, tag names
may be repeated many times. The example shown
in Figure 4 has only one tag repetition (‘b’), but in
general tag names are long and also dependant on the
character-set of the data. Using a dictionary that can
be synchronously built on the fly by both the encoder
and the decoder, for tag names that have been seen be-
fore the encoder will only have to send indices within
the dictionary, which will decrease the overhead of
sending tag names.

Figure 5 depicts the encoding using a synchronous

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

8

i. {-1, 1, a, t1,
2, b, t4, 3, d,
t8}

ii. {1, t5}

iii. {1, t2, 2, t6,
4, e, t9}

iv. {1, t7}

v. {1, t3}

vi. {EOF} //
End of File

D={a,b,d}

D={a,b,d}

D={a,b,d,e}

D={a,b,d,e}

D={a,b,d,e}

D={a,b,d,e}

Figure 5: Node Name Dictionary.

dictionaries generated by the algorithm discussed
in (Müldner et al., 2012b) for the document in Fig-
ure 1. The reasoning behind using a dictionary is that
tag names (and attribute names) are often repeated
many times. The example shown in Figure 5 has
only one tag repetition (‘b’), but in general tag names
are long and also dependant on the character-set of
the data. Therefore, a dictionary that can be syn-
chronously built on the fly by both the encoder and
the decoder, for tag names, is an easy technique for
reduction of markup.

To handle XML attributes in a pre-order encoding,
all attribute data can be encoded along with a dictio-
nary index. For example, if the "d" node in Figure 1
had an attribute "href", a standard encoding would be
{...3, nameAndAttrEncoding(d)...}. The next sections
describe our main contributions.

3.2.1 Lightweight SAX Parsing

For compressing data we are interested in the four
major components of an XML Document: (1) XML
Declaration; (2) Start Element Tags; (3) End Ele-
ment Tags; and (4) Character Data, which can be sub-
categorized as parsed character data, unparsed char-
acter data (processing instructions, comments), and
intermittent namespace definitions. An XML decla-
ration only occurs once, start and end tags define the
pre-order traversal of a tree, and character data (re-
call Definition 2) encompasses everything else. Since
we assume full-mixed content, all Start Element and
(non-child) End Element events are followed with a
text string which is, at minimum, an ASCII zero byte.
Encoding. Define the following two elements, both
encoded by single bytes: (1) Start Element, encoded
by 0x0; and (2) End Element, encoded by 0x1. The
description of Lightweight SAX is provided in Algo-
rithm 1. Figure 6 shows the encoding generated by
this algorithm for the document in Figure 1. Note that
the synchronous dictionary techniques can be used to
reduce the overhead in sending node names.
Bit Packing Improvement. The encoding bytes 0x0

i. {0x0, a, t1, 0x0, b, t4, 0x0, d, t8}

ii. {0x1, t5, 0x1, t2}

iii. {0x0, b, t6, 0x0, e, t9, 0x1, t7}

iv. {0x1, t3, 0x1=EOF} // End of File

Figure 6: Encoding with Lightweight SAX.

Algorithm 1: Lightweight SAX.

Require: n is the Root on initial function call
Require: XML Declaration Information has all ready been

transferred.
1: function ENCODE(Node n)
2: // Start Element
3: send(0x0);
4: // send name+attribute
5: send(handleAttributes(n));
6: // send text, possibly empty
7: send(getText(n));
8: // Pre-order Traversal
9: for Each Child Node s Of n do

10: Encode(s);
11: // Full mixed content states that
12: // text exists between all children.
13: send(getText(n,s))
14: end for
15: // End Element
16: send(0x1);
17: end function

and 0x1 can be represented using a single bit. Intro-
ducing bit-level operations can reduce each start/end
declaration by at minimum seven bits. Using this
technique, the encoding from Figure 6 changes to the
one shown in Figure 7. However, a low-level design
choice must be made for this technique: either (1)
the entire encoding will be done on the bit level, i.e.,
one bit will be written for start/end declaration fol-
lowed by multiple bytes that include tag index, char-
acter data, etc., or (2) an algorithm is forced to buffer
eight bits, each representing a SAX event. While both
techniques may induce extra processing and memory
overheads, for example, using the second technique,
the corresponding tag-dictionary keys and associated
character data must be buffered until a byte is packed
and the amount of data to buffer is undefined. The
second method is preferred for the following reason.
By packing bits, the entropy of the entire encoding
will be smaller because no character data (the most
common form of data) is being bit-shifted before the
encoder outputs it and by extension, allows more sep-
aration between structure and data.

3.2.2 Path-centric Compression

Recall that for offline XSAQCT a text container for
path P contains a list of text data for all paths simi-
lar to P. This technique provides a good compression

Pre-order�Compression�Schemes�for�XML�in�the�Real�Time�Environment

9

i. {000110012, a, t1, b,t4, d, t8,t5,t2, b,t6, e, t9,t7}

ii. {112, t3, EOF }

Figure 7: Encoding using two bits.

ratio because the types of data for each path are typ-
ically related (e.g. a ID tag will only have characters
defined by the class [0� 9]+) and thus will have a
smaller entropy in comparison to all of the text in to-
tal. Consider the two algorithms provided before. For
both algorithms, every packet of compression focuses
on a single pre-ordered branch of the XML document,
which makes it more difficult to deal with text data. If
Z text nodes of each similar path are buffered and that
buffer is compressed before transfer, we will decrease
N-order entropy, or less formally, the entropy in spe-
cific locales of the document by exploiting character
locality properties used by permutation-based XML
compressors. However, if the receiving node is pip-
ing XML content directly into an application, text
data should be transferred as rapidly and frequently
as possible into the client. This conundrum necessi-
tates the reason for introducing context as a way to in-
crease compression ratios and potentially reduce pro-
cessing and transfer times. For storing XML content,
which would be queried upon, the same text contain-
ers used for Offline Compression could be losslessly
constructed on the sending node.
Deferred Text Compression. Similar to offline
XSAQCT, the encoder constructs text containers, one
for each unique path. However, each container is
a statically defined buffer (with a statically defined
buffer size). When the buffer becomes full, the en-
coder writes 0x2 (or 102) and the contents of the
buffer are written to the output stream. One slight
modification to the algorithm would allow variable
sized buffers that expand or contract depend on the
usage of the text container. In the following example
let square brackets [text] denote a buffer, and for the
following example assume it has a maximum capacity
of two elements (in our implementation it is actually
based on a specified number of bytes).

i. {0x0, a, 0x0, b, 0x0 d, 0x1}

ii. {0x2, [t4,t5], 0x1, 0x2, [t1,t2]}

iii. {0x0, b, 0x0, e, 0x1, 0x2, [t6,t7]}

iv. {0x1, 0x1, [t3], [\0], [t8], [t9]}

Figure 8: Buffering text.

Figure 8 gives the output of encoding for Fig-
ure 1 using the Algorithm 2. The last encoding line
in this figure includes all leftover text data, sent in
a commonly agreed upon ordering (for this example,
depth-first fashion, the implementation uses the syn-

chronous dictionaries natural ordering). One addi-
tional note too make is that since three codes are re-
served, only four commands can be packed per byte.

Algorithm 2: Deferred Pre-order Encoding.

Require: n is the Root on initial function call
1: function ENCODE(Node n)
2: preorder(n);
3: for Each Unique Path : q do
4: // Any trailer data in the buffer.
5: buffer(q).finalize().close();
6: send(buffer(q));
7: end for
8: end function
9: function BUFFER(Path path, Text t)

10: buffer(path, getText(n));
11: // The buffer would do the following
12: // as data is being buffered:
13: if buffer(path).isLimitExceeded() then
14: send(0x2);
15: // Offload the full buffer.
16: send(buffer(path));
17: // Reset the buffer
18: buffer(path).clear();
19: end if
20: end function
Require: n is the Root on initial function call
21: function PREORDER(Node n)
22: // Start element
23: send(0x0);
24: // Send name+attribute information.
25: send(handleAttributes(n));
26: // Buffer (possibly empty) left-most text node.
27: buffer(p, getText(n));
28: // Pre-order traversal
29: if !isChild(n) then
30: c = LC(c);
31: while c 6= null do
32: preorder(c);
33: // Buffer right-most text child
34: // or separation text.
35: buffer(p, getText(n));
36: c = RS(c);
37: end while
38: end if
39: send(0x1);
40: end function

4 IMPLEMENTATION AND
RESULTS

4.1 Testing Environment

All our algorithms were implemented using Java ver-
sion 1.7.0. Based on the previous research on char-
acteristics of XML files, to create a test suite de-
scribed in the following section, we chose to con-
sider the following characteristics: file size, general

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

10

characteristics (such as number of elements and at-
tributes), first order entropy, content density and a
variant of structure regularity (total number of ele-
ments over total number of distinct elements). For
encoding process, two measures were taken: (1) an
ordinary encoding of the entire document, which rep-
resents the number of raw bytes generated by the en-
coder; (2) a compression of the encoding from (1) us-
ing a general purposed back-end compressor that is
used often in real time environments. GZIP (GZIP,
2012) was chosen as the back-end (and text) com-
pressor because many bandwidth aware transfer pro-
tocols (including HTTP, see (HTTP, 2012)) use GZIP
or a DEFLATE variant for speedup. While the first
measure may provide insights to how efficient each
encoding is in comparison to the original data, the
second measure describes compressibility of each en-
coding. Therefore our proposed encoding strategies
focus on high compression ratio (reducing entropy)
at the expense total number of bytes sent. This phi-
losophy is also quite different from the EXI standard
that adopts the philosophy of pre-compressing spe-
cific pieces of data (common string subsequences), at
the cost of reducing the overall (how it appears con-
tiguously) compressibility. In total, ten total encod-
ing techniques are compared. First, we measured a
naive solution of using GZIP (or no compression de-
pending on the measure), followed by an EXI Imple-
mentation (Peintner, 2012) (using all fidelity options,
default encoding options and a compression-oriented
coding mode). Next, we measured performance of
Treechop (Leighton et al., 2005), the original algo-
rithm as discussed in (Müldner et al., 2012b) and a
leaf improvement algorithm (grouping together long-
sequences of child-siblings) is borrowed from (Müld-
ner et al., 2012b), followed by our new algorithms,
Lightweight SAX and its bit-packed improvement.
Finally, we measured path-centric compression with
its bit packing improvement.

4.2 Characteristics of Test Suite

Our experiments used the following 11 files listed
here in the order of their sizes (from 5,685.77 GB to
159 KB): enwiki-latest-stub-articles.xml (in the tables
and pictures referred to as e.w.-stub) from (enwiki
dumps, 2012), 1gig.xml (a randomly generated XML
file, using xmlgen (xmlgen, 2012)), enwikibooks-
20061201-pages-articles.xml, (in the tables and pic-
tures referred to as e.w.-books),dblp.xml, Swis-
sProt.xml, enwikinews-20061201-pages-articles.xml
(in the tables and pictures referred to as e.w.-news),
lineitem.xml, shakespeare.xml, uwm.xml (all from
the Wratislavia corpus (Wratislavia, 2012)), base-

Table 1: Overview of XML Test Suite. (Sizes in Bytes).

XML File Size Entropy Size (Gzip) Unq. Paths
e.w.-stub 5.96E+09 4.905 9.54E+08 37
1gig 1.17E+09 4.768 3.85E+08 548
e.w.books 1.56E+08 5.152 4.57E+07 29
dblp 1.34E+08 5.198 2.45E+07 145
SwissProt 1.15E+08 5.54 1.41E+07 264
e.w.news 4.64E+07 5.202 1.30E+07 29
lineitem 3.22E+07 5.042 2.91E+06 19
shakespeare 7.65E+06 5.189 2.14E+06 58
uwm 2.34E+06 4.752 1.62E+05 22
BaseBall 6.72E+05 4.867 6.68E+04 46
macbeth 1.63E+05 5.164 4.67E+04 22
XML File Elements Attributes Density Regularity
e.w.-stub 1.70E+08 3.04E+07 0.549 4.60E+06
1gig 1.67E+07 3.83E+06 0.735 3.05E+04
e.w.books 5.34E+05 4.91E+04 0.942 1.84E+04
dblp 3.33E+06 4.04E+05 0.562 2.30E+04
SwissProt 2.98E+06 2.19E+06 0.444 1.13E+04
e.w.news 2.79E+05 2.46E+04 0.894 9.61E+03
lineitem 1.02E+06 1.00E+00 0.195 5.38E+04
shakespeare 1.80E+05 0.00E+00 0.646 3.10E+03
uwm 6.67E+04 6.00E+00 0.445 3.03E+03
BaseBall 2.83E+04 0.00E+00 0.109 6.15E+02
macbeth 3.98E+03 0.00E+00 0.633 1.81E+02

Figure 9: Character Density (Attribute Text + Element Text)
vs. Markup Density (Node Tags + Attribute Tags + Re-
served Chars).

ball.xml (from (Baseball.xml, 2012)), and mac-
beth.xml (from (macbeth, 2012)). Table 1 provides
an overview of each XML file, using characteristics
described in Section 4.1. The measurements show
that the (first order) entropy for each XML document
is greater than four. In comparison, Shannon esti-
mated the entropy of written English to be between
0.6 and 1.3. Secondly, while the number of unique
paths in 1gig.xml file is greater than 500, the num-
ber of unique element names is roughly 80. This
phenomenon is common in XML files where many
subtrees differ by the name of a parent node. Fig-

Pre-order�Compression�Schemes�for�XML�in�the�Real�Time�Environment

11

ure 9 provides a comparison of Content Density and
Markup Density. This comparison shows the major
issue with using XML as a representation language
for semi-structured data. Specifically, it shows that
in the worst case, for BaseBall.xml, ninety percent of
the document is considered markup overhead. In the
best case, for enwikibooks.xml, over ninety percent
of the document consists of text. Otherwise, the rest
of the suite lies within the two extremes. Table 2 pro-
vides a breakdown of XML Test Suite in percentage
points. These two tables show that our XML suite
includes XML files with low/high number of nodes
and attributes, and various amounts of text, such as
attribute text or element text.

4.3 Results of Testing

Reducing Markup Data. Table 3 compares the ef-
ficiency of each algorithm described in Section 3 in
terms of encoding only the markup of a XML docu-
ment. The compression ratio is calculated as the size
of the encoding divided by the size of the markup
data (column two). Note that for online compres-
sion the size of the markup includes all occurrences
of ASCII Zero to satisfy the full-mixed content prop-
erty (for algorithms that require it) and all additional
data required to describe text data (for example, block
lengths, text terminators, etc.).

Figure 10 provides two measures: (a) A grey bar
with a white bar stacked on top. This represents
the best compression of markup an online algorithm
could achieve, while the white bar stacked-upon it
represents the size of its GZIP’d encoding. (b) The
new grey bar with a black bar stacked on top. This
represents the number of bytes required to encode an
annotated tree, while the white bar stacked-upon it
represents the size of its GZIP’d encoding. For the
online algorithms we achieve over a 25% compres-
sion ratio (or a space savings greater than 75%) for
all files. For the offline algorithm, some files pro-
duce encodings that contain many zero annotations
and thus contain large portions of overhead. There
is no decisive winner when one compares both en-
codings compressed as these encodings produce com-
pression ratios of under 2% (space savings of 98%)
of the original markup. However, comparing the two
encodings after compression is also quite misleading,
but still provides interesting information none the less
(how compressible/similar the data is). For online al-
gorithms, these encodings aren’t continuous as large
portions of intermittent character data separate por-
tions of this markup, thus not allowing us to encode
markup data as one contiguous sequence.

Switching focus to only the online algorithms, the

Figure 10: Compression of Markup Data. Best Online
Compressor (Top), Offline XSAQCT (Bottom) vs. GZIP’ed
encodings.

first general trend is that as the file gets bigger (bot-
tom to top in Figure 10), the worse the compression
ratio of markup data gets. From Table 1, we see
that the four documents with the highest number of
tag elements are also the four least-compressed doc-
uments (enwiki-latest, 1gig, dblp, SwissProt). This
phenomenon can be attributed to the full-mixed con-
tents assumption. For each algorithm an ASCII zero
is required to delimit text so the decoder knows when
the character portion ends. In our future work, more
compressible text delimitation and full mixed content
techniques will be studied, as well as introducing con-
text models, similar to the ideas EXI proposes, to in-
crease path-centric compressibility.
Reducing XML Data. Tables 4 and 5 encompass
an entire XML encoding and transfer process. Each
element in the table represents the number of bytes
physically transferred over a socket. Let us first com-
pare the our basic online algorithms, with their im-
proved variants. The improved variant of the original
XSAQCT algorithm performs slightly better. How-
ever, the improved variant of the Lightweight SAX
implementation that uses bit-packing (unsurprisingly)
does not, because it may represent a fewer number
of total bytes, and the self-information (entropy) of
the encoding tends to be much higher. This increased
self-information is also present in the Path-centric Al-

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

12

Table 2: Breakdown of XML Test Suite in Percentage Points. For character set, Number of Bits in Character Encoding /
Number of Unique Characters.

File Node Tags Attribute Tags Reserved Attribute Text Element Text Character Set
e.w.-stub 26.426 1.958 15.781 4.5 51.336 16/12460
1gig 15.94 2.191 7.949 4.001 69.918 8/80
e.w.-books 3.707 0.251 1.821 0.283 93.938 16/23795
dblp 29.106 1.017 13.656 5.739 50.482 8/126
SwissProt 26.442 8.557 20.593 12.086 32.322 8/86
e.w.-news 6.866 0.477 3.202 0.424 89.031 16/1777
lineitem 64.589 0 15.867 0 19.543 8/69
shakespeare 23.645 0 11.748 0 64.607 8/80
uwm 41.214 0.001 14.275 0.003 44.507 8/68
BaseBall 67.941 0 21.147 0 10.912 8/68
macbeth 24.558 0 12.195 0 63.247 8/70

Table 3: Compression Ratio of Structure Data: Number of Bytes to Encode Markup / Original Markup Size.

File XML-Markup XSAQCT Leaf Imprv. Lw SAX Bit Packing Path Cent. Defer. Text Min
e.w.-stub 2.59E+09 0.331 0.304 0.359 0.244 0.376 0.26 0.244
1gig 3.04E+08 0.282 0.249 0.312 0.216 0.325 0.181 0.181
e.w.-books 9.03E+06 0.279 0.277 0.312 0.208 0.317 0.167 0.167
dblp 5.86E+07 0.294 0.214 0.305 0.206 0.312 0.191 0.191
SwissProt 6.38E+07 0.302 0.244 0.316 0.235 0.37 0.194 0.194
e.w.-news 4.89E+06 0.27 0.264 0.3 0.2 0.305 0.123 0.123
lineitem 2.59E+07 0.193 0.128 0.197 0.128 0.197 0.099 0.099
shakespeare 2.71E+06 0.308 0.25 0.332 0.216 0.332 0.163 0.163
uwm 1.30E+06 0.233 0.213 0.257 0.167 0.257 0.077 0.077
BaseBall 5.96E+05 0.234 0.152 0.238 0.155 0.238 0.072 0.072
macbeth 5.99E+04 0.312 0.252 0.335 0.219 0.336 0.104 0.104

Table 4: Encoding the Entire XML Document. (Sizes in Bytes).

File Offline EXI Treechop XSAQCT Leaf Lw. SAX Bit Pck. Path Cnt. Defer.
e.w.-stub 4.09E+09 * 4.66E+09 4.12E+09 4.06E+09 4.21E+09 3.91E+09 4.25E+09 3.94E+09
1gig 9.47E+08 4.79E+08 1.24E+09 9.48E+08 9.38E+08 9.57E+08 9.28E+08 9.61E+08 9.17E+08
e.w.-books 1.49E+08 1.39E+08 1.45E+08 1.43E+08 1.43E+08 1.50E+08 1.49E+08 1.50E+08 1.41E+08
dblp 1.26E+08 8.69E+07 1.07E+08 9.24E+07 8.78E+07 9.31E+07 8.73E+07 9.35E+07 8.63E+07
SwissProt 8.26E+07 4.37E+07 8.46E+07 7.03E+07 6.66E+07 7.12E+07 6.60E+07 7.46E+07 6.25E+07
e.w.-news 4.27E+07 3.95E+07 4.27E+07 4.18E+07 4.17E+07 4.30E+07 4.25E+07 4.30E+07 4.10E+07
lineitem 8.35E+06 7.31E+06 1.19E+07 1.13E+07 9.61E+06 1.14E+07 9.62E+06 1.14E+07 9.40E+06
shakespeare 6.44E+06 5.94E+06 6.38E+06 5.77E+06 5.62E+06 5.84E+06 5.53E+06 5.84E+06 5.19E+06
uwm 1.21E+06 7.68E+05 1.52E+06 1.34E+06 1.31E+06 1.37E+06 1.26E+06 1.37E+06 8.33E+05
BaseBall 3.95E+05 1.77E+05 1.52E+06 2.13E+05 1.63E+05 2.15E+05 1.66E+05 2.15E+05 4.31E+04
macbeth 1.33E+05 1.21E+05 1.35E+05 1.22E+05 1.18E+05 1.23E+05 1.16E+05 1.23E+05 6.25E+03

* – Requires extraordinary amount of RAM. Crashes with 16GB of allocated memory.

Table 5: Using a Backend Compressor on the Encodings. (Sizes in Bytes).

File Offline EXI Treechop XSAQCT Leaf Lw. SAX Bit Pck. Path Cnt. Defer.
e.w.-stub 6.95E+08 * 9.14E+08 8.87E+08 8.86E+08 8.95E+08 9.39E+08 6.99E+08 6.95E+08
1gig 3.29E+08 1.57E+08 3.90E+08 3.71E+08 3.71E+08 3.70E+08 3.74E+08 3.32E+08 3.31E+08
e.w.-books 4.45E+07 4.39E+07 4.52E+07 4.51E+07 4.51E+07 4.54E+07 4.56E+07 4.44E+07 4.38E+07
dblp 1.94E+07 1.86E+07 2.36E+07 2.27E+07 2.27E+07 2.29E+07 2.34E+07 1.94E+07 1.92E+07
SwissProt 7.63E+06 7.71E+06 1.33E+07 1.23E+07 1.23E+07 1.24E+07 1.36E+07 7.74E+06 7.77E+06
e.w.-news 1.26E+07 1.26E+07 1.29E+07 1.28E+07 1.28E+07 1.29E+07 1.30E+07 1.26E+07 1. 25E+07
lineitem 1.43E+06 1.44E+06 2.34E+06 2.33E+06 2.20E+06 2.34E+06 2.44E+06 1.45E+06 1.44E+06
shakespeare 1.89E+06 1.99E+06 2.07E+06 2.02E+06 2.03E+06 2.03E+06 2.05E+06 1.91E+06 1.90E+06
uwm 1.02E+05 1.10E+05 1.50E+05 1.43E+05 1.42E+05 1.47E+05 1.66E+05 1.02E+05 1.01E+05
BaseBalll 4.67E+04 3.87E+04 5.29E+04 5.41E+04 4.82E+04 5.45E+04 5.41E+04 3.49E+04 3.46E+04
macbeth 4.34E+04 4.50E+04 4.56E+04 4.45E+04 4.48E+04 4.46E+04 4.53E+04 4.34E+04 4.32E+04

* – Requires extraordinary amount of RAM. Crashes with 16GB of allocated memory.

gorithm, however not to the same extent.
We did not report the compression ratio of enwiki-

latest-stub.xml with EXI due to hardware limitations.
In general, we made the hard restriction that the

Pre-order�Compression�Schemes�for�XML�in�the�Real�Time�Environment

13

amount of internal memory allocated to a process can
never exceed twice the file size. Not only did EXI
exceed this, but it exceeded three times the original
file size. Section 5 provides a brief discussion on why
we think this occurs, and what can be done to im-
prove it. However, in terms of our online compression
algorithms (which don’t produce substantial memory
footprint), we can see that they scale well to data of
all sizes.

Relating each individual algorithm to the baseline
transfers (Offline & GZIP) we see that in each case all
online algorithms perform better than GZIP. However,
in each case as we relax the "online constraint" (the
more data we are allowed to buffer), the better and
more significant results we receive. Comparing Of-
fline XSAQCT, which requires processing the entire
document before transfer to Lightweight Sax, which
processes on the fly, the Offline XSAQCT performs
on average, 15% better. However, comparing Offline
to Path-centric algorithm, Offline XSAQCT performs
on average, 2% better, which is significant because
Path-centric algorithm does not require a full docu-
ment scope, which would be optimal in the domain of
large-scale XML streaming. In comparison to Tree-
chop, the original and lightweight SAX variants also
prove to be quite competitive and once again the Path-
centric algorithms beat Treechop. Finally, in com-
parison to EXI, the Path-centric algorithms tend to
be similar for documents whose size was larger than
1GB. For example, for 1gig.xml, a document which
contains a lot of character data, EXI beats "all" algo-
rithms by a substantial margin.

5 CONCLUSIONS AND FUTURE
WORK

This paper provided a design and implementation
of four new versions of online XML compression,
which exploit local structural redundancies of pre-
order traversals of an XML tree and focus on reduc-
ing the overhead of sending packets and maintaining
load balancing between the sender and receiver with
respect to encoding and decoding. For testing various
algorithms, a suite consisting of 11 XML files with
various characteristics was designed and analyzed. In
order to take into account network issues, such as
its bottleneck, two measures of the encoding process
were considered to compare ten encoding techniques,
using GZIP, EXI, Treechop, XSAQCT, and its im-
provement, and our new algorithms. Our experiments
indicated that our new algorithms have similar or bet-
ter performance than existing online algorithms, such
XSAQCT and Treechop, and have only worse perfor-

mance than (a non-queryable XML compressor) EXI
for files larger than 1 GB.

For future work we will consider the amount
of overhead of performing each encoding as in the
amount of resources required for encoding. Recall
the missing data in Table 4. The reason for the ex-
traordinary resource requirement can be attributed to
the fact that EXI also performs manipulation on the
text to increase compression ratios, which appears to
be resource heavy. In addition, more techniques will
be introduced that alleviate the vast overhead of send-
ing ASCII zero characters to delimit text and to sat-
isfy the full mixed content property. Next, context-
modeling techniques (such as those used in the PPM
& PAQ variants of data compression) will be intro-
duced as a pre-processor on character data to allow
higher compression ratios. Finally, a more concise
and meaningful definition of Structure Regularity that
takes into account the skewness of occurrences, by us-
ing the annotated tree representation, will be defined
and studied.

REFERENCES

Arion, A., Bonifati, A., Manolescu, I., and Pugliese, A.
(2007). XQueC: a query-conscious compressed XML
database. ACM Transactions on Internet Technology,
7(2).

Baseball.xml (2012). baseball.xml, retrieved October 2012
from http://rassyndrome.webs.com/cc/baseball.xml.

enwiki dumps (2012). enwiki-latest.xml, retrieved October
2012 from http://dumps.wikimedia.org/enwiki/latest/.

EXI (2012). Efficient XML Interchange (EXI) Format
1.0, Retrieved October 2012 from http://www.w3.org/
TR/exi/.

GZIP (2012). The gzip home page, retrieved October 2012
from http://www.gzip.org.

Hartmut, L. and Suciu, D. (2000). XMill: an efficient com-
pressor for XML data. ACM Special Interest Group on
Management of Data (SIGMOD) Record, 29(2):153–
164.

HTTP (2012). HTTP RFC 2616, retrieved Octo-
ber 2012 from http://www.w3.org/protocols/rfc2616/
rfc2616.html.

Leighton, G. and Barbosa, D. (2009). Optimizing XML
compression. XML Database Symposium (XSym)
’09, pages 91–105, Berlin, Heidelberg. Springer-
Verlag.

Leighton, G., Müldner, T., and Diamond, J. (2005). TREE-
CHOP: A Tree-based Query-able Compressor for
XML. The Ninth Canadian Workshop on Information
Theory, pages 115–118.

Lin, Y., Zhang, Y., Li, Q., and Yang, J. (2005). Supporting
efficient query processing on compressed XML files.
Proceedings of the Symposium on Applied Comput-
ing (SAC) ’05, pages 660–665, New York, NY, USA.
ACM.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

14

macbeth (2012). macbeth.xml, retrieved October 2012 from
http://www.ibiblio.org/xml/examples/.

Measurements (2012). Efficient XML Interchange Mea-
surements Note, retrieved October 2012 from http://
www.w3.org/tr/exi-measurements/.

Müldner, T., Corbin, T., Miziołek, J., and Fry, C. (2012a).
Design and Implementation of an Online XML Com-
pressor for Large XML Files. International Journal
On Advances in Internet Technology, 5(3):115–118.

Müldner, T., Fry, C., and Miziołek, J. (2012b). Online
Internet Communication using an XML Compressor.
In The Seventh International Conference on Internet
and Web Applications and Services, pages 131–136,
Stuttgart, Germany. International Academy, Research,
and Industry Association. (IARIA).

Müldner, T., Fry, C., Miziołek, J., and Durno, S. (2008).
SXSAQCT and XSAQCT: XML Queryable Compres-
sors. In S. Böttcher, M. Lohrey, S. M. and Rytter,
W., editors, Structure-Based Compression of Complex
Massive Data, number 08261 in Dagstuhl Seminar
Proceedings.

Müldner, T., Fry, C., Miziołek, J., and Durno, S. (2009).
XSAQCT: XML queryable compressor. In Balisage:
The Markup Conference 2009, Montreal, Canada.

Ng, W., Lam, W.-Y., Wood, P., and Levene, N. (2006).
XCQ: a queriable XML compression system. Knowl-
edge and Information Systems, 10(4):421–452.

Peintner, D. (2012). EXI: EXIficient retrieved October
2012, from http://exificient.sourceforge.net.

Qureshi, M. H. and Samadzadeh, M. H. (2005). Determin-
ing the complexity of XML documents. International
Conference on Information Technology: Coding and
Computing(ITCC) ’05, pages 416–421, Washington,
DC, USA. IEEE Computer Society.

Ruellan, H. (2012). XML entropy study. In Balisage: The
Markup Conference 2012, Montreal, Canada.

Sakr, S. (2008). An experimental investigation of XML
compression tools. The Computing Research Reposi-
tory (CoRR), abs/0806.0075.

SAX (2012). Simple API for XML (SAX), retrieved Octo-
ber 2012 from http://www.saxproject.org.

Snyder, S. (2010). Efficient XML Iinterchange (EXI)
compression and performance benefits: Develop-
ment, implementation and evaluation, retrieved
October 2012 from http://www.dtic.mil/cgi-bin/
gettrdoc?ad=ada518679. Master’s thesis, Naval
Postgraduate School, Monterey, California.

soap (2012). SOAP Version 1.2 Part 1: Messaging Frame-
work (Second Edition), retrieved October 2012 from
http://www.w3.org/tr/soap12-part1/.

Tolani, P. and Haritsa, J. (2002). XGRIND: a query-friendly
XML compressor. International Conference on Data
Engineering (ICDE)’ 02, pages 225–234.

Wratislavia (2012). Wratislavia XML corpus, retrieved Oc-
tober 2012 from http://www.ii.uni.wroc.pl/�inikep/
research/wratislavia/.

XML (2012). Extensible markup language (XML) 1.0
(Fifth edition), retrieved October 2012 from http://
www.w3.org/tr/rec-xml/.

xmlgen (2012). The benchmark data generator, retrieved
October 2012 from http://www.xml-benchmark.org/
generator.html.

XPath (2012). XML Path Language (XPath), Retrieved Oc-
tober 2012 from http://www.w3.org/TR/xpath/.

XQuery (2012). XQuery 1.0: An XML Query Language
(Second Edition), Retrieved October 2012 from http://
www.w3.org/TR/xquery/.

Pre-order�Compression�Schemes�for�XML�in�the�Real�Time�Environment

15

