
Towards a Standards-based Cloud Service Manager

Amine Ghrab1, Sabri Skhiri1, Hervé Kœner2 and Guy Leduc2

1Eura Nova R&D, Mont-Saint-Guibert, Belgium
2Electrical Engineering and Computer Science Department, University of Liège, Liège, Belgium

Keywords: Cloud Computing, OCCI, Service Management.

Abstract: Migrating services to the cloud brings all the benefits of elasticity, scalability and cost-cutting. However, mi-
grating services among different cloud infrastructures or outside the cloud is not an obvious task. In addition,
distributing services among multiple cloud providers, or on a hybrid installation requires a custom implemen-
tation effort that must be repeated at each infrastructure change. This situation raises the lock-in problem
and discourages cloud adoption. Cloud computing open standards were designed to face this situation and to
bring interoperability and portability to cloud environments. However, they target isolated resources, and do
not take into account the notion of complete services. In this paper, we introduce an extension to OCCI in
order to support complete service definition and management automation. We support this proposal with an
open-source framework for service management through compliant cloud infrastructures.

1 INTRODUCTION

Cloud computing provides an infrastructure empha-
sizing resources multiplexing, data locality, and elas-
ticity. However, current offerings still present inher-
ent interoperability and portability issues. Interoper-
ability enables different services deployed on differ-
ent cloud infrastructures to exchange through com-
mon interfaces, without the need to provide a specific
adapter for each separate API. Portability introduces
common formats by which services are described and
deployed independently from the provider.

To tackle these issues, we operated at the IaaS
Service Manager level and we selected Open Cloud
Computing Interface (OCCI)1 as the cloud manage-
ment interface. Reservoir (Rochwerger et al., 2009)
proposes a well defined architecture as well as an
open source implementation. Within this architecture,
services are comprised as sets of inter-related vir-
tual machines along with their attached storage, net-
works and configuration settings. Service managers
help users switch from individual VM management to
whole services management, thus focusing more on
their business goals. On the other hand, OCCI pro-
vides common mechanisms for services description,
discovery and management. The OCCI-based service
definition is processed by the service manager which

1http://occi-wg.org

then handles the deployment, provisioning and SLA
enforcement of the service.

In this paper we propose two contributions, (1) we
extend the OCCI standard to support cloud service
managers, and (2) we provide a reference implemen-
tation as an open-source tool to seamlessly manage
the services deployed within standards-based cloud
offerings.

The paper is organized in three parts. To solve the
above-mentioned issues, Section 2 introduces our ap-
proach based on cloud computing open standards and
highlights the design and implementation of our so-
lution. Section 3 proposes future research directions
to tackle the remaining issues. Section 4 describes
related works and how our solution goes beyond the
state of the art.

2 OCCI SERVICE MANAGER

2.1 OCCI

OCCI is an initiative from the Open Grid Forum
(OGF)2 to provide a standard RESTful Protocol and
API for the management of cloud resources. Open-
Nebula and OpenStack already provide OCCI com-
pliant interfaces (Edmonds et al., 2012).

2http://www.ogf.org/

127Ghrab A., Skhiri S., Koener H. and Leduc G..
Towards a Standards-based Cloud Service Manager.
DOI: 10.5220/0004372201270130
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 127-130
ISBN: 978-989-8565-52-5
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Resources representation is based on a type sys-
tem described in the core model document of the
specification (Metsch et al., 2010c). Within this
model, a hierarchy governs cloud resources, which
eases their classification and thereof their identifica-
tion. The central type of the OCCI model is Resource
which represents the resources offered by the cloud
provider. Resources relationships are modeled using
Link. Resource and Link inherits both from Entity,
which is an abstract class complementing Category.
Category is used for uniquely typing and identifying
resources within the underlying system. Category is a
superclass for Kind and Mixin. Kind defines resource
characteristics and serves as the base of the classifi-
cation system. Mixin enables dynamic addition and
removal of capabilities from the resource. Action is
attached to mixins and kinds and denotes the opera-
tions a resource could perform.

An extension of the core model to cover IaaS level
is depicted in the infrastructure model (Metsch et al.,
2010a). The extensibility of OCCI enables to repre-
sent a wide range of resources and perform complex
operations on them, such as management of databases
and key-value stores (Edmonds et al., 2011a).

The third document released by OGF is the OCCI
HTTP specification (Metsch et al., 2010b). Resources
in this representation are identified and accessed using
unique URI. As it is a RESTful API, the management
of resources is done through the basic HTTP oper-
ations POST, GET, PUT and DELETE that perform
Create, Retrieve, Update and Delete operations.

The purpose of OCCI is not to cover all possible
cloud management tasks, instead it offers a common
infrastructure on top of which cloud offerings could
be built (Edmonds et al., 2011b). Obviously, the set
of supported operations is limited compared to those
offered by specific cloud offerings. However, exten-
sions to OCCI or direct use of the providers API re-
mains as available options.

2.2 OCCI Extension

A service manager should provide a uniform manage-
ment interface to handle the deployment and the mon-
itoring of whole interrelated entities while encapsu-
lating low-level management details. Here we sug-
gest an extension to the core specification of OCCI
and we built our service manager atop. The extension
introduces the concepts related to cloud IaaS service
management such as Service, Role, Group and depen-
dency (see Fig. 1):

1. Role: A configured virtual machine fulfilling a
specific functionality, such as a DBMS.

2. Service: A set of interconnected roles serving a
determined goal, such as web portal.

3. Group: A set of roles with the same initial con-
figuration. The elasticity aspect of the service is
reflected by adding and removing group members.

4. Dependency: Describe an order relationship be-
tween roles. If role A needs a role B to be avail-
able before being able to start, then A is called
dependent on B.

A typical use case is a web service which could be
defined as a set of interdependent roles that the user
selects, classifies within groups and defines their de-
pendencies. Figure 2 depicts such scenario.

Resource

+summary: string

+occi.service.state:Enum

Service

+occi.service.state:Enum

Role

+occi.group.max: int
+occi.group.min: int
+occi.group.size: int

Group

+occidependency.priority: int

Dependency

+summary: string

Link

1

target
1

sourcelinks

1 1..*

Figure 1: Service Manager Class Diagram.

Figure 2: Service Deployment Example.

2.3 Implementation

We have implemented OCCI Service Manager3 as
a proof-of-concept for our extension to the OCCI
model. The framework allows the user to define the

3https://github.com/KoenerHerve/Service-Manager

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

128

service, to start it and to dynamically allocate under-
lying resources. The descriptions of the resources and
the users profiles are stored in a MySQL database.
The OCCI Service Manager offers a web interface
and a RESTful API to enable users to start, stop vir-
tual machines and to retrieve different monitoring in-
formation. The framework is written in Ruby and
built using the Sinatra4 light-weight framework. It
stands as a middleware between end-users and the
OpenNebula OCCI server.

The first step to define a service is to define the
roles which compose it. To create a role, the user
specifies the OS template and links it to a subsequent
mixins. Mixins allow the user to specify the dynamic
add-ons of the role. For instance, we can specify
that the virtual machines of a certain role uses Cen-
tOS template and acts as an Nginx load balancer. The
second step is to define the different dependencies be-
tween roles. For instance, a load balancer depends on
web server roles before it could be started.

When the user wants to start a service, the applica-
tion starts all the virtual machines of the roles defined
for the service. If the virtual machines of a certain
role have dependencies the OCCI Service Manager
starts first the dependencies. When a virtual machine
is started, the OCCI Service Manager configures it au-
tomatically according to the mixins linked to the role
of this virtual machine. A service is started on each
of the virtual machines and acts as an agent allowing
the execution of remote commands. Once all virtual
machines are started and configured the state of the
service is set to running.

The user can perform CRUD operations on the
service or on the roles which compose it. He can also
change the behavior of the virtual machines of a cer-
tain role by linking it to another Mixin at runtime. The
roles provisioning process is depicted on Figure 3.

3 FUTURE WORKS

A service manager is assigned two main tasks. First,
resources provisioning and deployment, which our
tool already supports. Second, monitoring and
SLA compliance enforcement. Currently, we do
not include monitoring modules. We envision inte-
grating Ganglia5 as our distributed monitoring sys-
tem. Scheduling helps optimize resource utilization.
Haizea6 is a potential candidate to integrate schedul-
ing within our service manager. Accounting and

4http://www.sinatrarb.com/
5http://ganglia.sourceforge.net/
6http://opennebula.org/software:ecosystem:haizea

Specify Dependencies

Start Service

Init

End

Dependencies Checking

Choose Roles

Start Base VMs

Satisfied NOT Satisfied

VM Configuration using local Agents

Service Up

Register Roles on the DB

Retrieve Service
Config.

MySQL DB

Figure 3: Service provisioning process.

billing is another responsibility of a service manager.
Users are granted permissions, follow their consump-
tion and control their budget through this features. We
plan to integrate this component with a friendly user
interface for better visualization. We are also consid-
ering enriching the service manager with further fea-
tures such as full service cloning and snapshotting.

4 RELATED WORKS

Cloud providers APIs are unique and platform-
specific with no interoperability mechanisms between
them. An approach to tackle this issue is by pro-
viding a specific driver per API, as implemented by
Rightscale7 and Scalr8. Deltacloud9 is providing a
single entry point to developers, while maintaining a
driver per API backend.

Both approaches are interesting and widely
adopted. However, they remain dependent on the
providers proprietary APIs. They have to adapt their
drivers to meet each change on these APIs. Moreover,
they introduce an additional layer to the architecture
which might increase latency. To deal with this, we
chosen to rely on open standards. Here the API main-
tenance is handled by the cloud provider that comply
with the standards.

7http://www.rightscale.com
8http://scalr.net/
9http://deltacloud.apache.org/

Towards�a�Standards-based�Cloud�Service�Manager

129

Claudia is a service manager supporting service
management on multiple cloud providers (Moran,
2012). The structure of the service is described using
an extension of OVF (Rodero-Merino et al., 2010).
Claudia implements a driver per API approach to sup-
port different cloud providers. In addition, it also
provides an OCCI implementation. We consider that
since OCCI is designed for service management, it
fits natively better as a service descriptor than OVF.

HP IaaS Aggregator is developed by HP for the
purpose of providing common interface and descrip-
tion of IaaS services across multiple IaaS service
providers (Lee et al., 2011). It’s based on the Com-
mon Information Model(CIM)10 standard, a DMTF
model to describe entities and their attributes. The
IaaS Aggregator is a cloud management console sup-
porting resources lifecycle management. OCCI is
built from the ground up to support resources man-
agement on the cloud, while CIM is a general purpose
standard for representing resources as a set of objects
and their relationships. Furthermore, network topol-
ogy descriptions are not very well supported by CIM
(Ghijsen et al., 2012).

5 CONCLUSIONS

Currently customers who plan to migrate their ser-
vices to the cloud face the threat of being locked-
in. As interoperability and portability are traditional
drivers for standards development, we decided to refer
to cloud computing open standards as the backbone to
solve these problems.

Targeting cloud computing end-users, we built our
solution as an open-source service manager. We have
first extended the OCCI standard to support service
management. We then implemented the solution. The
result is a tool that abstracts the underlying vendors
APIs details. It helps users deploy and manage their
services seamlessly among open standards compliant
clouds. The project is in progress, further works needs
to be done in order to provide a complete solution that
covers advanced cloud service management features.
On the open standards side, specifications need to be
enriched in order to cover more cloud functionalities
and gain market acceptance.

ACKNOWLEDGEMENTS

We wish to thank Salim Jouili for his comments on
the draft.

10http://dmtf.org/standards/cim

REFERENCES

Edmonds, A., Metsch, T., and Papaspyrou, A. (2011a).
Open cloud computing interface in data management-
related setups. volume 1, pages 23–48. Springer.

Edmonds, A., Metsch, T., and Papaspyrou, A. (2011b).
Open Cloud Computing Interface in Data
Management-Related Setups, volume 1, pages
23–48. Springer.

Edmonds, A., Metsch, T., Papaspyrou, A., and Richardson,
A. (2012). Toward an open cloud standard. Internet
Computing, IEEE, 16(4):15–25.

Ghijsen, M., van der Ham, J., Grosso, P., and de Laat, C.
(2012). Towards an infrastructure description lan-
guage for modeling computing infrastructures. In
Parallel and Distributed Processing with Applications
(ISPA), 2012 IEEE 10th International Symposium on,
pages 207–214. IEEE.

Lee, B., Yan, S., Ma, D., and Zhao, G. (2011). Aggregating
iaas service. In SRII Global Conference (SRII), 2011
Annual, pages 335–338. IEEE.

Metsch, T., Edmonds, A., et al. (2010a). Open cloud com-
puting interface–infrastructure. In Standards Track,
no. GFD-R in The Open Grid Forum Document Se-
ries, Open Cloud Computing Interface (OCCI) Work-
ing Group, Muncie (IN).

Metsch, T., Edmonds, A., et al. (2010b). Open cloud
computing interface–restful http rendering. In Stan-
dards Track, no. GFD-R in The Open Grid Forum
Document Series, Open Cloud Computing Interface
(OCCI) Working Group, Muncie (IN).

Metsch, T., Edmonds, A., and Nyrén, R. (2010c). Open
cloud computing interface–core. In Open Grid Fo-
rum, OCCI-WG, Specification Document. Available
at: http://forge. gridforum. org/sf/go/doc16161.

Moran, D. (2012). Claudia Service Management Platform,
page 113. Information Science Reference.

Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin,
K., Llorente, I., Montero, R., Wolfsthal, Y., Elmroth,
E., Cáceres, J., et al. (2009). The reservoir model and
architecture for open federated cloud computing. IBM
Journal of Research and Development, 53(4):4–1.

Rodero-Merino, L., Vaquero, L., Gil, V., Galán, F., Fontán,
J., Montero, R., and Llorente, I. (2010). From in-
frastructure delivery to service management in clouds.
Future Generation Computer Systems, 26(8):1226–
1240.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

130

