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Abstract: Recent advances on providing transactional support on the cloud rely on keeping databases properly parti-
tioned in order to preserve their beloved high scalability features. However, the dynamic nature of cloud
environments often leads to either inefficient partitioning schemes or unbalanced partitions, which prevents
the resources from being utilized on an elastic fashion. This paper presents a load balancer that uses offline
artificial intelligence techniques to come out with the optimal partitioning design and replication protocol for
a cloud database providing transactional support. Performed experiments proof the feasibility of our approach
and encourage practitioners to progress on this direction by exploring online and unsupervised machine learn-
ing techniques applied to this domain.

1 INTRODUCTION

Cloud-based storage was initially aimed to overcome
the scalability limitations of transactional databases
(Gray et al., 1996) and meet the ever-growing stor-
age demands of daily software applications. To
achieve such commitment, the properties of tradi-
tional databases were relaxed until achieving what
was coined as the NoSQL paradigm (Stonebraker,
2010).

Thoroughly, novel NoSQL systems resign from
the ACID (i.e., atomicity, consistency, isolation, and
durability) features provided by classic databases
and implement what is known as BASE (i.e., basi-
cally available, soft-state, and eventually consistent)
properties (Brewer, 2012), which allow them to—
ideally—scale up to infinity (Corbett et al., 2012;
Chang et al., 2006; DeCandia et al., 2007). In order
to meet the BASE principles, these systems often rely
on (1) weak consistency models (Vogels, 2009), (2)
in-memory key-value structures (Chang et al., 2006),
and (3) super light concurrency control and replica-
tion protocols, which permit to reduce interdepen-
dences between data stored in the repository and thus
boost its scalability.

However, the overwhelming amount of critical ap-
plications that cannot resign from their transactional

nature (e.g., electronic transferences, billing systems)
has driven practitioners to provide transactional sup-
port built on top of existing cloud repositories (Curino
et al., 2011; Levandoski et al., 2011). Actually, these
systems pursue the idea of deploying classic database
replication protocols (Wiesmann and Schiper, 2005)
over a cloud storage infrastructure (Das et al., 2010)
and hence offer transactional facilities while inherit-
ing the properties of the cloud. Typically, this is ad-
dressed by building a load balancer (Curino et al.,
2010; Curino et al., 2011; Levandoski et al., 2011)
that broadcasts transactions over a fixed set of par-
titions that are statically running a given replication
protocol. Nevertheless, despite its broad adoption,
this approach is not aligned with the cloud philoso-
phy in the sense that it is not able to adapt itself to its
intrinsic elastic nature, which paradoxically leads to
underused or poorly scalable services.

The purpose of this paper is to propose a load
balancer for transactional cloud databases that re-
leases them from the aforementioned static config-
uration barriers. More specifically, this paper ex-
tends the proposal presented in (Arrieta-Salinas et al.,
2012) (which describes a cloud database with trans-
actional support) with a load balancing system tar-
geted at (1) monitoring the key performance param-
eters (e.g., throughput, transactions per second, ac-
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cess pattern) of the database, (2) inferring the optimal
partitioning scheme for the database through machine
learning techniques, and (3) proposing the most suit-
able replication protocol to be run on each partition
according to the current user demands.

The remainder of this paper is organized as fol-
lows. Section 2 stresses the need for applying a proper
partitioning schema and using the appropriate replica-
tion protocol on a transactional cloud database. Sec-
tion 3 presents the proposed system architecture. Sec-
tion 4 details the experiments performed. Finally,
Section 5 concludes the paper.

2 PARTITIONING THE CLOUD

As clarified in (Brewer, 2012), a distributed system
may implement a weak form of consistency (Vogels,
2009), a relaxed degree of availability (White, 2012),
and reasonable network partition tolerance (DeCandia
et al., 2007) while still keeping itself scalable. Actu-
ally, most of the existing cloud data repositories be-
have in this direction (DeCandia et al., 2007; White,
2012). However, those applications that demand strict
transactional support are not able to straightforwardly
fit in this idea, since they generally require strong con-
sistency to provide correct executions (Birman, 2012)
while claiming for the appealing characteristics of-
fered by the cloud, therefore refusing to relax avail-
ability constraints. In this context, tolerance to net-
work partitions must be smartly addressed to truly
benefit from the cloud features, which suggests prac-
titioners to be very cautious when defining a parti-
tioning scheme. This section (1) stresses the criti-
calness of managing data partitions, (2) describes the
proposed graph-based partitioning technique that has
been applied in the presented load balancer and (3)
suggests supervised machine learning techniques as
an effective way to address this matter.

2.1 Motivation and Related Work

Partitioning is a very effective way to achieve high
scalability while leveraging data consistency in a dis-
tributed database. Transactions that are executed
within one single data partition require no interaction
with the rest of partitions, hence reducing the com-
munication overhead (Aguilera et al., 2009; Curino et
al., 2010; Das et al., 2010). However, configuring
the partitioning scheme to minimize multi-partition
transactions while avoiding extra costs derived from
resources misusage requires a judicious criterion that
must carefully address the workload pattern to deter-
mine the optimal data partitions.

However, if we miss the perspective here and do
not replicate these partitions, the system will face the
single point of failure issue or suffer from perfor-
mance limitations due to the bottleneck effect. Con-
sequently, besides deciding the most suitable parti-
tioning strategy, it is important to study the work-
load nature that generated each partition to determine
the most appropriate replication protocol. Roughly
speaking, in an update-intensive data partition, the
ideal candidate will be an update-everywhere repli-
cation protocol (Wiesmann and Schiper, 2005); oth-
erwise, the candidate will probably be a primary copy
replication protocol (Daudjee and Salem, 2006).

Overall, there is a strong connection between the
amount of partitions, the database workload, and
the replication protocol running on each partition.
The following subsection discusses a graph-based ap-
proach used to infer these three features.

2.2 Graph-based Partitioning

We propose a structure based on undirected graphs,
which can be used for determining the best partition-
ing scheme. This proposal will be explained by means
of the example depicted in Figure 1, which defines a
database consisting of two tablesPERSON andDEGREE
and a sample workload of four transactions.

This workload will drive the construction of the
undirected graph structure shown in Figure 1. More
specifically, each tuple ofPERSON andDEGREE is rep-
resented by a node, whereas each edge between two
nodes reflects that they are accessed within the same
transaction. The weights of edges are increased ac-
cording to the number of transactions accessing the
connecting nodes. In addition, there is a counter asso-
ciated to each node representing the number of trans-
actions that access it.

The first statement of transaction 1 accesses the
second tuple ofPERSON and the first tuple ofDEGREE.
Hence, in Figure 1 we draw two nodes identified by
theID field of each tuple (i.e., node 2 and node 4) and
plot an edge between them with an initial weight of
one. In addition, we set to one the counters of nodes 2
and 4 to reflect the number of times they have been ac-
cessed. The next operation of transaction 1 modifies
node 1, thus we connect it with the previous nodes (2
and 4) using edges of weight one and set the weight
of node 1 to one. Finally, the last operation of trans-
action 1 is aSELECT that accesses node 3. We have
to connect node 3 with nodes 1, 2 and 4 with edges
of weight one and increase the counter of node 3 in
one unit. Likewise, we proceed in the same way with
the rest of transactions. For the sake of clarity, in Fig-
ure 1 we have surrounded the nodes accessed by each
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Figure 1: Example of a graph representation and its Distribution Data Table.

transaction with different dotted line formats.
Once all transactions have been executed and the

graph has been built, data must be partitioned so
that the nodes are distributed according to their re-
lationships within transactions. Thus, we are pur-
suing a twofold goal: minimizing the number of
multi-partition transactions (which implies cutting the
edge with the minimum weight) while minimizing the
size of each group of nodes, which leads to a NP-
Complete problem. However, there exist algorithms
that permit to circumvent this in an efficient way like
MeTis and its variant hMeTis (Karypis and Kumar,
1998; Karypis, 2011).

In the previous example, the best cut will consist
in two partitions: one partition would include nodes
1 to 4, and the other one nodes 5 and 6. This solu-
tion represents a cut of three edges, all of them with a
weight of one. If we take a look at the executed trans-
actions we can see that most of them accessPERSON;
thus, it makes sense to place these nodes together to
minimize multi-partition transactions.

Once the partitioning scheme has been deter-
mined, the system will use the information provided
by the aforementioned graph to properly forward
client requests to their corresponding partition. With
the aim of speeding up this task, we have developed
a Distribution Data Table (DDT) which behaves like
the structure presented in (Tatarowicz et al., 2012). A
sample of the DDT is included in Figure 1. This struc-
ture, organized as a lookup table, contains a series of
record intervals of each database table and the parti-

tion number where each interval is stored. The DDT,
which is fully stored in main memory, is scanned
when a client request arrives. Moreover, it can be par-
tially cached in the client side to avoid continuously
requesting the same information.

The approach herein presented analyzes the whole
workload prior performing any kind of partition rely-
ing on the fact that transactions will tend to have the
same access pattern. In order to cope with those sit-
uations where this assumption is too ambitious, the
following subsection presents a prospective view on
this area and discusses some strategies based on ma-
chine learning techniques.

2.3 Smart Partitioning on the Cloud

Data mining techniques can be divided into two kinds
of families based on the desired outcome of the algo-
rithm: (1) those that assume ana priori underlying
structure and thus require the use of existing informa-
tion to obtain its knowledge (referred to as supervised
learning) and (2) those that do not assume any under-
lying structure (referred to as unsupervised learning).

Moreover, the two aforementioned families can
be further classified into (1) offline and (2) online
methods. Offline algorithms require all data to be
analyzed in order to build a comprehensive system
model. For instance, in (Curino et al., 2010) a C4.5
decision tree (Quinlan, 1993) is used to build an un-
derstandable model of the tuple dependencies existing
on a database partition. On the other hand, online ap-
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proaches build a dynamic system model that attempts
to adapt itself to the environment specificities. For ex-
ample, in (Hulten et al., 2001), an online decision tree
has been designed to predict the class distribution on
a time-changing environment.

Formally speaking, the technique presented in the
previous subsection uses an offline approach to estab-
lish the best partitioning and replication schema. In
fact, the whole workload schema is previously ana-
lyzed in order to build the aforesaid graphs and par-
titions. Although this ensures reaching an optimal
solution, its application on some real environments
is doubtful in the sense that transactions are rarely
known in advance. This issue becomes even more rel-
evant in cloud environments, where loads drastically
change according to the elastic user demands.

Offline techniques can be exported to online envi-
ronments if the variations of the system behavior are
unusual. In such situations, a windowing technique
can be used to continuously train the system and thus
get nearly-online results. However, cloud databases
cannot fully benefit from this approach since the char-
acteristics of the workload can vary sharply, Hence,
we propose to explore online machine learning tech-
niques in order to come out with the best possible par-
titioning layout and replication protocol at any time.

3 SYSTEM MODEL

The experiments presented in this paper have been
conducted over an extended version of the architec-
ture proposed in (Arrieta-Salinas et al., 2012), which

is an alternative approach to (Das et al., 2010; Levan-
doski et al., 2011; Curino et al., 2011) to provide
transactional support on the cloud. As in other cloud
systems, the core of our architecture (as shown in Fig-
ure 2) is a metadata manager that forwards all trans-
actions executed by client applications and manages
the replicas accordingly (Arrieta-Salinas et al., 2012).
Taking into account (1) the importance of choosing
a proper partitioning schema, (2) the significance of
selecting a suitable replication protocol in each par-
tition, and (3) the unavoidable existence of multi-
partition transactions in cloud environments, already
stressed in Section 2, this work extends the metadata
manager (Cheetah) presented in (Arrieta-Salinas et
al., 2012) and adds a new module coined as Dolphin
with the following entities.

TheWorkload Analyzerexamines each transaction
to identify the accessed tuples by parsing each state-
ment of a transaction through theWHERE clause, and
generates a log file. ThePartition Manageruses this
log to build the graph that determines the relationships
of tuples vs. transactions and creates the respective
partitions as explained in Section 2.2. The Partition
Manager is also in charge of periodically evaluating
the system load information provided by the Statis-
tics module to define the number of partitions and
the amount of replicas per partition. Apart from this,
the Partition Manager chooses the replication proto-
col for each data partition depending on the predom-
inant type of operations (reads or updates) as pointed
out in Section 2.1 and selects the number of hierarchy
levels by inspecting the timeliness characteristics of
queries and the total number of replicas. TheMigra-
tion Managerdistributes partitions across replicas by
pointing out their position in the hierarchy level and,
if a replica is at the core, which replication protocol
must be run. Finally, theStatistics Modulecollects all
kind of system information to study the performance
in terms of scalability, handled TPS, number of repli-
cas per partition, monetary costs, etc.

4 EXPERIMENTAL EVALUATION

We have built a prototype (using Java 1.6) that cov-
ers the basic functionality of all system components.
We have also developed an implementation of a JDBC
driver that has allowed us to run a popular set of
benchmarks namedOLTPBenchmark(Curino et al.,
2012), in order to assess the performance of the
developed prototype. In particular, we have used
the OLTPBenchmark implementation of the Yahoo!
Cloud Serving Benchmark (YCSB) (Cooper et al.,
2010), which defines a single table of records com-

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

276



(a) Workload A. (b) Workload B.

Figure 3: Maximum throughput depending on the scan workload.

posed by a primary key and ten text fields. In the
experiments performed, this table has been filled with
500000 records for a total size of 500MB.

Our testing configuration consists of six comput-
ers in a 100 Mbps switched LAN, where each ma-
chine is equipped with an Intel Core 2 Duo processor
at 2.13 GHz, 2 GB of RAM and a 250 GB hard disk.
All machines run the Linux distribution OpenSuse
v11.2 (kernel version 2.6.22.31.8-01),with a Java Vir-
tual Machine 1.6.0 executing the application code. An
additional computer with the same configuration as
that of the replicas is used for running both clients
and the metadata manager. For the sake of simplicity,
instead of developing a distributed implementation of
the metadata manager to provide fault tolerance and
scalability, we have developed a centralized compo-
nent. All the data stored at the metadata manager is
kept in main memory. Moreover, each machine used
as a replica holds a local PostgreSQL 8.4.7 database,
whose configuration options have been tuned so that it
behaves as an in-memory only database (i.e., it acts as
a cache, without storing the database on disk). Spread
4.0.0 (Stanton, 2005) has been used as Group Com-
munication System, whereas point-to-point commu-
nications have been implemented using TCP.

In the experiments, we have tested two graph-
based heuristic algorithms to determine the parti-
tioning schema, MeTis and hMeTis (Karypis, 2011;
Karypis and Kumar, 1998). Both techniques try to
find the optimal solution focusing on finding parti-
tions by cutting as few edges as possible. The dif-
ference between them is that hMeTis is an optimiza-
tion of MeTis that uses hypergraphs and performs
more iterations in less time. Moreover, we have com-
pared these two heuristic algorithms with two other
approaches: Blocks and Round Robin. The former
tries to split the database into uniform blocks accord-
ing to the available capacity of the nodes, whereas
the latter splits each consecutive record in a differ-
ent partition across all nodes, so that there are no
two consecutive rows in the same partition. For all
the partitioning algorithms, we have performed an of-
fline execution to determine the partitioning schema

and the replication protocols to be run on the core
layer of each partition. Besides, the algorithm reports
the number of replicas per partition and their location
along the replication hierarchy tree.

Due to the early stage of the development, we have
been able to run only read-only transactions. From the
set of transactions defined in the YCSB, we have cho-
senscantransactions, which read the set of records
whose keys belong to a given interval. As we are
only dealing with read-only transactions, all partition-
ing schemes define a primary copy replication proto-
col. The experiments have been performed using two
workload types: i)workload A, which performs a scan
over at most 10 records following a Zipfian distribu-
tion and ii) workload B, which is the same as work-
load A but scans at most 100 records.

The first parameter we have measured is the num-
ber of multi-partition transactions, which should be
kept as low as possible in order to optimize system
performance. We have obtained the following amount
of multi-partition transactions forworkload A: 1 with
Blocks, 112 with MeTis, 1451 with hMeTis, and 7271
with Round Robin. Forworkload Bwe have obtained
the following amount of multi-partition transactions:
1 with Blocks, 3360 with MeTis, 2182 with hMeTis,
and 20339 with Round Robin. It is straightforward
that the round robin algorithm shows the worst be-
havior due to the nature of the transactions performed,
as we must travel across several partition to perform
a scan. There is not such a big difference between
MeTis and hMeTis; however, we can see that with
workload B the hMeTis technique gives a better per-
formance. Nonetheless, the Blocks approach outper-
forms them all, since with this configuration the prob-
ability of a scan accessing two partitions is rare.

Furthermore, we have analyzed the system
throughput and added an ideal case and a centralized
solution. Figure 3 shows that the performance is more
or less the same for all the algorithms but the Round
Robin. We have also noticed the fast degradation of
system throughput (it does not reach 100 TPS even in
the centralized case), due to the bottleneck caused by
having a centralized metadata manager. A possible
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solution would be to implement a distributed meta-
data manager using a a Paxos-like protocol (Lam-
port, 1998). Apart from this, holding the complete
structure that represents the object interdependencies
that determine the best partitioning policy is very ex-
pensive in terms of memory usage; thus, the main
memory at the metadata manager becomes easily sat-
urated. This problem could be alleviated by applying
aging or windowing strategies to prune such structure.

5 CONCLUSIONS

This paper presents a load balancer that uses artifi-
cial intelligence techniques to obtain the optimal par-
titioning design for a cloud database with transac-
tional support. The experiments performed have em-
pirically verified that data partitioning can be seen as
a multi-objective optimization problem, since it is tar-
geted to come out with the maximum number of par-
titions with the minimum number of multi-partition
transactions. Furthermore, the proposed architecture
allows to heuristically define the most suitable repli-
cation protocol running on each partition according to
the system workload.

In addition, we have explored the feasibility of
further improving the obtained results by means of
online data mining techniques, which would allow the
system to automatically discover new workload pat-
terns and therefore optimize the partitioning schema
according to dynamic user demands.
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