
Exploiting Progressions for Improving Inverted Index Compression

Christos Makris and Yannis Plegas
Department of Computer Engineering and Informatics, University of Patras, Patras, Greece

Keywords: Inverted Index, Compression, Arithmetic Progression, Interpolative Coding.

Abstract: In this paper, we present an algorithmic technique for compressing the document identifier lists of an
inverted index which can be combined with state of the art compression techniques such as algorithms from
the PForDelta family or Interpolative Coding and attain significant space compaction gains. The new
technique initially converts the lists of document identifiers to a set of arithmetic progressions; the
representation of an arithmetic progression uses at most three (!) numbers. This process produces an
overhead which are the multiple identifiers that have to be assigned to the documents so we have to use a
secondary inverted index and an extra compression step (PForDelta or Interpolative Coding) to represent it.
Performed experiments in the ClueWeb09 dataset depict the superiority in space compaction of the
proposed technique.

1 INTRODUCTION

An inverted index (also referred to as postings list or
inverted file) is a data structure that is typically
employed in Information Retrieval systems in order
to index the terms (words) that are contained in a set
of documents (Witten et al., 1999); (Baeza-Yates
and Ribeiro-Neto, 2011). In the present paper we
focus on inverted indices, where the documents are
web pages. Traditionally an inverted index consists
of all the different terms that exist in the processed
pages and a list for each term that contains the
identifiers of the pages where the term appears. A
reference to an instance of a term in a web page in
an inverted list is usually represented by a numerical
identifier that uniquely identifies the page.

Since the size of an inverted index, if stored
uncompressed, is of the same magnitude to the size
of the whole collection, a great deal of work has
been performed in order to compress the inverted
index (Witten et al., 1999); (Zobel and Moffat,
2006); (Baeza-Yates and Ribeiro-Neto, 2011). The
majority of the proposed techniques try to compress
the inverted lists by storing the document identifiers
in ascending order and compressing the gaps
between successive values. In the present work we
approach the problem of compressing inverted files
from a different perspective, that we believe could
shed new light on how space efficiently we can
compress. We eliminate the long list of document

identifiers that must be stored for each inverted list,
by replacing it by a triple that represent an arithmetic
progression; in order to achieve this we may be
forced to assign extra identifiers to the documents
and we handle these by using a secondary inverted
index. An important advantage of our method is not
only that we store a percentage of the initial
identifiers but also that we may apply transparently
previous inverted file compression methods in order
to achieve better performance. A probable
disadvantage of our technique is its decompression
performance, however we feel that our technique is
quite significant if using it for representing cached
inverted lists, or the main memory component of a
multi-tiered index (Zhang et al., 2008), (Ntoulas and
Cho, 2007).

Before continuing we should note that an
arithmetic progression (or numerical sequence) is a
sequence of numbers such that the difference
between any two successive members of the
sequence is a constant. An arithmetic progression
can be stored and retrieved using only three numbers
the first element, the step between two consecutive
elements and the number of elements in the
sequence. The proposed method uses only sequences
with step value one so it is not necessary to store the
step of the sequence. Also the algorithm uses a base
value which guarantees that the documents get
different and uniquely decompressable identifiers.
Consequently the algorithm needs only three

251Makris C. and Plegas Y..
Exploiting Progressions for Improving Inverted Index Compression.
DOI: 10.5220/0004365402510256
In Proceedings of the 9th International Conference on Web Information Systems and Technologies (WEBIST-2013), pages 251-256
ISBN: 978-989-8565-54-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

numbers to store the sequence.
Our goal is to turn the lists of document

identifiers in numerical sequences that represent
arithmetic progressions and hopefully reduce the
number of values that represent each initial inverted
list to three (!) numbers per list. The cost we have to
pay for this dramatic decrease of space is that we
have to assign multiple extra identifiers to the
documents. So our goal is to maximize the number
of documents that do not have to take extra
identifiers. The extra document identifiers are
maintained by a secondary index that assigns to each
original document identifier a list with the extra
identifiers. Hence, we have to handle and compress
these extra identifier values efficiently. Our
technique is accompanied with a decompression
algorithm that takes as input the compressed
inverted index and returns as output the original
inverted file.

In section 2 we describe the related work, in
section 3 we present the main idea behind our
algorithm, while in section 4 we present the
decompression technique. Then the section 5
contains the experimental evaluation, and finally in
section 6 we conclude with open problems and
directions for future research.

2 RELATED WORK

There are many methods trying to compress inverted
indexes. The most common methods use the gaps
between document identifiers to represent values
with fewer bits. In particular a set of well known
methods, for compressing the inverted files are the
Unary code, the γ-code, the δ-code and the Golomb
code (more details for these methods appear in
(Witten et al., 1999)). Concerning more recent
methods, the most successful at this time are
considered to be the Interpolative Coding (Moffat
and Stuiver, 2000) and the OptPFD method in (Yan
et al., 2009) that is an optimized version of the
techniques appearing in the compression schemes
described in (Heman, 2005); (Zukowski et al., 2006)
and that are known under the umbrella of PForDelta
(PFD) family.

The Interpolative Coding (IPC) compresses a
sequence of ascending numbers by firstly encoding
in binary the middle value of the ascending sequence
and then by recursively encoding the left and the
right interval by using the boundary values of the
intervals to be coded, in order to reduce the number
of used bits. The PFD firstly codifies using b bits,
the values that are less than 2b for a user defined

threshold b, and then it codifies separately larger
values that are called exceptions. The PFD works
especially well if it is applied to blocks of bits of 32-
bit values and patches the results. In (Yan et al.,
2009) two extensions of the PFD methods were
presented. One that employs more efficient coding
procedure for the exceptions by storing more
efficiently the involved offset values termed
NewPFD, and another one that instead of selecting a
given threshold for each exception, it judiciously
selects the best value of each block by modeling it as
an optimization problem, termed OptPFD. OptPFD
is considered to be the more successful from the two
variants.

Concerning enhancements of the compression
techniques, there have appeared lately a plethora of
methods that try to improve the compression
performance by suitably rearranging the assignment
of identifiers to each inverted list, see for example
(Yan et al., 2009); (Ding et al., 2010). There are also
methods making pruning-based performance
optimization (Ntoulas and Cho, 2007); (Zhang et al.,
2008).

In our constructions and following the findings
of the various works mentioned in the bibliography
we determined to choose as representative schemes
with which to compare and combine in our
technique IPC, and OptPFD that are considered to be
amongst the best in the state of the art (Yan et al.,
2009); (He et al., 2009).

3 CROPPING INVERTED LISTS

The inverted file represents each document with a
document identifier called in our algorithm original
identifier. As mentioned briefly above, our
algorithm tries to condense the representation of
each inverted list of a term, by a triple of numbers;
we call the set of all these triples produced for all
terms the transformed index representation. To
achieve this we assign to the documents multiple
extra document identifiers which called extra
identifiers. The extra identifiers for each document
constitute the list of extra identifiers for the
document. The lists of extra identifiers for all the
documents create the secondary index of extra
identifiers. Below we analyze the process we follow
to make the representation complete and reversible;
the procedure is applied to each term separately
moving from the first to the last in lexicographic
order.

In subsections 3.1 and 3.2, we present the core
idea of our algorithm while the subsection 3.3

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

252

contains a brief reference to simple heuristics for the
original identifier assignment.

3.1 Core of Our Idea

For each inverted list, we use its size that is the
number of documents contained in it, to define the
range of the interval in the arithmetic progression
that we seek. That is in the best of the scenario all
the documents should have identifiers that are
consecutive numbers in an interval with range equal
to the size of the initial inverted list and this because
in our case the difference between two successive
values in a progression should be one.

Since the inverted list of a term can span
multiple intervals of values of this range, we have to
consider the range of values that are formed in each
inverted list by the original identifiers of the
documents and try to locate an interval of values that
contains the more document identifiers and hence it
is more suitable for being the arithmetic progression
that we seek. The explanation of why we think the
size of the inverted list is so important is that, as we
move through the chosen interval in the identifiers
of the inverted list, the original document identifiers
that are outside this interval of values designate
documents that should take extra identifiers; these
extra identifiers should be added to fill the gaps
between the values that exist in the size interval in
order to form the desired arithmetic progression.

3.2 Selection of the Optimal Interval

Our goal in the conversion of inverted lists to
numerical sequences is to use the smallest possible
number of extra identifiers. The number of these
extra identifiers used in our representation is equal
to the number of original identifiers that are outside
the selected interval. Hence selecting the interval
containing the largest number of original identifiers
minimizes the number of extra identifiers that are to
be used.

For example, in Figure 1, we can see the process
for selecting the optimal interval for an inverted list
with ten documents. The algorithm selects the
interval [1-10] hence it contains the maximum
number of original identifiers. To verify what we
said above, we see that in interval 1 [1-10], there are
contained the documents 1,3,5,6,9,10 and outside
this interval there are contained the original
identifiers 12, 14, 15, 20. From interval 1, the
missing values in order to form an arithmetic
progression are 2, 4, 6 and 7. Therefore, the
documents whose identifiers exist outside the

interval (12, 14, 15 and 20) should get extra
identifiers to represent the missing values (2, 4, 6
and 7) as we can see in Figure 2.

These extra identifiers should somehow be stored
in a reversible way. Since we want to store them in
an inverted like index where each original identifier
will be associated to a list of extra identifiers, we
need to assure that as we process each term from the
smallest to the largest lexicographically, the extra
identifiers that are assigned to the same original
identifier are in ascending order.

We achieve this by introducing, when processing
the inverted list of a term the so called base number;
this guarantees that the range of values that will be
assigned to each term, in the transformed index, are
disjoint and in a total order according to the
lexicographic ordering of the terms. Initially and for
the first term in the inverted index the base number
is equal to 0. The base number when processing the
inverted list of a specific term will be equal to the
last value of the previous inverted list, after this it is
transformed into an arithmetic progression; that is, it
will be equal to the upper bound of the progression
plus the base value designated to the previous list.

Using this base value we define and store in the
secondary inverted list as extra identifier the base
value of the term in whose inverted list the
document appears, plus its assigned missing value in
the numerical sequence. Consequently, for each
term, the lower limit of the interval which contains
the extra identifiers values in the secondary index is
the base number plus the initial value and the upper
bound is the base number plus the initial value plus
the size of the sequence. Hence the stored extra
identifiers corresponding to the same original
document identifier will be distinct and ascending as
we process the terms, and thus form an eligible
sequence of values for being stored and compressed
in the secondary inverted index.

Figures 1 and 2 use small inverted lists in order
to provide more comprehensible examples.
Typically, the inverted lists are very large, as those
that we will employ in our experiments. Finally
Figure 3 initially contains the final representation of
the compressed inverted index for the two terms.
The compressed inverted index consists of the two
term triplets and their secondary index.

3.3 Assignment of the Original
Document Identifiers

The results of our method can be improved by
intervening in the assignment of original identifiers
to documents, in a way that will permit more

Exploiting�Progressions�for�Improving�Inverted�Index�Compression

253

efficient compression using arithmetic progressions,
in comparison to a random assignment. It could be
possible to employ the plethora of the techniques
that have been applied in the relevant literature for
identifier assignment to documents, see for example
(Yan et al., 2009); (Ding et al., 2010); however we
have chosen to implement some simple heuristics
that are fast and give quite satisfactory results. We
will not expand further on this section to focus on
the main idea of this work.

Figure 1: Optimal interval selection.

Figure 2: Conversion of the inverted lists into arithmetic
progressions.

4 DECOMPRESSION

In order to complete the proposed algorithm we
must describe the procedure for decompressing
efficiently the compressed representation. This
procedure ensures that we can take the initial lists
self-same without any possibility of collision. The
innovation of our idea for the decompression
justifies the existence of the base value that is used
in each term; this base value in combination with the
extra identifiers of each document permit easy
decompression. In particular each of the terms has a
unique number as base value. The base value of each
term is equal to the base value of the previously
processed term plus the value of the last term of the
sequence.

Every time that is necessary for an original
document identifier to get an extra identifier value in
our algorithms, this value is computed as (base value
+ the extra document identifier given in the
numerical sequence). Then the extra document
identifier is added to the inverted list of extra
identifiers of the base identifier. Hence, all the extra
identifiers, in a specific term, will lie in the interval
from (base value + start value of numerical sequence
progression) till (base value + last value of
numerical sequence). The last value of the sequence
is computed as (base value + start of sequence +
length of sequence). In this way, we ensure that all
extra identifiers that the processing of a term will
cause to exist are in a unique interval that it is not
covered by any one of the intervals of the rest of the
term; this guarantees unique decompression. We
have stored the numerical sequences and the extra
identifiers lists in the disk, and we must decompress
them to the initial representation.

To decompress the stored values in our
compressed representation of the inverted index, we
take the terms one-by-one and we follow the below
procedure:

Step 1: We retrieve the list of the extra
document identifiers that appear in the secondary
index using the base value.

Step 2: We remove the base value from the
secondary index identifiers in order to produce the
extra document identifiers in the arithmetic
progression of the term.

Step 3: We replace the extra document
identifiers with the respective original document
identifiers in the numerical sequence. The new list is
the initial list of document identifiers for the specific
term.

We employ the same procedure for the
reconstruction of all the inverted lists.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

254

In Figure 3 we decompress the compressed inverted
lists from the Figure 2 and we produce the initial
inverted lists. Initially Figure 3 contains the
compressed inverted index and then are follow the
steps of the decompression procedure.

Figure 3: Decompression of the compressed index.

5 EXPERIMENTS

We performed the experiments by moving into two
different directions. The first one was to leave the
secondary index uncompressed, and measure the
savings in compression that the unified scheme
(transformed index plus secondary uncompressed
index) attains. The second one was to apply to the
secondary index, state of the art compression
techniques and see the savings in performance that
these achieve.

5.1 Dataset

In our experiments we employed the ClueWeb09

dataset (Callan, 2009). From this dataset we
extracted two different parts of data, the Wikipedia
and the Category B dataset. The Wikipedia dataset
has almost 7 million pages and the Category B
dataset has 50 million pages. Also, we used the Indri
search machine in order to create their indices.

5.2 Experimental Process

We first run the proposed method of Section 3 with
the secondary index uncompressed, and then we run
the method with the secondary index compressed
with IPC and then with the PFD compression
technique (we used the OptPFD implementation).
We compared the performance by compressing the
inverted indices using only IPC and PFD. Following
(Chierichetti et al., 2009) we use as measure of the
compression performance the compression ratio,
defined as the ratio of the compressed index size to
the uncompressed index size.

The results are depicted in Tables 1 and 2. Table
1 show the compression ratio which was achieved in
relation to the original size for the proposed
techniques (when the secondary index is
uncompressed). Table 2 depicts the compression
ratio which was achieved by the compression
technique when the secondary index has been
compressed with the existing techniques. Table 1
depicts that our algorithm achieves 78-79%
compression of the initial index which is not as good
as the existing techniques; however this storage
reduction justifies the employment of our technique
as a preprocessing mechanism. Table 2 results depict
a good increase in compression performance,
outperforming IPC and PFD by almost 4-5%.

Table 1: The compression ratio achieved by the proposed
algorithm, with the secondary index uncompressed.

 Algorithm IPC PFD
Wikipedia 78% 44% 42%
Category B 79% 45% 44%

Table 2: The compression ratio achieved by the proposed
algorithm, with the secondary index compressed.

 Algorithm + IPC Algorithm + PFD
Wikipedia 40% 39%
Category B 41% 41%

Hence the experiments show that using our

technique as a preprocessing step, or more
accurately as a transformation step, one can provide
better compression results from the existing
techniques. It is interesting to note that our
construction can easily incorporate other

Exploiting�Progressions�for�Improving�Inverted�Index�Compression

255

compression techniques by simply employing
instead of IPC and PFD, other constructions.

6 CONCLUSIONS AND OPEN
PROBLEMS

We have presented a novel technique for
compressing efficiently inverted files, when storing
the document identifiers. The proposed
constructions can be harmonically combined with
other techniques that have been proposed in the
literature such as IPC and PFD and produce
compression results that are competitive and in the
majority of the cases even better than those of the
previous works. As the careful reader should have
noticed the handling of the secondary index with the
extra identifiers constitutes the main burden of our
technique. This burden can be relieved by using
more arithmetic progressions when representing
each initial inverted list, and here there exists a
tradeoff that is worth the effort to be further
explored, since it could lead to a whole set of
parametric techniques. Moreover it could be
interesting to investigate further techniques of
handling the secondary index that could lead to
faster decompression performance.

ACKNOWLEDGEMENTS

This research has been co-financed by the European
Union (European Social Fund-ESF) and Greek
national funds through the Operational Program
“Education and Lifelong Learning” of the National
Strategic Reference Framework (NSRF)-Research
Funding Program: Heracleitus II. Investing in
knowledge society through the European Social
Fund.

This research has been co-financed by the
European Union (European Social Fund-ESF) and
Greek national funds through the Operational
Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF)-
Research Funding Program: Thales. Investing in
knowledge society through the European Social
Fund.

REFERENCES

Baeza-Yates, R., Ribeiro-Neto, B. 2011, Modern
Information Retrieval: the concepts and technology

 behind search, second edition, Essex: Addison Wesley.
Callan, J. 2009, The ClueWeb09 Dataset. available at

http://boston.lti.cs.cmu.edu/clueweb09 (accessed 1st
August 2012).

Chierichetti, F., Kumar, R., Raghavan, P., 2009.
Compressed web indexes. In: 18th Int. World Wide
Web Conference, pp. 451–460.

Ding, S., Attenberg, J., Suel, T., 2010, Scalable
Techniques for Document Identifier Assignment in
Inverted Indexes, Proceedings of the 19th
International Conf. on World Wide Web, pp. 311-320.

He, J., Yan, H., Suel, T., 2009. Compact full-text indexing
of versioned document collections, Proceedings of the
18th ACM Conference on Information and knowledge
management, November 02-06, Hong Kong, China

Heman, S. 2005. Super-scalar database compression
between RAM and CPU-cache. MS Thesis, Centrum
voor Wiskunde en Informatica, Amsterdam.

Moffat, A., Stuiver, L., 2000, Binary interpolative coding
for effective index compression, Information
Retrieval, 3, 25-47.

Navarro, G., Silva De Moura, E., Neubert, M., Ziviani,
N., Baeza-Yates R., 2000, Adding Compression to
Block Addressing Inverted Indexes, Information
Retrieval, 3, 49-77.

Ntoulas A., Cho J., 2007. Pruning policies for two-tiered
inverted index with correctness guarantee,
Proceedings of the 30th Annual International ACM
SIGIR conference on Research and development in
Information Retrieval, July 23-27, Amsterdam, The
Netherlands.

Scholer, F., Williams, H.E., Yiannis, J., Zobel, J. 2002.
Compression of inverted indexes for fast query
evaluation, In 25th Annual ACM SIGIR Conference,
pp. 222-229.

Witten, I. H., Moffat, A., and Bell, T., 1999. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishers, 2nd edition.

Yan H., Ding S., Suel T., 2009. Inverted index
compression and query processing with optimized
document ordering, Proceedings of the 18th
international conference on World Wide Web, April
20-24, 2009, Madrid, Spain

Yan, H., Ding, S., Suel, T., 2009, Compressing term
positions in Web indexes, pp. 147-154, Proceedings
of the 32nd Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval.

Zhang, J., Long, X., and Suel, T. 2008. Performance of
compressed inverted list caching in search engines. In
the 17th International World Wide Web Conf. WWW.

Zobel, J., Moffat, A., 2006. Inverted Files for Text Search
Engines, ACM Computing Surveys, Vol. 38, No. 2,
Article 6.

Zukowski, M., Heman, S., Nes, N., and Boncz, P. 2006.
Super-scalar RAM-CPU cache compression. In the
22nd International Conf. on Data Engineering (ICDE)
2006.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

256

