
Schema-based Parallel Compression and Decompression
of XML Data

Stefan Böttcher, Matthias Feldotto and Rita Hartel
University of Paderborn, Computer Science, Fürstenallee 11, D-33102 Paderborn, Germany

Keywords: XML, XML Compression, Parallelization.

Abstract: Whenever huge amounts of XML data have to be transferred from a web server to multiple clients, the
transferred data volumes can be reduced significantly by sending compressed XML instead of plain XML.
Whenever applications require querying a compressed XML format and XML compression or
decompression time is a bottleneck, parallel XML compression and parallel decompression may be of
significant advantage. We choose the XML compressor XSDS as starting point for our new approach to
parallel compression and parallel decompression of XML documents for the following reasons. First, XSDS
generally reaches stronger compression ratios than other compressors like gzip, bzip2, and XMill. Second,
in contrast to these compressors, XSDS not only supports XPath queries on compressed XML data, but also
XPath queries can be evaluated on XSDS compressed data even faster than on uncompressed XML. We
propose a String-search-based parsing approach to parallelize XML compression with XSDS, and we show
that we can speed-up the compression of XML documents by a factor of 1.4 and that we can speed-up the
decompression time even by a factor of up to 7 on a quad-core processor.

1 INTRODUCTION

1.1 Motivation

XML has become a de facto standard data exchange
format in the web, although, due to the verboseness
of XML data, transfer time may become a serious
bottleneck in web applications. Whenever huge
amounts of XML data have to be transferred from a
web server to multiple clients, and client
applications have to evaluate queries locally on the
transferred XML data, then transferring XML data
in a compressed, but queriable data format, instead
of transferring plain XML data, may become an
interesting solution for preventing the bottleneck.

Within such an architecture, XML data is
compressed on the server’s side, and compressed
XML data is submitted to multiple clients, which not
only reduces the transmitted data volume, but also
significantly increases the transmission speed. On
the clients’ side, the data can be further processed in
compressed format, e.g., whenever query evaluation
on the compressed XML format is faster than on
uncompressed XML, or it can be decompressed,
e.g., whenever uncompressed XML has to be
processed further. However, when large XML data

fragments are processed, compression time on a
server, and even worse, decompression time for
client applications may become a bottleneck.

While generic compressors like gzip or bzip2 or
early XML specific compressors like XMill allow
for a reasonable compression ratio and a fast
compression and decompression, they do not support
query processing on the compressed data, i.e., they
require a prior decompression in order to query the
compressed data. On the other hand, there exist
XML compressors like XML Schema Subtraction
(XSDS) (Böttcher et al., 2010) that not only provide
stronger compression ratios than these generic data
compressors and than XMill (Liefke and Suciu,
2000), but also allow for query evaluation and direct
search on the compressed data at a speed that is
faster than that of XPath query evaluation on the
original uncompressed XML data (Böttcher et al.,
2012).

The greatest deficiency of XSDS currently is the
time needed to compress and to decompress the data.
To overcome the lack of compression and
decompression speed, we provide an approach for
parallelizing both, the XSDS compression and the
decompression which leads to significant speed-up
for client devices containing a multi-core processor.

77Böttcher S., Feldotto M. and Hartel R..
Schema-based Parallel Compression and Decompression of XML Data.
DOI: 10.5220/0004366300770086
In Proceedings of the 9th International Conference on Web Information Systems and Technologies (WEBIST-2013), pages 77-86
ISBN: 978-989-8565-54-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

1.2 Contributions

In this paper, we present an approach to speed up the
schema-based XML document compression and
decompression of XSDS, which to the best of our
knowledge is the only approach that combines the
following properties:
 It supports a self-organized parallelization, i.e.
parallel compression and decompression can be
achieved on arbitrary large XML documents that are
not yet fragmented into handy parts.
 As a key contribution it contains an automated
separation of input XML documents into fragments
that can be compressed independently of each other.
 This includes an approach that analyzes a given
XML schema or DTD and that determines text
positions within the input XML document which are
suitable for a good separation of the XML document
into fragments that can be compressed
independently.
 Furthermore, the approach uses a String-based fast
XML parser that does not require the XML
document to be tokenized into e.g. SAX events, i.e.
a parser that very efficiently separates the XML
document into several smaller, independent data
fragments.
 Finally, compressed data is enriched to support
efficient parallel decompression.
Additionally, we present the performance
improvements by parallel XSDS compression and
parallel XSDS decompression. This includes a
speed-up factor of 7 for the decompression that we
have achieved on a quad-core processor.

1.3 Paper Organization

This paper is organized as follows: Section 2
summarizes the basic idea of XSDS followed by a
description of how XSDS is being used for
compressing XML data. Section 3 describes the
fundamental concepts used by our approach to
parallelize the compression and the decompression
of the XML data via XSDS. The fourth section
outlines some of the experiments that compare our

prototype with other XPath evaluators. Section 5
gives an overview of related work and is followed
by the Summary and Conclusions.

2 A SUMMARY OF XSDS
AND THE PAPER’S EXAMPLE

2.1 The Basic Idea of XSDS
Compression

The main compression principle of XML schema
subtraction (XSDS) is to remove all the information
that is strictly defined by a DTD or an XML schema
definition from a given XML document, and to
encode only those parts of the XML document in the
compressed format that can vary according to the
DTD or XML schema. In this paper, we only
provide a short overview of XSDS compression, as
details are described in (Böttcher et al., 2010).

2.2 This Paper’s Example

To illustrate the ideas of our approach, we use an
example of a schema that represents a university.
Each document consists of a <university> element
that contains a sequence of one <courses> element
followed by one <staff> element. The <courses> ele-
ment consists of any number of <course> elements.
The <staff> element contains any number of
elements which are either <professor> or <assistant>
elements. The elements <course>, <professor>, and
<assistant> contain PCDATA only.

Fig. 1 shows a visualization of our example
schema S, called the rule graph of S. The node with
label ‘(,,)’ is called a sequence node that defines a
sequence of all its child nodes in the given order. It
corresponds to an <xsd:sequence> element within an
XML schema and to a comma-operator within a
DTD rule. The node with label ‘*’ is called a
repetition node that defines any number of
occurrences of its child node. It corresponds to non-
default values of the attributes minOccurs and

Figure 1: Rule graph of our example schema.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

78

maxOccurs within an XML schema and to a ‘*’-
operator within a DTD rule. The node with label ‘|-is
called a choice node that defines the choice among
its child nodes. It corresponds to the <xsd:choice>
element within an XML schema and to a ‘|’-operator
within a DTD rule.

Fig. 2 shows an example document that conforms
to the given rule graph and that consists of 3 courses,
2 professors, and 1 assistant.

2.3 Compressing the Example
Document

Compressing the Structure. Within the structure of
an XML document, i.e., within the element tags,
there are only three different concepts that allow for
variant parts within an XML document defined by a
given schema: First, when the schema requires the
choice of one out of different given alternatives.
Second, when the XSD element ‘all’ requires the
occurrence of all elements declared by children of
the ‘all’ element, but they can occur in any order.
Third, when the XSD requires a repetition of an
element, but leaves it open how often this element
occurs. For DTD, we have to consider ‘|’ and ‘*’.

The compression of these variant parts within an
XML document works as follows. Each compression
step assumes that we consider one current position
in the XML document at a time for which the XSD
allows variant parts. For each current position in the
XML document for which the XSD allows a choice,
we only store the alternative chosen at this current
position (This requires log(n) bits, if there are n
possible alternatives.) For each XSD element ‘all’,
we only encode the order of the elements required
by the children of the ‘all’ element in the XSD. (This
requires ∑ log	ሺ݅ሻ

ୀଵ bits, if there are n possible
alternatives.) Finally, for each repetition of elements
starting at a given position within an XML
document, we only store the number of occurrences
of this element found at the current position of the

XML document. (If the number of children per node is
e.g. limited by 2^32 (MAXINT), this requires 1 to 5 bytes
per repetition node, depending on the concrete number of
repetitions.)

For example, for the schema given in Fig. 1 and
the document given in Fig. 2, we have to encode a 3
to represent the number of courses, followed by a 3
to determine the number of staff members followed
by a 0-bit representing the chosen alternative (first
staff member is a professor), followed by a 1-bit
(second staff member is an assistant), and finally
followed by the 0-bit (third staff member is a
professor). Thus, the whole structure of the example
document given in Fig. 2 can be represented by 2
integer numbers plus 3 bits.

Compressing the Textual Data. Beneath the
structure, an XML document contains textual data.
We store the text data in document order in a text
container and apply gzip on top of the text container
at the end of the document.

Decompression. The rule graph is also used for
the reverse process, i.e., decompressing the
compressed XML structure and the compressed text
container back to the original XML document (as
described in (Böttcher, Hartel & Messinger, 2010)).

3 PARALLEL COMPRESSION

3.1 Basic Idea of the Parallelization

The parallel compression of XML data is performed
in 3 steps. The first step is a preprocessing step that
has to be performed only once per schema (XSD or
DTD). In this step, we analyze only the schema to
determine which text positions are promising
candidates to separate the XML document into
several fragments. In the second step, we perform
the real fragmentation of the XML document.
Finally, in the third step, we compress each fragment
independently and in parallel by using XSDS.

Furthermore, we augment the compressed data to
packages containing the compressed data fragments
plus additional meta-data containing the start and
end addresses of the fragments within the
compressed data, such that the parallel
decompression can be performed efficiently.

Then parallel decompression can be performed in
2 steps as follows. In the first step, the compressed
data packages are separated back into fragments. In
the second step, the fragments are decompressed in
parallel by XSDS. As this does require nearly no
additional work, the overhead by the parallelization
is minimal for the decompression, such that we can

<university>
 <courses>
 <course>DBIS 1</course>
 <course>DBIS 2</course>
 <course>Web</course>
 </courses>
 <staff>
 <professor>Paul</professor>
 <assistant>Peter</assistant>
 <professor>Mary</professor>
 </staff>
</university>

Figure 2: An example XML document.

Schema-based�Parallel�Compression�and�Decompression�of�XML�Data

79

expect a high speed-up within the decompression
phase. This is of particular interest when
decompression is used much more frequently than
compression, for example when compressed data is
downloaded and decompressed multiple times.

3.2 Step 1: Determining Promising
Fragmentation Candidates

In the first compression step, we analyze only the
rule graph of the schema, and we do not need any
access to any XML document. Therefore, this step
can be performed as a preprocessing step and does
not have to be repeated for different XML input
documents.

The goal of this step is to determine promising
candidates in the rule graph, at which the input
document could be fragmented into several
document fragments. For promising candidates
within the rule graph, we have two different criteria:
a structural criterion on the one hand, and a criterion
conforming to the depth and the expected size of the
fragments on the other hand.

The idea behind the structural criterion is that
those rule graph nodes are promising candidates that
have child nodes in the rule graph which correspond
to a lot of document nodes within the XML
document, as then, the document can be split at each
of these document nodes. If we look at the rule
graph, we can see that three kinds of rule graph
nodes fulfill this condition: the sequence nodes, the
repetition nodes, and the ALL nodes, each of which
may have several child nodes within the XML
document. In contrast, for each visit of a choice node
while processing the rule graph, there is only one
XML document node processed, if the child node of
the choice node in the rule graph is an element node.
Therefore, we consider each sequence node, each
repetition node, and each ALL node within the rule
graph as a promising candidate for fragmenting the
XML input document.

As splitting an XML document into too many
fragments may cause unnecessary overhead, we
introduce a depth threshold that avoids selecting
candidates that might lead to a too small document
fragment as a second criterion.

The first step therefore involves a preorder walk
through the rule graph which selects each sequence
node, each repetition node, and each ALL node that
lies above the specified depth threshold as a
promising fragmentation candidate. This set of
candidate nodes is then the input for the next step,
the fragmentation of the input document.

3.3 Step 2: Fragmenting the Input
Document

To fragment a given XML document, we have to
find matchings of the candidates that were identified
in Step 1. As the parallelized compression shall be
faster than a sequential compression, the
fragmentation has to be very fast. How much faster
the parallel processing is, in contrast to the
sequential processing, depends mainly on how fast
the fragmentation of the XML document into several
fragments is. Therefore, we do not use an approach
that requires the XML input document in form of
SAX events or other tokenized data. Instead, we
work on the String representation of the XML
document itself in order to find the elements that
correspond to the candidates selected in Step 1.

The key idea is to reduce the search for these
XML elements to a search for multiple substrings.
For this purpose, we use a String-based XML filter
approach presented in (Böttcher et al., 2012).

For the example schema given in Fig. 1, the
candidates are the sequence node and the two
repetition nodes, i.e., we have to search for positions
of the elements <courses>, <course>, <staff>,
<professor>, and <assistant>. At the same time, we
know the structure of the document, i.e., the nesting
of the elements, given by the schema. This means, at
the beginning, we search within a fast String search
for occurrences of ‘<courses’. As soon as we have
found a position of an element <courses>, we search
instead for ‘<course’ or ‘</courses’, as either
‘<course’ indicates that an additional <course>
element is found or ‘</courses’ indicates that no
more <course> element is found as a child of the
current <courses> element. Similar, when we have
found a position of an element <staff>, we search for
‘<professor’, ‘<assistant’, or ‘</staff’. For details on
this String-based XML filtering algorithm, please
refer to (Böttcher et al., 2012).

This String-based XML filtering allows for a fast
search for text positions in the XML document
corresponding to the candidates determined in Step
1. While this approach parses the String
representation, it counts the number of characters
read. As soon as a minimum size threshold for a
document fragment is exceeded by an XML element
tag, a new fragment is started and the old fragment
together with the fragment’s location information is
passed to one of the processes performing Step 3.
The fragment’s location information contains the
following components: first, a rule graph path PR
that corresponds to the path PF from the document
root to the root of the fragment, second, for each

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

80

repetition node in PR, the number of repetitions
found in the XML document that precede PF.

3.4 Step 3: Parallel Compression

The parallel compression is similar to the sequential
compression of standard XSDS. The important
difference however is, that the compression does not
start at the root node of the rule graph, but at that
rule graph node given by a path PR from the root
node to the specified rule graph node that was
passed to the compression process by Step 2.

Starting at that rule graph node determined by
PR, the compression process traverses the rule graph
in preorder. Whenever compression passes an
element node, it consumes an element within the
document fragment. Whenever compression passes a
#PCDATA node, it consumes a text node within the
document fragment and stores it in the
corresponding text container. Whenever
compression passes a choice node, it determines the
chosen alternative and encodes it in the compressed
data. Whenever compression passes a repetition
node, it increases a counter for each occurrence
within the document that is written into the
compressed data. And finally, whenever
compression passes a sequence node, it proceeds
with the children of this sequence node.

Whenever a fragment is compressed completely,
the compressed data is written to the output
document or is transferred to a receiver.

In order to restore the decompressed document in
the right order at the receiver’s side, the fragment’s
location information is being used, such that the
decompressor can restore the original order.

3.5 Modified Data Format

In order to be able to decompress the compressed
document fragments in parallel, i.e., independently
of each other and in any order, the compressed data
has to be enriched by additional meta-data.
Therefore, the output of the compressor is a package
that contains one compressed data fragment plus a
header specifying the path PR within the rule graph
from the root node to that rule graph node where to
start the decompression. Furthermore, for each
repetition node for an element or a fragment E on
this path, we store the number of occurrences of E
that are stored in this document fragment.

Besides this meta-data, each package contains a
unique number which defines the order in which the
decompressed data has to be concatenated and the
size of the compressed document packages in bytes.

The complete compressed data then consists of
the concatenation of all compressed document
packages including the meta-data.

3.6 Parallel Decompression

The parallel decompression is similar to the
sequential decompression, except for the
fragmentation of the compressed data and for
determining each fragment’s corresponding rule
graph node, which is needed for decompression.

The fragmentation process utilizes the size
information contained in the meta-data of each
package in order to split this package from the
remaining packages. Each package are then passed
to an own decompression process running in parallel
to all the other decompression processes.

Each decompression process uses the meta-data
for calculating the fragment’s corresponding start
node within the rule graph. Similar to each
compression process, each decompression process
traverses the rule graph in preorder. Whenever
decompression passes an element node within the
rule graph, it writes the corresponding element to the
decompressed data. Whenever decompression passes
a #PCDATA node, it reads a text value from the
corresponding text container and writes it to the
decompressed data. Whenever decompression passes
a choice node, it reads the chosen alternative from
the compressed data and it proceeds with
decompressing the chosen alternative. Whenever
decompression passes a repetition node, it checks
from the compressed data whether or not a further
occurrence follows and continues with
decompressing the further occurrence or the next
node in preorder. And finally, whenever
decompression passes a sequence node, it proceeds
with the children of this sequence node.

4 EVALUATION
OF OUR PROTOTYPE
IMPLEMENTATION

4.1 Evaluation Environment

For our performance evaluation, we used a quad-
core system, Intel Core 2 Quad Q8200 2,33GHz,
with 2x DDR2 RAM 800MHz, 2048MB memory
and with a 7200rpm 500GB SATA hard disk.

To evaluate the presented compression approach
and to compare it with other approaches, we have
used two different XML benchmarks: XMark

Schema-based�Parallel�Compression�and�Decompression�of�XML�Data

81

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

catalog-01 catalog-02 dictionary-01 dictionary-02 XMark01 XMark1 XMark3

co
m

pr
es

si
on

 r
at

io

gzip bzip2 XMill Succinct RePAIR XSDS XSDS [p]

(Schmidt et al., 2002) and XBench (Yao et al.,
2004).

In order to get representative evaluation results,
we have used the two benchmarks for generating
documents of different types, different sizes, and
with different structure quota as listed in Table 1.

Table 1: Data used in our evaluation.

Abbr. Description size Structure

XMark01
XMark

benchmark with
factor 0.1

11.3
MB

26.23 %

XMark1
XMark

benchmark with
factor 1

113.0
MB

26.10 %

XMark3
XMark

benchmark with
factor 1

340.0
MB

26.05 %

catalog-01
XBench data-

centric
benchmark

10.5
MB

55.23 %

catalog-02
XBench data-

centric
benchmark

105.0
MB

55.21 %

dictionary-
01

XBench text-
centric

benchmark

10.7
MB

20.87 %

dictionary-
02

XBench text-
centric

benchmark

106.0
MB

20.81 %

We have compared the presented approach with the
following alternatives, ranging from XML non-
aware, to encoding-based, to grammar-based, to

schema-based approaches to XML compression.
From each category one or two representatives are
chosen for the evaluation (c.f. Table 2).

Table 2: The evaluated approaches for XML compression.

Abbr. Description Type

gzip
default gzip

implementation
XML non-

aware

gzip [p]
parallel default
implementation

XML non-
aware

bzip2
default bzip2

implementation
XML non-

aware

bzip2 [p]
parallel bzip2

implementation
XML non-

aware

XMill
default XMill

implementation
encoding-

based

Succinct
default Succinct
implementation

encoding-
based

RePAIR
default RePAIR
implementation

grammar-
based

XSDS
starting point of this

paper
schema-

based

XSDS[p]
approach of this

paper
schema-

based

In addition to our parallel approach, we evaluate two
further parallel compressors (marked with [p]): gzip
[p] (Adler) and bzip2 [p] (Gilchrist). In contrast to
our approach, they only implement the concept of
gzip and bzip2 in a parallel way. In particular, they
only separate the input data into several packages of
equal sizes and compress these packages in parallel.
Then, the separately compressed packages will be
put together, which yields the default package

Figure 3: Compression ratios for different files.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

82

0

50

100

150

200

250

300

350

400

450

gzip gzip [p] bzip2 bzip2 [p] Xmill Succinct RePAIR XSDS XSDS [p]

T
hr

ou
gh

pu
t (

M
B

it
s/

s)

compression decompression

0

0,05

0,1

0,15

0,2

0,25

0,3

gzip gzip [p] bzip2 bzip2 [p] Xmill Succinct RePAIR XSDS XSDS [p]

co
m

pr
es

si
on

 r
at

io

format of gzip/bzip2. Therefore, there is no
information about the separate packets saved in the
compressed data, and as a consequence, the
decompression cannot be parallelized as in our
approach.

In order to get stable results and to avoid random
variations, each evaluation run was started 10 times
with flushed memory and with the same parameters,
and the average of the 10 results was taken.

4.2 Evaluation Results

Figure 3 summarizes the results comparing the
compression ratio of the different compressors for
the sample benchmark files. XSDS has the best
compression ratio for all sample benchmark files
except for the catalog benchmark, a dataset with
high structure ratio, where RePAIR is a little bit
better, but the parallel XSDS achieves very good
results, too: Although the compressed file is a little

bit greater than in serial XSDS due to the meta-data
required, the parallel XSDS compressor has the
second best compression ratio for each sample
benchmark file except for the small sample files and
the catalog benchmark. Therefore, we expect
parallel XSDS to be a useful processor for
compressing large XML files.

Figure 4 summarizes the results comparing the
average compression over all sample files. Also
here, in the summarized results, the new parallel
XSDS processor has the second best compression
ratio, shortly after the serial XSDS compressor, i.e.,
all other compared compressors have worse
compression ratios.

Figure 5 summarizes the results comparing the
compression and decompression speeds. The XML
non-aware compressors have higher compression
and decompression throughputs than all the XML
aware compressors. However, the new parallel
XSDS compressor is the fastest XML compressor,

Figure 4: Average compression ratio.

Figure 5: Average throughput rates for compression and decompression.

Schema-based�Parallel�Compression�and�Decompression�of�XML�Data

83

which generates a compressed data format that is
also queriable. In particular, for the decompression,
which is the most interesting direction when
compressed files are downloaded and decompressed
multiple times, parallel XSDS is faster than
Succinct, RePAIR, and XSDS, and also the gap to
the compression speed of the XML non-aware
compressors is smaller.

Finally, we compare the possible speed-up
factors of the parallel compression variants
compared to their sequential pendants. The parallel
gzip compressor reaches average speed-up factors of
2.99 for compression and 1.17 for decompression of
XML data. The bzip2 compressor reaches average
speed-up factors of 2.7 for compression and 2.07 for
decompression of the XML data. However, our
parallel XSDS compressor reaches average speed-up
factors of 1.10 for compression and 4.29 for
decompression. For the largest file, i.e. catalog-02,
we even get a speed-up factor of 7.

The speed-up factor achieved by parallel XSDS
for compression is smaller than for decompression
for the following reason: During the compression,
the input files also have to be separated into
packages by using the StringFilter; this step is not
needed during decompression because the separation
is saved in the packets.

Especially when decompression of XML files is
executed more often than compression, e.g., when
multiple users download compressed XML files
from a web server, our approach to parallelize XSDS
gets the best speed-up factor by parallelization of all
the approaches to parallelize an XML compressor.

To summarize, as parallel XSDS it the fastest
compressor generating a queriable compressed data
format, and additionally achieves the best
compression strength on large XML files (except for
serial XSDS), we consider our parallel XSDS to be a
significant contribution to the field of providing
compressed data in web-based information systems.

5 RELATED WORKS

To the best of our knowledge, there do not exist
XML specific compressors that use parallelization to
speed up their compression or decompression.

In contrast to the XML specific compressors,
there exist generic compressors that can be applied
to any type of data. Typical representatives of this
family of compressors are gzip (based on LZ77 and
Huffman) or bzip2 (based on Burrows-Wheeler
Transform followed by Move-To-Front and
Huffman). In general, each XML file can be

regarded simply as a chain of bytes without any
connection between these bytes. Then the data could
be simply chopped into several chunks by random or
into chunks of fixed size and each chunk of data
could be compressed independently of the other
chunks in parallel by generic data compressors.
Following this idea, each generic data compression
approach could be parallelized. The greatest
disadvantage of this idea is that by ignoring
connections between the chunks, redundancies are
not detected, such that a loss of compression ratio is
the consequence. This idea is mainly followed by
pigz (Adler) and PBZIP2 (Gilchrist), which are the
parallel versions of gzip or bzip2 respectively. They
both compress chunks of data independently of the
other chunks and concatenate the output of the
processes to one compressed file following the
compressed file format of gzip or bzip2 respectively.

(Howard and Vitter, 1996) present ideas for the
parallelization of Huffman encoding or other prefix
codes like Golomb and Rice and for arithmetic
encoding for image data. The main idea is that each
processor compresses one pixel at a time. All
processors follow the same pulse and write one bit
of the calculated code to the output at one heart beat.
In order to decompress, each processor reads one bit
of the compressed code at one heart beat, and as
soon as the code is complete (which can be
determined because of the prefix property), the
processor can decode the code and – as soon as all
processors have finished the decoding – can write
the decoded information to the output.

Regarding XML structure compression, there
exist several approaches, which can be mainly
divided into three categories: encoding-based
compressors, grammar-based compressors, and
schema-based compressors.

The encoding-based compressors allow for a
faster compression speed than the other ones, as only
local data has to be considered in the compression as
opposed to considering different sub-trees as in
grammar-based compressors.

The XMill algorithm (Liefke and Suciu, 2000),
XGrind (Tolani and Haritsa, 2002), XPRESS (Min
et al., 2003), XQueC (Arion et al., 2007), and the
approach presented in (Bayardo et al., 2004) belong
to the first group. The latter four approaches allow
querying the compressed data. Furthermore, the
encoding-based compression approaches (Cheney,
2001), (Girardot and Sundaresan, 2000), and in
(Zhang et al., 2004) enrich the compressed data by
additional information that allows for a fast naviga-
tion.

We assume, that a trivial parallelization approach

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

84

should be applicable to all encoding based
compression techniques: Simply chop the XML data
at any XML token (i.e., before a ‘<’ character or
after a ‘>’ character) and compress the chunks
independently of each other. As the encoding-based
compressors do not consider the structure of an
XML file, but simply compress each XML file token
by token, this trivial parallelization should lead to an
efficient speed-up of the compression and of the
decompression. However, typically the encodings-
based compressors reach a weaker compression ratio
than the compressors of the class of the schema-
based compressors, to which e.g. XSDS belongs to.

XQzip (Cheng and Ng, 2004), the approaches
presented in (Adiego et al., 2004) and (Buneman et
al., 2003), and the BPLEX algorithm (Busatto et al.,
2005) belong to grammar-based compression. They
compress the data structure of an XML document by
combining identical or similar sub-trees. As these
compressors have to analyze the structure of the
XML data, it is more sophisticated to fragment the
input data in order to parallelize the compression.
Nevertheless, by separating the input data into
several fragments, a loss of compression ratio is
unavoidable, as identical or similar sub-trees that are
contained in different fragments cannot be detected.

Schema-based compression comprises such
approaches as XCQ (Ng et al., 2006), XAUST
(Subramaniam and Shankar, 2005), Xenia (Werner
et al., 2006) and (Böttcher et al., 2007). They
subtract the given schema information from the
structural information. Instead of a complete XML
structure stream or tree, they only generate and
output information not already contained in the
schema information (e.g., the chosen alternative for
a choice-operator or the number of repetitions for a
*-operator within the DTD). As they all follow the
same idea as XSDS that was examined in this paper,
we assume that the ideas of parallelization can be
applied to all these approaches to enhance their
compression and decompression speed.

6 SUMMARY
AND CONCLUSIONS

Whenever web servers provide huge amounts of
XML data that are further processed by queries
within client applications, then transferring the XML
data in a compressed, but queriable data format from
the sever to the clients may significantly reduce the
amount of data transfer. When, by using a queriable
compressed XML format, XML compression or
decompression time becomes a bottleneck, parallel

XML compression and parallel decompression may
be of significant advantage. We have contributed an
approach to parallelize XML compression and
decompression using the XSDS compressor. The
XSDS compressor has the advantages that it
generally reaches stronger compression ratios than
other compressors like gzip, bzip2, and XMill, and,
in contrast to these compressors, XSDS not only
supports XPath queries on compressed XML data,
but XPath queries can also be evaluated on XSDS
compressed data even faster than on uncompressed
XML. To overcome a previous weakness of the
XSDS processor, i.e. its slower compression and
decompression, we have proposed a parallel
approach to XSDS-based XML compression. Our
approach consists of a String-search-based technique
to split an XML document into fragments and to
enrich these fragments with meta-data, such that
each of the resulting packages can be compressed in
parallel and completely independently of the other
packages. We have further shown how to extend the
approach to allow parallel decompression of XSDS-
compressed XML documents. Finally, our
experiments have shown that our approach to
parallelized XSDS compression can speed-up the
compression time by a factor of 1.4 and can speed-
up the decompression time even by a factor of up to
7 on a quad-core processor.

We assume that our approach is not limited to
parallel compression and decompression of XSDS,
but can also be applied to other schema-based XML
compression techniques like e.g. XENIA or XCQ.

To summarize, as parallel XSDS it the fastest
compressor generating a queriable compressed data
format, and additionally achieves the best
compression strength on large XML files (except for
serial XSDS), we consider our parallel XSDS to be a
significant contribution to the field of providing
compressed data in web-based information systems.

REFERENCES

Adiego, J., Navarro, G., & Fuente, P. d. (2004). Lempel-
Ziv Compression of Structured Text. Data
Compression Conference (S. 112-121). Snowbird, UT,
USA: IEEE Computer Society.

Adler, M. pigz - A parallel implementation of gzip for
modern multi-processor, multi-core machines.
http://www.zlib.net/pigz/.

Arion, A., Bonifati, A., Manolescu, I., & Pugliese, A.
(2007). XQueC: A query-conscious compressed XML
database. ACM Trans. Internet Techn. , 7 (2).

Bayardo Jr., R. J., Gruhl, D., Josifovski, V., & Myllymaki,
J. (2004). An evaluation of binary XML encoding

Schema-based�Parallel�Compression�and�Decompression�of�XML�Data

85

optimizations for fast stream based xml processing. In
S. I. Feldman, M. Uretsky, M. Najork, & C. E. Wills
(Hrsg.), Proceedings of the 13th international
conference on World Wide Web (S. 345-354). New
York, NY, USA: ACM.

Böttcher, S., Hartel, R., & Heindorf, S. (2012). XPath
evaluation for Schema-compressed XML data. To
appear in: Australasian Database Conference (ADC
2012). Melbourne, Australia.

Böttcher, S., Hartel, R., & Messinger, C. (2010).
Searchable Compression of Office Documents by
XML Schema Subtraction. Database and XML
Technologies - 7th International XML Database
Symposium, XSym 2010 (S. 103-112). Singapore:
Springer.

Böttcher, S., Hartel, R., & Weber, S. (2012). Efficient
String-based XML Stream Prefiltering. To appear in:
Australasian Database Conference (ADC 2012).
Melbourne, Australia.

Böttcher, S., Steinmetz, R., & Klein, N. (2007). XML
index compression by DTD subtraction. ICEIS 2007 -
Proceedings of the Ninth International Conference on
Enterprise Information Systems, Volume DISI, (S. 86-
94). Funchal, Madeira, Portugal.

Buneman, P., Grohe, M., & Koch, C. (2003). Path Queries
on Compressed XML. Proceedings of 29th
International Conference on Very Large Data Bases
(S. 141-152). Berlin, Germany: Morgan Kaufmann.

Busatto, G., Lohrey, M., & Maneth, S. (2005). Efficient
Memory Representation of XML Documents.
Database Programming Languages, 10th
International Symposium, DBPL 2005 (S. 199-216).
Trondheim, Norway: Springer.

Cheney, J. (2001). Compressing XML with Multiplexed
Hierarchical PPM Models. Proceedings of the IEEE
Data Compression Conference (DCC 2001) (S. 163).
Snowbird, Utah, USA: IEEE Computer Society.

Cheng, J., & Ng, W. (2004). XQzip: Querying
Compressed XML Using Structural Indexing.
Advances in Database Technology - EDBT 2004, 9th
International Conference on Extending Database
Technology (S. 219-236). Heraklion, Crete, Greece:
Springer.

Gilchrist, J. Parallel BZIP2 (PBZIP2).
http://compression.ca/pbzip2/.

Girardot, M., & Sundaresan, N. (2000). Millau: an
encoding format for efficient representation and
exchange of XML over the Web. Computer Networks ,
33, 747-765.

Howard, P. G., & Vitter, J. S. (1996). Parallel Lossless
Image Compression Using Huffman and Arithmetic
Coding. Inf. Process. Lett. , 59, 65-73.

Liefke, H., & Suciu, D. (2000). XMILL: An Efficient
Compressor for XML Data. Proceedings of the 2000
ACM SIGMOD International Conference on
Management of Data (S. 153-164). Dallas, Texas,
USA: ACM.

Min, J.-K., Park, M.-J., & Chung, C.-W. (2003). XPRESS:
A Queriable Compression for XML Data. In A. Y.
Halevy, Z. G. Ives, & A. Doan (Hrsg.), Proceedings of

the 2003 ACM SIGMOD International Conference on
Management of Data (S. 122-133). San Diego,
California, USA: ACM.

Ng, W., Lam, W. Y., Wood, P. T., & Levene, M. (2006).
XCQ: A queriable XML compression system. Knowl.
Inf. Syst. , 421-452.

Schmidt, A., Waas, F., Kersten, M. L., Carey, M. J.,
Manolescu, I., & Busse, R. (2002). XMark: A
Benchmark for XML Data Management. VLDB 2002,
Proceedings of 28th International Conference on Very
Large Data Bases, (S. 974-985). Hong Kong, China.

Subramanian, H., & Shankar, P. (2005). Compressing
XML Documents Using Recursive Finite State
Automata. In J. Farré, I. Litovsky, & S. Schmitz
(Hrsg.), Implementation and Application of Automata,
10th International Conference, CIAA 2005 (S. 282-
293). Sophia Antipolis, France: Springer.

Tolani, P. M., & Haritsa, J. R. (2002). XGRIND: A
Query-Friendly XML Compressor. Proceedings of the
18th International Conference on Data, ICDE (S. 225-
234). San Jose, CA: IEEE Computer Society.

Werner, C., Buschmann, C., Brandt, Y., & Fischer, S.
(2006). Compressing SOAP Messages by using
Pushdown Automata. 2006 IEEE International
Conference on Web Services (ICWS 2006) (S. 19-28).
Chicago, Illinois, USA: IEEE Computer Society.

Yao, B. B., Özsu, M. T., & Khandelwal, N. (2004).
XBench Benchmark and Performance Testing of XML
DBMSs. ICDE 2004, (S. 621-632).

Zhang, N., Kacholia, V., & Özsu, M. T. (2004). A
Succinct Physical Storage Scheme for Efficient
Evaluation of Path Queries in XML. Proceedings of
the 20th International Conference on Data
Engineering, ICDE 2004 (S. 54-65). Boston, MA,
USA: IEEE Computer Society.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

86

