
Defining and Enforcing XACML Role-based Security Policies
within an XML Security Framework

Alberto De la Rosa Algarín1, Timoteus B. Ziminski1, Steven A. Demurjian1,
Robert Kuykendall2 and Yaira K. Rivera Sánchez1

1Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, U.S.A.
2Department of Computer Science, Texas State University, San Marcos, TX, U.S.A.

Keywords: Security and Policy Modeling, Security Policies, XML, XACML, Role-based Access Control.

Abstract: Securing electronic data has evolved into an important requirement in domains such as health care
informatics, with the eXtensible Markup Language (XML) utilized to create standards such as the Clinical
Document Architecture and the Continuity of Care Record, which have led to a need for approaches to
secure XML schemas and documents. In this paper, we present a method for generating eXtensible Access
Control Markup Language (XACML) policies that target XML schemas and their instances, allowing
instances to be customized for users depending on their roles. To do so, we extend the Unified Modeling
Language (UML) with two new diagrams to model XML: the XML Schema Class Diagram (XSCD) to
define the structure of an XML document in UML style; and the XML Role-Slice Diagram (XRSD) to
define roles and associated privileges at a granular access control level. In the process, we separate the
XML schemas of an application from its security definition in XRSD. To demonstrate the enforcement of
our approach, we utilize a personal health assistant mobile application for health information management,
which allows patients to share personal health data with providers utilizing XACML for security definition.

1 INTRODUCTION

Securing sensitive and private information has
evolved into a needed requirement in domains such
as healthcare informatics, where the daily workflow
depends on the secure management and exchange of
information, often in time-critical situations. In
healthcare informatics, the eXtensible Markup
Language (XML) is used for data and information
exchange across heterogeneous systems via XML
standards such as Health Level Seven’s clinical
document architecture (CDA) (Dolin et al., 2006) for
health information exchange, and the Continuity of
Care Record (CCR) for capturing clinical patient
data. In such settings, both security and privacy
protection must be insured so individuals have the
appropriate credentials to access all of the required
data (clinical, genomic, other phenotypic, etc.) in
accordance with the Health Insurance Portability and
Accountability Act of 1996 (HIPAA) (Baumer et al.,
2000), which provides a set of security guidelines in
the usage, transmission, and sharing of protected
health information. For the purposes of our work, we

propose a secure information engineering method
using the Unified Modeling Language (UML) to
define and enforce XACML role-based access
control (RBAC) security policies that allow XML
schemas to be controlled and XML instances to be
filtered (customized) based on role, time, and usage.

The main objective of this paper is to create
security policies defined and realized in XACML
that target XML schemas and their instances to
provide granular document-level security. The
enforcement of these policies permits document
instances to look different to authorized users at
specific times based on the user’s role. In contrast to
the general research done in XML security, which
typically embeds security policies as part of the
XML schema’s definition, our approach allows
policies to be evolved and applied to an
application’s XML instances without changes to
instances and schemas. This approach results in a
separation of concerns for facilitating security policy
evolution without impacting XML instances.

To support this secure information engineering
paradigm, we have defined a security framework for
XML in prior work (De la Rosa Algarín et al., 2012)

16 De la Rosa Algarín A., B. Ziminski T., A. Demurjian S., Kuykendall R. and K. Rivera Sánchez Y..
Defining and Enforcing XACML Role-based Security Policies within an XML Security Framework.
DOI: 10.5220/0004366200160025
In Proceedings of the 9th International Conference on Web Information Systems and Technologies (WEBIST-2013), pages 16-25
ISBN: 978-989-8565-54-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

as shown in Figure 1. The general approach is to
have a set of XML schemas corresponding to an
application (middle right in Figure 1), which will be
instantiated for the executing application (bottom
right of Figure 1). From a security perspective, our
intent is to insure that when users attempt to access
the instances, that access will be customized and
filtered based on their defined user role and
associated security privileges (role restricted, or RR,
bottom left of Figure 1). To achieve this in a secure
information engineering context, the framework in
Figure 1 contains two new UML diagrams: the XML
Schema Class Diagram (XSCD) that represents the
structure of an XML document in UML style design
artifacts; and the XML Role-Slice Diagram (XRSD)
that supports RBAC through the definition of
granular access to XML schemas (and associated
instances) based on role.

The purpose of this paper is to extend our earlier
work (De la Rosa Algarín et al., 2012) by
concentrating on the left hand side of Figure 1 (the
XACML Policy Mapping box) to focus on the
definition and generation of XACML security
policies and their enforcement at the runtime level
on XML instances to insure that filtered, correct, and
required data is securely delivered. The emphasis of
this paper is on the generation of XACML security
policies from XRSD diagrams that allow for the
enforcement of those policies at runtime, which
changes to the policy able to be made so that there is
no impact on the original XML schema and its
existing instances. Our proposed security framework
will be applied to the health care domain,
specifically to the CCR schema, using a case study
of a mobile health application, Personal Health
Assistant (PHA), for general health management.

The remainder of this paper is organized as
follows. In Section 2, we present related work on
XML security and access control, focusing on the
approaches of embedded security and general access
control. Section 3 provides background information
on NIST RBAC, XML and XACML, the CCR
standard; and a review of the key facets of our XML
security framework that are needed to explain
XACML policy generation. In Section 4, we present
the mapping process and rules that generate
XACML policies process from the XRSDs of a
given XML schema, including an algorithm. In
Section 5, we demonstrate the XACML policy
interplay and enforcement with PHA, describing in
detail the way that the patient and provider use them
for information sharing and the achievement of
enforcement. We finish the paper by offering
concludign remarks and ongoing work in Section 6.

XACML Policy
Mapping

XSCD –
Schema 1

XML1

Instance 1

XML2

Instance 1
XML3

Instance 1

XML3

Instance 2
XML1

Instance 3

XML1

Instance 2

Original XML Instances

XML
schema

2

XML
schema

3

XML
schema

1

XACML Policy -
Schema 1

XACML Policy produces the
Role Restricted XML instances

XML1 RR
Instance 3

Software Application Level

XML1 RR
Instance 2

XML1 RR
Instance 1

XRSDs –
Schema 1

Access Control Policies

Permissions

ConstraintsRoles

Role Hierarchy

Figure 1: Security Framework for XML.

2 RELATED WORK

The work of (Damiani et al., 2000) presents an
access control system that embeds the definition and
enforcement of the security policies in the structure
of the XML documents in order to provide
customizable security. The security details can be
embedded in the XML DTD, providing a level of
generalization for documents that share the same
DTD. This is similar to our work in that security
policies act in both a descriptive level of the XML
instances and target the XML instances. However,
there are two differences. First, their work targets
XML DTD’s (outdated XML), while ours utilizes
schemas. Second, their security policies are
embedded into both the DTD and the instance,
requiring changes to instances; our work allows
policy changes with no impact on instances.

Another effort (Damiani et al., 2008) details a
model that combines the embedding of policies and
rewriting of access queries to provide security to
XML datasets. The XML schema is extended with
three security attributes: access, condition, and dirty.
While this work is similar to our work in that it
targets security in XML document instances via

Defining�and�Enforcing�XACML�Role-based�Security�Policies�within�an�XML�Security�Framework

17

policies, it differs by requiring changes to instance
when the policy is modified and does not consider
XML document writing as we do (see Section 5.3).

Efforts by (Bertino and Ferrari, 2002); (Bertino et
al., 2004) present Author-X, a Java-based system for
DAC in XML documents that provides customizable
protection to the documents with positive and
negative authorizations. Author-X employs a policy
base DTD document that prunes an XML instance
based on the security policies, which is similar to
our approach, but focuses on discretionary access
control where we focus on RBAC.

The work of (Leonardi et al., 2010) considers the
scenario of a federated access control model, in
which the data provider and policy enforcement are
handled by different organizations. This approach
relates to ours with regards to the separation of the
security policies from the data to be handled, but
differs in the specifics of where the policies’ details
are stored.

The work of (Kuper et al., 2005) has presented a
model consisting of access control policies over
DTD’s (again, outmoded in XML) with XPath
expressions in order to achieve XML security. The
purpose of their model is similar to ours, as it aims
to provide different authorized views of an XML
document based on the user’s credentials. However,
the significant difference is that this approach
combines query rewriting and authentication
methods, whereas our approach can be applied to
any non-normative XACML architecture (having a
policy enforcement point) for both reading and
updating, as well as XPath or XQuery queries.

The work of (Müldner et al., 2009) presents an
approach of supporting RBAC to handle the special
case of role proliferation, which is an administrative
issue that happens in RBAC when roles are changed,
added, and evolve over time, making security of an
organization difficult to manage. This approach
supports the encryption of segments of the XML
document. Our approach doesn’t address role
proliferation; however, by separating our security
into an XACML policy, we do insulate role
proliferation from impacting an application’s XML
schemas and instances.

3 BACKGROUND

The NIST RBAC (Ferraiolo et al., 2001) standard is
an access control model where permissions are
assigned to roles, and roles are assigned to users.
NIST RBAC has four reference models (RBAC0,
RBAC1, RBAC2 and RBAC3). In RBAC0, policies

can be defined at the role level instead of the
individual level. In RBAC1, parent roles can pass
down common privileges to children roles. In
RBAC2 the separation of duty (SoD) and cardinality
constraints are provided, ensuring the role that
grants permissions (authorization role) exists in a
different entity to the other roles. The last reference
model, RBAC3, introduces the concept of sessions
(lifetime of a user, role, permission and their
association for a runtime setting).

XML facilitates information exchange across
systems by providing a common structure to
information. Information can be hierarchically
structured and tagged, where tags can be used to
represent the semantics of the information. XML
offers the ability to define standards via XML
schemas, which serve as both the blueprint and
validation agents for instances to comply and be
used for information exchange purposes.

The CCR standard allows the creation of
documents that include patient information
(demographics, social security number, insurance
policy details, medications, procedures, etc.) with a
common structure for a more uniform information
exchange across institutions that require its usagea.
The CCR schema contains elements for virtually all
health information items, and is represented with
extended granularity for better detail keeping. For
example, and for reader understanding of the
following sections, Figure 2 shows a subset of the
official CCR schema. This fraction corresponds to
the complexType element StructuredProductType,
which is utilized to represente medications and all
their attributes. This StructuredProductType is
utilized throughout this paper to explain the
modeling and policy generation in an example health
care scenario.

Our prior work has defined new UML security
diagrams for supporting RBAC (Pavlich-Mariscal et
al., 2008) via the UML meta-model. Using this as a
basis, we have extended this work to define two new
UML artifacts (De la Rosa Algarín et al., 2012): the
XML Schema Class Diagram (XSCD), which
contains architecture, structure characteristics, and
constraints of an XML schema; and the XML Role
Slice Diagram (XRSD), which has the ability to add
permissions to the various elements of the XSCD,

As an example, consider the XSCD shown in
Figure 3, where the StructuredProductType complex
type of the CCR schema is modelled as an
interconnection of UML classes. We represent each
xs:complexType in the schema as a UML class with
their respective UML stereotype. If an xs:element is
a descendant of another schema concept, then this

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

18

relation is represented as an equivalent class –
subclass relation. This holds true for xs:sequence,
xs:simpleType, etc. XML schema extensions
(xs:extension) are represented as associations
between classes. Data-type cardinality requirements
(minOccurs, maxOccurs) and other XML constraints
are represented with a «constraint» stereotype on the
attribute. The xs:element type is represented with a
«type» stereotype. Note that due to space limitations,
we only show the representation of the Product
xs:element and three main sub-elements:
BrandName, ProductName, and Strength.

<xs:complexType name="StructuredProductType">
 <xs:complexContent>
 <xs:extension base="CCRCodedDataObjectType">
 <xs:sequence>
 <xs:element name="Product" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ProductName"
 type="CodedDescriptionType"/>
 <xs:element name="BrandName"
 type="CodedDescriptionType" minOccurs="0"/>
 <xs:element name="Strength" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="MeasureType">
 <xs:sequence>
 <xs:element name="StrengthSequencePosition"
 type="xs:integer" minOccurs="0"/>
 <xs:element name="VariableStrengthModifier"
 type="CodedDescriptionType" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Concentration" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>

Figure 2: Segment of the Continuity of Care Record
Schema’s StructuredProductType.

The next step is to apply security policies to the
XSCD (top left of Figure 1) by defining a new
UML-like diagram: the XML Role Slice Diagram,
XRSD, that is capable of defining access control
policies or permissions on the attributes of the
XSCD based on role, thereby achieving fine grained
control. We note that permissions on XML
documents are read, no read, write, and no write,
represented in the XRSD as the respective
stereotypes, «read/write», «read/nowrite»,
«noread/write», and «noread/nowrite». As an
example, Figure 4 defines Physician and Nurse
XRSDs with permissions against the XSCD in

Figure 3. Note that in Figure 4, the CCR complex
type StructuredProductType element Product allows
a role to have read and write permissions (Physician)
or only read permissions (Nurse). While a Physician
role can get all of the information regarding a drug
and be able to create new instances following the
schema, a Nurse role may be limited to read the drug
details and cannot create new records.

«complexType»
StructuredProductType

«element»
Product

«complexType»

«sequence»

«type» CodedDescriptionType

«element» ProductName

«type» CodedDescriptionType
«constraint» minOccurs=0

«element» BrandName

«element» Strength
«constraint» minOccurs=0
«constraint» maxOccurs=-1

«extension»
CCRCodedDataObjectType

Figure 3: XSCD of the StructuredProductType.

Physician
<<XRSD>>

«read/write» «element» Product

«read/write»
«element»

ProductName

«read/write»
«element»

BrandName

«read/write»
«element»
Strength

«read/write» «element»
StrengthSequencePosition

«read/write» «element»
VariableStrengthModifier

Nurse
<<XRSD>>

«read/nowrite» «element» Product

«read/nowrite»
«element»

ProductName

«read/nowrite»
«element»

BrandName

«read/nowrite»
«element»
Strength

«read/nowrite»
«element»

StrengthSequencePosition

«read/nowrite»
«element»

VariableStrengthModifier

Figure 4: XRSD of a Health Care Scenario with the
Product Element of StructuredProductType.

Defining�and�Enforcing�XACML�Role-based�Security�Policies�within�an�XML�Security�Framework

19

4 GENERATING POLICIES
FROM THE XRSD

In this section, we describe the generation of an
XACML security policy (see Figure 1 again) in
order to allow XML instances to be customized and
delivered to users based on role. As a result, security
privileges defined at a schema level do not impact
the XML instances of an application when privileges
evolve, separating the security concern from the
application data. By this we mean that, by
extracting the security policies targeting XML
schemas and their instances into an external
component of the framework, our approach avoids
the high cost of updating XML schemas and
instances when security policies change, in contrast
to those approaches which embed the security
policies as part of the XML schema and instance
structure (Damiani, 2000; Damiani, 2008).

To accomplish this, we present an approach to
generating XACML security policies from the
XRSD (see Figure 4). Towards this objective,
Section 4.1 presents a process and architecture for
the mapping of XRSDs that are used in conjunction
to generate a XACML policy for the schema based
on the roles, using a portion of the CCR schema and
its attributes; this achieves fine-grained control on
CCR and results in an XACML policy that enforces
the security as defined in XRSD against XSCD.
Then, in Section 4.2, we present and explain an
algorithm for this mapping process, which revolves
around a set of equivalence rules between the XRSD
and XACML structures; again, we utilize CCR as an
example to illustrate the algorithm.

4.1 Mapping the XRSD to the XACML
Policy Construct

As given in Figure 1, XRSDs (Figure 4) act as the
blueprint of the access-control policy for reading and
writing permissions for a specific element or
component of an XML schema for any given role,
and are used to represent the portions of the
application’s XML schemas (XCSD – Figure 3) that
are to be allowed (or denied) access at an instance
level. To map the XRSD into an XACML policy, we
utilize the policies’ language structure and
processing model. XACML policies consist of a
PolicySet, a Policy, and a Rule. An XACML
PolicySet is utilized to make the authorization
decision via a set of rules in order to allow for access
control decisions. A PolicySet can contain multiple
Policy structures, and each Policy contains the

access control rules. As a result, the Policy structure
acts as the smallest entity that can be presented to
the security system for evaluation.

Based on our understanding of XACML and its
usage, we are taking an approach that each XRSD
must be mapped into a XACML Policy structure
with its own set of rules that represent the
appropriate enforcement for roles against a schema.
Note that multiple XACML Policy structures may be
generated, resulting in a PolicySet for a specific set
of XML schemas that comprise a given application.

The collection of Policy structures is contained
in a PolicySet, combined via an algorithm specified
by the PolicySet’s PolicyCombiningAlgId attribute
that targets the particular XML schema. The
XACML specification defines four standard
combining algorithms: Deny-overrides (in which a
policy is denied if at least one of the rules is denied);
Permit-overrides (in which a policy is permitted if at
least one of the rules is permitted); First-applicable
(in which the result of the first rule’s evaluation is
treated as the result of all evaluations); and, Only-
one-applicable (in which the combined result is the
corresponding result to the acting rule). For our
intent with XML instance security, and the way we
map the XRSD into an XACML Policy, the
combining algorithm of choice is Deny-overrides.
With this algorithm, if a single Rule or Policy is
evaluated to Deny, the evaluation result of the rest of
the Rule elements under the policy is also Deny.
While this might be the case when focusing on
access control for XML instances in the document-
level, as in our approach, other higher-level systems
(e.g., software applications that utilize the XML
instance, etc.) can very well deploy security policies
with different combining algorithms.

In Figure 5, we present the main sections of the
mapped XACML policy for the Physician XRSD in
Figure 4 that is utilizing data as defined in the
XCSD in Figure 3. To create an XACML Policy
structure per each XRSD, we present the following
mapping equivalences and rules.

Policy and Rule Descriptors and Structure:
 Policy’s PolicyId attribute value is the XRSD’s
Role value concatenated to AccessControlPolicy
(e.g., the Physician role in Figure 4)
 Rule’s RuleId attribute value is the XRSD’s Role
value concatenated to the XRSD’s higher order
element (e.g. in Figure 4 it would be Product as
defined in the XCSD in Figure 3), also concatenated
to “ProductRule”.
 Rule’s Description value is the XRSD’s Role
concatenated to “Access Control Policy Rule”.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

20

 There are two XACML Rules under a higher level
Target element, one for allowed and one for
denied permissions.

 XACML Policy and Rules target and match the
role (Subject, e.g., Physician in Figure 4 and 5), the
schema elements (Resources, e.g., ProductName,
BrandName and Strength in Figure 3, 4 and 5), and
the permissions (Actions, e.g., read and write in
Figure 4 and 5).

Rule Target’s Subject (Figure 5a):

 Only one XACML Subject and SubjectMatch per
Rule.
 SubjectMatch’s MatchId uses the function “string-
equal” to evaluate the user’s role as modeled in the
XRSD.
 AttributeValue of the Subject is a string, and the
value is the XRSD’s Role (e.g., Physician in Figure
4 and 5).
 SubjectAttributeDesignator’s AttributeId is the
role attribute.
 While more than one Rule per Policy might exist,
the Subject is equal in both cases. This means that
the role to be considered for policy evaluation is the
same for operations that are allowed or denied.

Rule Target’s Resources (Figure 5b):
 One XACML Resource per permitted XRSD
element.
 Each Resource’s ResourceMatch has a MatchId
that determines the usage of the function “string-
equal”.
 Resource’s AttributeValue’s value is the XRSD’s
element names from the XCSD (e.g.,
ProductName, BrandName and Strength in Figure
3, 4 and 5), referencing the original schema.
 Resource’s ResourceAttributeDesignator is an
AttributeId that determines the target-namespace and
datatype of the element.

Rule Target’s Actions (Figure 5c):

 One XACML Action per operation permitted
exists (e.g. read and write in Figure 5 and 6).
 ActionMatch’s MatchId uses the function “string-
equal”.
 ActionAttributeDesignator’s AttributeId value is
action-write or action-read.
 ActionMatch’s Attributevalue is the permission,
read or write, depending on the stereotypes of the
XRSD (e.g., read and write in Figure 4 and 5).

(c)

(b)

(a)

<Subjects>
<Subject>
<SubjectMatch MatchId="…:function:string-equal">
<AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">

Physician
</AttributeValue>

 <SubjectAttributeDesignator AttributeId="…:attribute:role"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>

</SubjectMatch>
</Subject>

</Subjects>

<Resources>
<Resource>
<ResourceMatch MatchId="…:function:string-equal">
<AttributeValue DataType=" XMLSchema#string">

ccr:schema:product:productname
</AttributeValue>
<ResourceAttributeDesignator

AttributeId="…:resource:target-namespace"
DataType=" XMLSchema#string"/>

</ResourceMatch>
</Resource>
<Resource>
<ResourceMatch MatchId="…:function:string-equal">
<AttributeValue DataType="XMLSchema#string">

ccr:schema:product:brandname
</AttributeValue>
<ResourceAttributeDesignator

AttributeId="…:resource:target-namespace"
DataType=" XMLSchema#string"/>

</ResourceMatch>
</Resource>
<Resource>
<ResourceMatch MatchId="…:function:string-equal">
<AttributeValue DataType=" XMLSchema#string">

ccr:schema:product:strength
</AttributeValue>
<ResourceAttributeDesignator

AttributeId="…:resource:target-namespace"
DataType=" XMLSchema#string"/>

</ResourceMatch>
</Resource>

</Resources>

<Actions>
<Action>
<ActionMatch MatchId="…:function:string-equal">
<AttributeValue DataType="XMLSchema#string">

read
</AttributeValue>
<ActionAttributeDesignator

AttributeId="…:action:action-read"
DataType="XMLSchema#string"/>

</ActionMatch>
</Action>
<Action>
<ActionMatch MatchId="…:function:string-equal">
<AttributeValue DataType="XMLSchema#string">

write
</AttributeValue>
<ActionAttributeDesignator

AttributeId="…:action:action-write"
DataType="XMLSchema#string"/>

</ActionMatch>
</Action>

</Actions>

Figure 5: Mapped XACML Policy for Physician Role
from XRSD.

Collectively, our approach presents three types of
mapping: a role mapping (Figure 5a), which maps a

Defining�and�Enforcing�XACML�Role-based�Security�Policies�within�an�XML�Security�Framework

21

specific role (e.g., Physician) to a Policy’s Subject;
an element mapping (Figure 5b), which maps an
attribute (e.g., ProductName, Brand, Strength) to a
Policy’s Resource; and a permission mapping
(Figure 5c), which establishes permissions for the
element (read and/or write) as Policy Actions. These
mapping equivalences and rules permit each
XACML Policy to capture the information modeled
on the XRSD, while simultaneously limiting the
amount of policies needed to only one per role.
While each policy will have two high level Target
elements, each with its own rules (for those
permissions that are allowed, the Effect of the Rule
will be Permit, while those that are denied will have
an Effect of Deny), a special case is given to those
roles where the permissions are all positive (a
«read/write» stereotype in the XRSD) or all negative
(a «noread/nowrite» stereotype in the XRSD). In
these cases, only one higher-level Target element
with one Rule is necessary, and the positivity or
negativity of the stereotype determines the Effect of
the rule (if «read/write», then Permit, else if
«noread/nowrite», then Deny).

4.2 Algorithm for the Mapping Process

The process of mapping the XRSD to an XACML
Policy can be automated, as shown by Figure 6. The
XRSD and schema to be secured serve as the
parameters, while the XACML schema is utilized as
template for the resulting instances. The first step of
the algorithm is determining whether or not all of the
permission stereotypes in the XRSD are all positive
or all negative (either «read/write» or
«noread/nowrite», respectively). If they are, then we
know that only one Target and Rule is needed to
completely generate an equivalent Policy, and the
algorithm proceeds down the right side branch. In
this case, the algorithm proceeds through a series of
steps. First, the template of the XACML Policy is
created (based on the XACML schema) with one
high-level target and rule. Depending on the
permission stereotypes from the XRSD, the Policy
Rule is set with an effect of Permit («read/write») or
Deny («noread/nowrite»). Then, as shown in Figure
5, a threefold mapping is performed between: the
XRSD role and Rule’s Subject; the XRSD elements
and the Rule’s Resources; and, the XRSD
permission stereotypes and Rule’s Actions; this
finalizes the XACML Policy.

Alternatively, if not all of the permission
stereotypes in the XRSD are all positive or all
negative, then the XACML Policy will require two
high-level targets and rules, and the algorithm would

proceed down the left side branch. In this case, the
algorithm proceeds in a series of alternative steps.
The first step is also creating the template XACML
Policy, but with two high level Targets and two
Rules (one with the Effect of Permit, the other with
the Effect of Deny). The fulfilment of these two
rules then depends on the permission stereotypes on
each element. For those who have a positive
permission (either read or write), the elements are
mapped as resources of the respective rule; and the
permissions are mapped as actions. Note that while
two rules exist in this case, the subject will be the
same on both (the XRSD role Physician). After this
mapping process is complete for each rule, the
XACML Policy is finalized.

Are all XRSD’s permission stereotypes
«read/write» or «noread/nowrite»?

NO

Two Targets and two Rules
needed

YES

Retrieve XRSD’s Role
Map to XACML’s Subject

Retrieve XRSD’s elements
Map to XACML’s Resources

Retrieve XRSD’s permission
stereotypes

Map to XACML’s Actions

Create XACML Policy
Create Policy Target and Rule

Rule Effect =
Permit

Rule Effect =
Deny

Complete XACML Policy

Create XACML Policy

Create Target
and Rule Effect
= Permit

Create Target
and Rule Effect
= Deny

Retrieve XRSD’s Role
Map to XACML’s Subject

allowed restricted

• Get XRSD’s
elements
allowed

• Map to
XACML
Resources

• Get XRSD’s
elements
restricted

• Map to
XACML
Resources

• Get XRSD’s
allowed
permissions

• Map to
XACML
Actions

• Get XRSD’s
restricted
permissions

• Map to
XACML
Actions Finalize Policy with both Targets

and Rules

Only one Target and one Rule
needed

«read/
write»

«noread/
nowrite»

Figure 6: Mapping from XRSD to XACML Policy.

From an enforcement perspective, in support of
either mapping, the process is relatively
straightforward. If a user has a role that has a no
read permission (like the Nurse role in Figure 4), the
policy enforcement point (or equivalent structure in
the enforcing security architecture) filters the
secured XML schema and the instance requested
based on the permitted and allowed elements. For
write operations, a similar enforcement takes place.
These policies can also be applied to XSLT (Clark,

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

22

1999) or other query tools (e.g., XPath, XQuery,
etc.) in order to provide filtered results to different
role queries, an alternative to the more traditional
XML security approach of query rewrites, provided
that the XSLT, XPath, and XQuery tools have a
policy enforcement point (PEP) that complies with
the non-normative XACML architecture. In this
approach, the result of the query will be the original
XML instance, and the PEP will perform all of the
filtering.

To summarize, Figure 5 shows the resulting
XACML policy created from the XRSD presented in
Figure 4 for the Physician role targeting the XML
schema’s Product element (note that because of
space, not all equivalent XACML resources were
included). The Physician role exhibits the special
case of having all permissions allowed («read/write»
on all XRSD elements). Because of this, only one
Target with one Rule (with the Effect value of
Permit) is needed. The Subject’s AttributeValue is
Physician (the role from the XRSD), and the
resources are elements from the CCR schema (as
also shown by the XRSD in Figure 4). Since the
Physician role has both read and write permissions
allowed for these elements, the two actions are part
of the single Rule.

5 POLICY ENFORCEMENT
PROCESS WITH PHA

In this section, we present the prototyping efforts of
enforcing the generated XACML policies on XML
instances, transitioning from the mapping process is
Section 4 to demonstrate the enforcement process on
the Personal Health Assistant (PHA) mobile
application for health information management. To
accomplish this, in Section 5.1, we briefly review
the general architecture for enforcement and its
components (PHA, Microsoft HealthVault – MSHV
- and our enforcement Middle-Layer Server).
Section 5.2 presents the workflow utilized by the
middle-layer server to enforce the permissions (read
and write) set by the patient on the resulting CCR
instances, focusing on the recurring example of
medications and the CCR StructuredProductType.

5.1 General Architecture
and Components

Personal Health Assistant (PHA) is a test-bed mobile
application, developed in the University of
Connecticut, for health information management

that allows: patients to view and update their
personal health record stored in their MSHV account
and authorize medical providers to access certain
portion of the protected health information (patient
version); and, providers to obtain the permitted
information from their respective patients (provider
version). The patient version of PHA allows users
to perform a set of actions regarding their health
information (view and edit their medication list,
allergies, procedures, etc.). Security settings can be
set at a fine granular level, and each provider
receives view/update authorizations to the different
information components available in PHA on a
patient-by-patient basis. Using this information,
policies are generated and stored in the patient’s
MSHV account. The provider version of PHA
allows the users (e.g., medical providers) to view
and edit the medical information of their patients as
long as they are permitted to do so as dictated by the
security settings created by the patient.

In the overall architecture, Microsoft
HealthVault (MSHV) acts as the main data source.
MSHV stores data in a proprietary structure that can
be exported as XML structures, which in turn can be
converted into a CCR compliant instance. To
recreate the non-normative XACML architecture,
our MSHV Middle-Layer Server acts as the policy
access, information, decision, and enforcement
points. To accomplish proper enforcement, we
restrict all communication to MSHV via our in-
house developed middle-layer server. With regards
to data exchange, we have utilized JSON structures
due to our familiarity and extensive experience with
the format. Note that while we utilize JSON for
transfers between PHA and the middle-layer server,
the security enforcement (done between the middle-
layer server and MSHV) is performed on XML
instances with XACML policies.

5.2 Enforcing XACML Policies
on Instances and Segments

In this section, we describe the way that the
XACML policy is enforced when handling reading
and writing requests on XML instances whose
schema has been secured when using the provider
version of PHA. These two processes, though they
utilize the same XACML policies to function, follow
different workflows. We discuss how a medication
object (StructuredProductType) from the CCR
compliant instance from MSHV is secured (filtered)
based on roles. Next, we explain how writing
control is enforced with the same XACML policy.

The general process of securing the CCR

Defining�and�Enforcing�XACML�Role-based�Security�Policies�within�an�XML�Security�Framework

23

instance for reading begins with a request from the
provider version of PHA. When an initial request is
made, the server retrieves the list of patients tied to
the provider pertaining information. When a patient
is selected, the server retrieves the corresponding
XACML policy that targets the patient’s information
based on the requester’s role. When a provider
selects a category of health information (e.g.,
medications, procedures, etc.), the middle-layer
server enforces the pertinent rules of the retrieved
XACML policy. The process of this enforcement,
as shown in Figure 7, involves the verification of the
relevant rule (by evaluating the string representation
of the users’ role with the Subject role of the policy).
After the relevant rule has been found (by utilizing
the Resources’ attributes), the reading permission is
enforced by verifying it against the policy’s Action
elements.

If the action of the rule that is evaluated to
Permit contains the read permission, then the CCR
instance is not filtered. To support granular access
control, recall from Section 4.2 that when
stereotypes are not all-positive or all-negative (that
is, there exists a combination of permissions over
elements of the XML schema), more than one policy
would match with respect to the role and resources.
In this case, all policies will be evaluated and
combined using the policy combination algorithm
explained in Section 4.1. Once the CCR instance
and segments have been filtered by the enforcement
of the XACML policy, the resulting XML document
is translated to JSON for the consumption of the
PHA application.

The process of securing the CCR schema for
writing begins with a request from the provider’s
PHA. When a provider wants to update a patient’s
record (e.g., medication’s StructuredProductType),
the request is sent to the Middle-Layer Server tied to
the update data as a JSON object, which verifies the
target on which the rules of the requester’s XACML
Policy act upon. The server then evaluates the
requester’s role against the policy in order to
determine if the write is allowed.

The low-level enforcement of the XACML
policy for writing permissions as given in Figure 8
involves the same steps as when enforcing for
reading (filtering) the document. If the user
requesting an update operation has a role with a
permission that allows it to occur (the write Action
in the XACML Policy’s Rule), the CCR instance is
updated with the sent data, and validated with the
CCR schema before the write-back to MSHV. If
validation against the schema is successful, then the
write-back occurs, and the update performed by the

provider is saved in the patient’s MSHV record. If
the requester has a role that is not allowed to
perform writing operations on the desired element,
the request is dropped.

Initial Request:
Patient Health

Information

Retrieval of XACML
policies

Does XACML
exist?

Drop Request:
Deny access

Package as equivalent
JSON for PHA

Respond Request:
JSON

NO

YES

Policy Enforcement
and Instance Filtering

Match User Role with
Policy Rules’ Subject

Role

Verify Actions and
Targeted Resources per

Rule

Filter CCR instance with
Guidance from Policy

Export filtered CCR
instance

Figure 7: Enforcing Reading Permissions (Filtering) on
XML Instances in PHA.

Initial Request:
Information Update

Evaluation of target and
policy writing rules

Is role allowed?

Drop Request:
Deny access

Write-back to CCR
XML instance

Validation of
updated CCR
with schema

Drop Request:
Invalid

JSON Data
Payload

Validation
passed?

Save data in
HealthVault

Respond
Request:
Success

NO

YES

YES

NO

Figure 8: Enforcing Writing Permissions on XML
Instances in PHA.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

24

6 CONCLUSIONS
AND ONGOING WORK

XML plays a pivotal role in the biomedical and
healthcare domains via the creation of standards
such as CDA and CCR. These domains present
challenges in providing a robust security model for
XML to ensure HIPAA compliance in the usage,
transmission, and sharing of protected health
information. To address this problem, our prior work
(De la Rosa Algarín, 2012) presented a security
framework for XML that created UML-like artifacts
for XML schemas and security: the XSCD and the
XRSD. Using these as a basis, this paper has focused
on the automatic generation of XACML policies
from XRSDs (Section 4) that enforce the security
defined on XML schemas against their
corresponding instances. This allows the “same”
instance to appear differently to specific users at a
particular time. To demonstrate the feasibility and
validity of our approach, Section 5 applied the
generated XACML policies to the PHA application
for health information management that allows
patients to grant privileges to medical providers, and
providers to view and update the data. Our
prototype, using Microsoft HealthVault as a backend
with our own middle-layer server to enforce the
generated XACML policies, provides an important
proof of concept to the work presented herein.

Our on-going work is in a number of different
areas. As XACML continues to evolve, with support
for duty delegation and role delegation is being
formalized in both the policy language and
processing model; we are looking at how to model
this with our established XSCD and XRSD artifacts.
We are also looking at applying our security
framework and the work presented in this paper to
other health IT platforms, such as the SMART
Platform (http://smartplatforms.org/), and Open
mHealth (Estrin and Sim, 2010). These new
approaches to healthcare informatics present many
challenges, such as the use of different security
policies based on the data source, and the various
data structure utilized to represent information (e.g.,
JSON, RDF, OWL, etc.), as well as the creation of
more complex systems and/or applications that
result from the combination of different independent
systems and/or applications.

REFERENCES

Baumer, D., Earp, J. and Payton, F. 2000. Privacy of

medical records: IT implications of HIPAA. ACM
SIGCAS Computers and Society, 30, 4, 40-47.

Bertino, E. and Ferrari, E. 2002. Secure and selective
dissemination of XML documents. ACM Transactions
on Information and System Security (TISSEC), 2002,
5, 290-331.

Bertino, E., Castano, S., Ferrari, E. and Mesiti, M. 2002.
Protection and administration of XML data sources.
Data & Knowledge Engineering, Elsevier, 2002, 43,
237-260.

Bertino, E., Carminati, B. and Ferrari, E. 2004. Access
control for XML documents and data. Information
Security Technical Report, Elsevier, 2004, 9, 19-34.

Clark, J. et al. 1999. XSL transformations (xslt) version
1.0. W3C Recommendation, 16, 11, 1999.

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S.
and Samarati, P., 2000. Design and implementation of
an access control processor for xml documents.
Computer Networks, 33, 1, 59–75.

Damiani, E., Fansi, M., Gabillon, A. and Marrara, S. 2008.
A general approach to securely querying xml.
Computer Standards & Interfaces, 30, 6, 379–389.

De la Rosa Algarín, A., Demurjian, S., Berhe, S., Pavlich-
Mariscal, J. 2012. A Security Framework for XML
schemas and Documents for Healthcare. Proceedings
of 2012 International Workshop on Biomedical and
Health Informatics (BHI 2012), 782-789.

Dolin, R.H., Alschuler, L., Boyer, S., Beebe, C., Behlen,
F.M., Biron, P.V. and Shvo, A.S. 2006. HL7 clinical
document architecture, release 2. Journal of the
American Medical Informatics Association, 13, 1, 30-
39.

Estrin, D., and Sim, I. 2010. Open mHealth architecture:
an engine for health care innovation. Science
(Washington), 330 (6005), 759-760.

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R. and
Chandramouli, R. 2001. Proposed nist standard for
role-based access control. ACM Transactions on
Information and System Security (TISSEC), 4, 3, 224-
274.

Kuper, G., Massacci, F. and Rassadko, N. 2005.
Generalized XML security views. Proceedings of the
tenth ACM symposium on Access control models and
technologies, 2005, 77-84.

Leonardi, E., Bhowmick, S. and Iwaihara, M. 2010.
Efficient database-driven evaluation of security
clearance for federated access control of dynamic
XML documents. Database Systems for Advanced
Applications, 2010, 299-306.

Müldner, T., Leighton, G. and Miziołek, J. 2009.
Parameterized Role-Based Access Control Policies for
XML Documents. Information Security Journal: A
Global Perspective, Taylor & Francis, 2009, 18, 282-
296.

Pavlich-Mariscal, J., Demurjian, S. and Michel, L. 2008.
A framework of composable access control definition,
enforcement and assurance. SCCC’08. International
Conference of the IEEE, 2008, 13–22.

Defining�and�Enforcing�XACML�Role-based�Security�Policies�within�an�XML�Security�Framework

25

