
Improve Resource-sharing through Functionality-preserving
Merge of Cloud Application Topologies

Tobias Binz, Uwe Breitenbücher, Oliver Kopp, Frank Leymann and Andreas Weiß
Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany

Keywords: Application Topology, Merge, Resource Sharing, Multi-tenancy, Cloud Computing, TOSCA.

Abstract: Resource sharing is an important aspect how cost savings in cloud computing are realized. This is especially
important in multi-tenancy settings, where different tenants share the same resource. This paper presents an
approach to merge two application topologies into one, while on the one hand preserving the functionality
of both applications and on the other hand enabling sharing of similar components. Previous work has not
addressed this due to the lack of ways to describe topologies of composite applications in a decomposed,
formal, and machine-readable way. New standardization initiatives, such as TOSCA, provide a way to describe
application topologies, which are also portable and manageable. We propose an approach, realization, and
architecture enabling a functionality-preserving merge of application topologies. To validate our approach we
prototypically implemented and applied it to merge a set of test cases. All in all, the functional-preserving
merge is a method to support the optimization and migration of existing applications to the cloud, because it
increases resource sharing in the processed application topologies.

1 INTRODUCTION

Resource sharing is, besides automation and economy
of scale, the key to realize the significant cost saving
promised and realized by cloud computing. Today,
resource sharing is mostly discussed in terms of multi-
tenancy, which is the fact that tenants, i. e. organiza-
tions or users, share one or a common set of resources
(Chong and Carraro, 2006). The concept of resource
sharing itself has been around for decades, as well
as its problems, such as security, performance, avail-
ability, and administrative isolation (Guo et al., 2007).
Increasing the utilization through resource sharing is,
however, often still not applied in enterprise IT. This
is reflected by the fact that in today’s non-cloud data
centers servers usually have a very low utilization1.

The applications running on this underutilized data
centers are no monolithic blocks. Usually, enterprise
applications require middleware (including applica-
tion servers, database management systems, and mes-
sage queuing) installed on an operating system, which
in turn requires computing, storage, networking, and
other infrastructure. Working together, these compo-
nents provide the business functionality implemented
by the application. An application topology is a graph

1For example, according to (Andrzejak et al., 2002) the
80% percentile is typically utilized in the 15 to 35% range.

containing all these components as separate nodes and
their relations as edges. Recent advances in the formal-
ization and management of complex IT systems, for
example, the Topology and Orchestration Specifica-
tion for Cloud Applications (OASIS, 2012) (TOSCA)
currently standardized at OASIS, are based on a fine-
grained topology of the cloud application to enable
their automated deployment and management. This
formal description of the application’s configuration,
structure, architecture, and dependencies enables auto-
mated processing of these application topologies and
is the technical foundation of our approach.

Based on this decomposition of the application,
this paper presents an approach to merge two previ-
ously separated application topologies into one inte-
grated application topology, while preserving the func-
tionality of the applications. For example, consider
two application topologies, each including a Web ser-
vice, which runs on its own Apache Tomcat on a sep-
arate virtual machine. Our approach shows how to
evaluate and, if possible, merge these two topologies
into one application topology. In this example the re-
sult would be one Tomcat hosting both Web services
and therefore only requires one virtual machine. There-
fore, our approach is a method to increase resource
sharing and support the migration of existing applica-
tions to the cloud.

96 Binz T., Breitenbücher U., Kopp O., Leymann F. and Weiß A..
Improve Resource-sharing through Functionality-preserving Merge of Cloud Application Topologies.
DOI: 10.5220/0004378000960103
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 96-103
ISBN: 978-989-8565-52-5
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

3

Company Website
(WAR)

ServletContainer
(Apache Tomcat)

(HostedOn)

Virtual Machine
(VMware VM)

(HostedOn)

OperatingSystem
(Linux)

(HostedOn) Merge

Product Website
(WAR)

ServletContainer
(Apache Tomcat)

(HostedOn)

Virtual Machine
(VMware VM)

(HostedOn)

OperatingSystem
(Linux)

(HostedOn)

Application 1 Application 2

Support Workflow
(BPEL)

ProcessEngine
(Apache ODE)

(HostedOn)

Virtual Machine
(VMware VM)

(HostedOn)

OperatingSystem
(Linux)

(HostedOn)

Application 3

Company Website
(WAR)

ServletContainer
(Apache Tomcat)

(HostedOn)

Virtual Machine
(Amazon EC2 VM)

(HostedOn)

OperatingSystem
(Linux)

(HostedOn)

Product Website
(WAR)

ServletContainer
(Apache Tomcat)

(HostedOn)

(HostedOn)

Merged Application

Support Workflow
(BPEL)

ProcessEngine
(Apache ODE)

(HostedOn)

Virtual Machine
(Amazon EC2 VM)

(HostedOn)

OperatingSystem
(Linux)

(HostedOn)

Application 3 1

2

4

Credentials Credentials
5

C2

C
o

rr
es

p
o

n
d

en
ce

s

x C3

C1

Figure 1: Motivating Scenario – Migrating the three applications on the left into the cloud on the right.

This leads us to the contributions of this paper,
which are threefold: (i) We propose an approach to
merge two separated application topologies into one,
while preserving their functionality and sharing as
much of the components as possible. This approach,
which is independent of a particular topology language,
describes a method following the five steps: identifica-
tion, matching, manual evaluation, merging, and final
evaluation & deployment. A cloud migration scenario
is used to extract the requirements towards a suitable
approach. (ii) Based on this, we present a realization
called TOSCAmerge which applies our approach to
TOSCA-based application topologies. (iii) Finally, we
present the architecture of TOSCAmerge, an exten-
sible framework to enable reuse of the functionality-
preserving topology merge operation.

The remainder of this paper is structured as follows:
First, Section 2 presents the migration of enterprise
applications as motivating scenario for our approach.
The proposed method to address this scenario is de-
scribed in detail in Section 3. Based on this, Section 4
shows our prototypical realization of the approach us-
ing TOSCA-based application topologies. Section 5
discusses the proposed approach and realization. Sec-
tion 6 presents related work. We conclude the paper
and give an outlook on future work in Section 7.

2 MOTIVATING SCENARIO

This section discusses the motivating scenario for our
approach, the migration of enterprise applications to
the cloud, which is used throughout the paper to illus-
trate our approach. In our scenario, a company has
three applications, shown as topologies on the left of
Figure 1. Application 1 implements the Web site of the
company as Java Web application which is packaged
as WAR-file. The application is hosted on an Apache
Tomcat servlet container which is hosted on a Linux

operating system. The operating system runs on a vir-
tual machine provided by a local VMware deployment.
The same stack is used by the company to implement
their advertising Web site for their main product. The
third application has the same infrastructure stack but
implements the support workflow of the company as
BPEL process which is hosted on an Apache ODE
workflow engine.

To reduce cost, the company decides to migrate
these customer-facing applications to the cloud, in this
case to Amazon EC2. However, running the same sup-
porting infrastructure three times is not efficient. To
further reduce cost, the company looks for a solution
to automatically merge application topologies. In addi-
tion, an important goal is to preserve the functionality
provided by the applications. This is where the ap-
proach proposed in this paper is aimed to. The merged
application topology on the right hand side of Figure 1
is the result of the presented approach. The detailed
process from left to right is explained in the following
sections.

3 APPROACH

In this section we present our semi-automated ap-
proach for merging application topologies. First, we
present an analysis of the requirements in Section 3.1.
Based on this, we discuss our method in detail in Sec-
tion 3.2.

3.1 Requirements

Based on the motivating scenario, introduced in Sec-
tion 2, and a literature study we identified the follow-
ing requirements for a solution merging application
topologies:
Functionality Preservation and Correctness. The func-
tionality of the applications which have been merged

Improve�Resource-sharing�through�Functionality-preserving�Merge�of�Cloud�Application�Topologies

97

must not be altered. However, the non-functional prop-
erties may be different due to changes in the supporting
infrastructure. The result, i. e. the merged application
topology, must be syntactically and semantically cor-
rect. To facilitate this, we demand the input application
topologies also to be syntactical and semantically cor-
rect. In particular, they have to include all the compo-
nents, configurations, and relations required to operate
the merged application properly.
Open World Assumption. A viable solution for merg-
ing application topologies must not assume that there
is only a limited and well known set of semantics rep-
resented by the nodes and edges in the application
topology. The evolution of cloud offerings, software
systems, and hardware are changing too fast to restrict
the approach upfront to a certain set of types, i. e. a
closed world. Thus, the approach must be able to deal
with various kinds of nodes and relationships.
Algorithm. The implementation must produce deter-
ministic results, terminate for any valid input, and
have a reasonable computational complexity to allow
its application also to large application topologies.

3.2 Topology Merge Method

For functionality-preserving merging of application
topologies we propose a method which defines five se-
quential steps, presented in the following subsections:
(i) Identify Applications to be Merged, (ii) Matching,
(iii) Manual Evaluation, (iv) Merging, and (v) Final
Evaluation & Deployment.

Some details of the method depend on the lan-
guage used to describe application topologies, which
is explicitly noted in the respective step of the
method. In Section 4, our prototypical implementation
TOSCAmerge proposes a concrete realization of this
method based on TOSCA.

3.2.1 Identify Applications to be Merged

The first step of our approach is identifying the ap-
plications to be merged. Good candidates to realize
savings through increased resource sharing are large
application topologies with common components in
the supporting infrastructure. However, the details of
the actual identification is out of scope of this paper.

Motivating Scenario. The company may decide that
only application 1 and application 2 shall be merged
and moved to the cloud, because the availability of the
two Web sites is lower prioritized than the availability
of their support workflow. This decision is represented
by (1) in Figure 1.

3.2.2 Matching

After the applications to be merged are identified, step
two identifies possibilities to merge nodes and edges of
the application topologies. In the following, we regard
a pair of two application topologies T1 and T2. The
result of this matching step is a set of correspondences.
Correspondences are binary, undirected overlay edges
between two nodes or two edges of the application
topologies. One node may have multiple correspon-
dences to different other nodes, this is resolved during
merging (see step four).

Matching Nodes. During matching, each pair of
nodes (n;m) with n;m 2 T1 [T2 is evaluated if the
nodes correspond with each other and, therefore, could
be merged. We write n�m if a correspondence exits
between n and m. The existence of a correspondence
is evaluated by three checks, which must be all passed
to establish a correspondence:
(i) If the types of the nodes are the same, a merge might
be possible. How types are defined and which rules
for their comparison have to be applied depends on
the language used to describe application topologies.
Only nodes of the supporting infrastructure, such as
hardware, operating systems, and middleware, should
be matched. The actual business logic is provided by
the nodes representing the application, such as the Java
WAR file in Figure 3, which are excluded. This is done
because the application logic cannot be merged in a
generic way. In contrast, the supporting infrastructure
can be merged in a generic way, because it mainly
consists out of standardized components configured to
operate the application logic. The configuration of the
supporting infrastructure must also be considered as
some kind of application logic, crucial to operate the
application as intended, as presented in the next steps.
(ii) Thereafter, the functional properties of the nodes
are checked. For instance, the configuration of a node
is a functional property. Functional properties are spe-
cific for the respective node type and therefore must
be handled by type-specific logic. For example, it
is not possible to determine in a generic way if the
values 32 and 64 for the property CPU architecture
are compatible. Some software products may offer
versions for both, 32-bit and 64-bit systems, some
not. Therefore, our approach uses plugins to integrate
the type-specific logic which checks if two nodes (or
edges) can be merged or not.
(iii) Nodes may also have non-functional properties
(NFP), for instance, the availability of a node. Simi-
lar to functional properties, non-functional properties
have to be processed by type-specific logic. If the
topology language has an inheritance, sub-graph, or
grouping mechanism, the NFPs of all parents also must

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

98

be considered. In this case, the accumulated NFPs of
all parent constructs must also be compatible, e. g. if
there is a NFP on the whole topology.

Matching Edges. Edges are matched similar to nodes
to generate correspondences. However, only edges
connected to at least one node with a correspondence
are processed. Evaluating if a correspondence between
two edges exists requires that the type-specific logic
implementing the semantics of the edge is provided as
plugin, similar to the type-specific plugins for nodes.
In particular, edges may prevent certain node corre-
spondences. For example, two corresponding nodes
may be connected by an anti-colocation edge. This
means that two nodes must reside on different physi-
cal infrastructure to increase availability. As a conse-
quence, the nodes must not be merged.

Motivating Scenario. After the company decided to
merge the applications providing the Web sites, the
matching step automatically generates the correspon-
dences between these two applications. The result is,
that the virtual machines, the operating systems, and
the two servlet containers are candidates to be merged.
This is denoted by (2) in Figure 1.

3.2.3 Manual Evaluation

The result of the matching step is a set of correspon-
dences between two nodes or two edges. However,
we do not think that all decisions can be made by the
implementation or its plugins. Therefore, this step
allows an architect to evaluate the correspondences
with respect to the application and enterprise archi-
tecture, as well as the responsible software developer
with respect to the internals and hidden assumptions of
the applications. This allows incorporating available
knowledge of these experts with minimal time invest-
ment, because an initial identification and subsequent
merging is done by the implementation automatically.
The result of this step is a set of correspondences stat-
ing which nodes and edges should be merged.

Motivating Scenario. In our scenario the architect
decides to run the two web applications on different
Web servers, therefore, he removes the respective cor-
respondence. The removal of this correspondence is
denoted by (3) and the red X in Figure 1.

3.2.4 Merging

This step processes the correspondences found during
matching, which may have been manually adapted by
the previous manual evaluation step. Merging of nodes
and edges is done in three steps:
(i) Merging the two nodes/edges connected through a

a b c

m n o

Full mapping

Partial mapping

Correspondences

Correspondences

Figure 2: Two example sets of possible Correspondences
between three nodes.

correspondence by calling the respective type-specific
logic to merge the functional and non-functional defi-
nitions of the node. Similar to the matching step, the
type-specific logic must be provided by a plugin.
(ii) If applicable, reconnect the edges connected to one
of the merged nodes. The correspondences are also re-
connected accordingly; except that the correspondence
whose two nodes/edges have been merged is removed.
(iii) Finally, the two old nodes/edges, which are at this
point neither part of an edge nor of a correspondence,
are removed from the topology.
If a node has multiple correspondences, as depicted
in the two topologies in Figure 2, additional consid-
erations are required: Figure 2 shows at the top a set
of three nodes forming a full mapping, i. e. each node
has an correspondence with each other node. In this
case, all nodes of this set can be merged into one sin-
gle node, because each node has been matched with
each other node. If there is only some kind of partial
mapping for a set of three nodes, as exemplary shown
at the bottom of Figure 2, only a part of the nodes can
be merged. This is because nodes m and o are, for
some type-specific reason found during matching, not
capable of being merged, therefore, we infer that o
also cannot be merged with a merged node m+n and
vice versa m cannot be merged with a merged node
n+o. In this example it is only possible to merge two
of the nodes. The generic rule is defined as follows:
Let M be the set of nodes which has been merged into
node m, if any, and N be the set of nodes merged into
node n. Then, nodes m and n can be merged if and
only if 8x 2 N 8y 2 M : x � y. This is the same for
edges and other grouping concepts supported by the
respective topology language.

Motivating Scenario. After the correspondences
were evaluated, the applications get merged as de-
picted by (4) in Figure 1. The result is that both oper-
ating systems are merged into one now, as well as both
virtual machines. This decreases cost as, for example,
only one virtual machine and operating system license
must be paid for hosting both Web sites.

Improve�Resource-sharing�through�Functionality-preserving�Merge�of�Cloud�Application�Topologies

99

3.2.5 Final Evaluation & Deployment

Our approach works on the model level which implies
that the merge is not done on the running application.
Hence, the merged application topology can be evalu-
ated and adjusted by responsible architects and devel-
opers, which already evaluated the correspondences in
step three. For instance, this can be done by deploying
the merged topology into a test environment. If the
merged application has been evaluated and passed the
tests, it can be rolled out.

Motivating Scenario. After merging both applica-
tions additional information for the deployment have
to be added. In our motivating scenario in Figure 1, (5)
denotes that the Amazon credentials are provided and,
afterwards, the application is automatically deployed.

4 TOSCA MERGE
IMPLEMENTATION

In this section we present our Java-based implementa-
tion “TOSCAmerge” to realize the approach presented
in Section 3. The prototype uses TOSCA to describe
application topologies. After an introduction into the
relevant concepts of TOSCA, we present concrete real-
izations for the aspects of the approach depending on
the language used to describe application topologies.

4.1 TOSCA

TOSCA, the Topology and Orchestration Specification
for Cloud Applications (OASIS, 2012), is a specifi-
cation currently standardized at OASIS, which can
be used to describe application topologies. We call
them TOSCA-based application topologies. We use
TOSCA to define application topologies in our proto-
typical implementation2. A TOSCA-based application
topology is defined by Node Templates, which repre-
sent the components of an application such as a virtual
machine or Java application, and binary Relationship
Templates, which define relations between the compo-
nents represented by Node Templates, e. g. a Apache
Tomcat Node Template may be hosted on an Operating
System Node Template. These templates are generic
and typed by reusable Node Types and Relationship
Types, respectively. Types define the semantics of
templates, for example, there might be a Node Type
Apache Tomcat created by the Tomcat developer com-
munity, which is then used in different application
topologies to type Node Templates. Figure 3 presents

2The implementation uses the specification and XML
schema of TOSCA v1.0 working draft 05 (OASIS, 2012)

Online Shop
(WAR)

ServletContainer
(Apache Tomcat)

(HostedOn)

Virtual Machine
(Amazon EC2 VM)

(HostedOn)

OperatingSystem
(Windows 7)

(HostedOn)

Product Database
(MySQL RDBMS)

(Calls)

(HostedOn)

Figure 3: Example TOSCA application topology, visualized
with Vino4TOSCA (Breitenbücher et al., 2012).

an example TOSCA-based application topology. The
rounded rectangles denote Node Templates and the
arrows Relationship Templates. The type of each tem-
plate is rendered in parentheses.

TOSCA does not have a predefined set of types,
but enables individual definition of types. Through
derivation, types can refine other types, for example,
the Node Type Apache Tomcat may be a refinement
of the Node Type Servlet Container. Besides other
information, which is not relevant for describing our
approach, types in TOSCA define the properties of
their templates, for example, a virtual machine may
have the property IP-address and a hardware specifi-
cation. TOSCA provides a recursive grouping mecha-
nism for subgraphs of an application topology and is,
for example, able to define policies on all the contained
nodes, relationships, and groups. Describing applica-
tion topologies is only one aspect of TOSCA. Based on
the topology of the cloud application, TOSCA’s goal
is to provide portability of the application’s manage-
ment and operation, as well as increasing automation
(Binz et al., 2012a). Due to the portability offered
by TOSCA, the application may even run on different
TOSCA-compliant runtimes in different environments,
which supports our migration scenario.

4.2 Type-specific Logic

One requirement towards our approach (c.f. 3.1) is that
the number of types and their semantics must not be
restricted. We opted for a plugin-based architecture
to support arbitrary types: In case a type should be
supported, a respective plugin has to be written.

The type system of TOSCA is capable of single
inheritance of Node Types and Relationship Types
through stating, for example, that type Apache Tomcat
is derived from type Servlet Container. To use this ca-

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

100

pability, plugins must be able to match and merge two
nodes or relationships of different types, for example
Apache Tomcat and Servlet Container. This is ad-
dressed by associating plugins in TOSCAmerge with
two type ids (namespace + id). If the type ids are differ-
ent the plugin states to be able to evaluate matches and,
if applicable, merge a node of type Apache Tomcat
with a node of type Servlet Container.

In Section 3.2 we explained that nodes and relation-
ships are processed pairwise. If no plugin is available
for a pair of type ids, then neither a match nor a merge
of the respective nodes and relationships is possible.
In other words, to establish a correspondence the re-
spective plugin must be available to take the decisions
requiring type-specific logic.

4.3 Handling of Group Templates

Group Templates are a TOSCA-specific grouping
mechanism for subgraphs of TOSCA-based applica-
tion topologies. They may contain nodes, relationships,
and, recursively, other groups. A node or relation-
ship contained in one Group Template, or recursively
in multiple groups, must evaluate the policies (non-
functional requirements) of all the groups it is con-
tained in. This is done by calculating the accumulated
policy, which summarizes the policies of the node or
relationship and all of the groups it is contained in.
The accumulated policy is processed with the same
type-specific plugins that are used during matching,
i. e. the number of constraints possibly preventing the
creation of a correspondence possibly increases.

4.4 Handling Application Logic

Nodes representing application logic are not matched
or merged, as discussed in Section 3.2. Due to the open
world assumption discussed in Section 3.1, the imple-
mentation cannot know if a particular node represents
application logic or not. Therefore, the implementa-
tion maintains a list of type ids to be excluded from
matching and merging. New Node Types representing
application logic must be added by the users of the
implementation.

4.5 Architecture & Design

The architecture of TOSCAmerge is structured into
four layers, as depicted in Figure 4: (i) The user-facing
API, offering the merge operation to external clients
through the Merge Service Interface to enable the in-
tegration into other tools. The Manual Evaluation
Interface returns the identified correspondences after
the matching step for manual evaluation and applies

Plugins

Core

API

Plugin
Framework

Merge Service Interface
Manual Evaluation

Interface

Relationship
Match & Merge

Node Match & Merge

Merge Service
Implementation

TOSCA Parser

Tomcat Matcher Tomcat Matcher Merge Plugins
Tomcat Matcher Tomcat Matcher Match Plugins

Figure 4: Architecture of TOSCAmerge framework.

the changes to the correspondences. (ii) The core im-
plements the logic for functionality-preserving merge
described in the approach, presented in Section 3. It
also includes the components to read, write, and parse
the involved input and result TOSCA-based applica-
tion topologies. (iii) The plugin framework selects,
manages, and invokes the type-specific logic, as re-
quested by the core. (iv) The plugin layer represents
the actual match and merge plugins which implement
the type-specific logic. This ensures the logic for new
types can be easily added to the TOSCAmerge frame-
work and ensures extensibility.

5 DISCUSSION

In this section we discuss our generic approach and its
realization based on TOSCA.

The proposed approach ensures that only valid
merges of two nodes or two edges are executed. This
comes with the precondition that the type-specific plu-
gins used for merging and matching are correct. The
application logic is preserved because the nodes repre-
senting business logic are ignored by the matching step
and thus are never merged. Our approach focuses on
the supporting infrastructure containing mainly stan-
dardized components to operate the application. Stan-
dardized does not mean that components cannot be
tailored to customer’s needs (Mietzner et al., 2010).

Correctness and functionality preservation can only
be facilitated if the topology models include all the
components, properties, and relations required to oper-
ate the application. Due to the fact that our approach
processes the application topology only and not the
executables or other information sources, lack of infor-
mation in the application topology leads to incorrect
and unpredictable results.

In addition, application topologies have to be de-
composed into components. For example, modeling

Improve�Resource-sharing�through�Functionality-preserving�Merge�of�Cloud�Application�Topologies

101

the operating system, middleware components, and the
application as one single node represents a topology
which cannot be processed by our approach. This fine-
granular modeling is also a best practice to facilitate
automated management using TOSCA. This results in
application topologies with similar granularity, which
is important to be able to process nodes and edges
pairwise.

Our approach is able to merge two input appli-
cation topologies into one result application topol-
ogy. However, if more than two application topologies
should be merged, the result of the first merge must
be merged with a third application topology and so
on. This is called binary approach by (Leser and Nau-
mann, 2006) and comes with the challenge in which
order to merge the application topologies. This is out
of scope of this paper.

For the usage in enterprise IT projects, our ap-
proach increases automation in IT management by
reducing the effort of the respective domain experts
to a minimum. The responsible domain experts of
the infrastructure and middleware components put
their knowledge into the plugins, processing nodes
and edges of the respective types. This enables reuse
of domain knowledge, even shared between different
enterprises, and therefore improves the return on in-
vestment for the effort spent to define and optimize
the type-specific plugins. On the other hand, the effort
of the architects and developers is reduced by remov-
ing the time-consuming task of identifying (matching
step) and performing the merge manually. Instead,
architects and developers only review and verify the
correspondences identified automatically by our ap-
proach before they are processed. This is in line with
the TOSCA philosophy of domain experts defining
and implementing Node Types and Relationship Types
which are composed to model applications (Binz et al.,
2012a).

For validation, we tested our approach with more
than 20 pairs of different test scenarios, covering the
most important concepts provided by TOSCA-based
application topologies. The TOSCA-based realization
is implemented as greedy algorithm, i. e. it generates
correct results, which are, however, not necessarily
the global optimum. The computational complexity
of the overall implementation is, also due to the
implementation as greedy algorithm, quadratic with
respect to the number of nodes. The algorithms and a
detailed discussion of their computational complexity
can be found in (Weiß, 2012).

6 RELATED WORK

This section reviews approaches for merging in other
areas, like schemas, processes, and graphs in general,
as well as languages to describe application topologies.

For business processes there is a large number of
approaches to merge them. An algorithm to merge two
Event-Driven Process Chains (EPC) into one, while
preserving the behavior of the input processes, is pre-
sented in (Gottschalk et al., 2008). This is done by
transforming the EPCs into Function Graphs, describ-
ing the sequence of functions, merge these graphs,
and transform them into EPCs again. A similar ap-
proach is presented in (La Rosa et al., 2010), where
EPCs are transformed into an Annotated Business Pro-
cess Graph, which is also able to depict connectors
and events. An approach to compose a business pro-
cess from process fragments—non-complete process
knowledge—is discussed in (Eberle et al., 2010). The
authors define a number of basic operations to facili-
tate the knitting of fragments.

A high-level methodology to merge graphs is pre-
sented in (La Rosa et al., 2010), which first calculates
a mapping between the two graphs, then merges the
mapped entities, and finally foresees an optional post-
processing. Our method (Section 3.2) is structured
similarly. There are a number of other approaches
following this high-level methodology and using cor-
respondences to describe the result of their mapping
step. A generic approach in (Pottinger and Bernstein,
2003) assumes that the correspondences are given and
their merge operator merges two models to return a
duplicate-free union. Reintegrating adapted business
processes into the original version of the business pro-
cess, without having an (ordered) list of the change
operations done, is addressed by (Küster et al., 2008).
They also foresee the manual intervention of domain
experts during the process of merging.

These approaches are focused on business pro-
cesses and the specifics in this area. One difference
is that the number of types in business processes is
usually restricted and known, which is in contrast to
our open world assumption (see Section 3.1).

A general method for matching of graphs based on
labels is the edit distance (Wagner and Fischer, 1974)
or graph edit distance (Sanfeliu and Fu, 1983), which
calculates the similarity of two labels or two graphs,
respectively. This is done by counting the number of
operations (remove, add, and so on) required to edit
the label/graph from one to the other. For our approach
the edit distance is not used, because we merge using
the exact type ids (namespace + id in TOSCA), not the
labels, i. e. names, of the nodes.

To the best of our knowledge we do not know

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

102

any works which are concerned with the merging of
decomposed application topologies. This might be due
to the fact that the concepts and way TOSCA depicts
topologies is relatively new to IT service management.

7 CONCLUSIONS

In this paper we proposed an approach for
functionality-preserving merging of application topolo-
gies. We first presented a motivating scenario, based
on this we extracted the requirements of such a solu-
tion, and then defined a suitable methodology. Addi-
tionally, we implemented our approach using TOSCA
to describe the application topologies. The discus-
sion showed that our approach is well applicable, but
requires the availability of a detailed application topol-
ogy and the respective type-specific plugins.

In the future we want to research how these topol-
ogy descriptions may be extracted from existing appli-
cation deployments by integrating this research with
our work on Enterprise Topology Graphs (Binz et al.,
2012b). TOSCA, used in the realization of the pre-
sented approach, is not limited to the description of
topologies, but in particular enables the portable man-
agement of applications. Therefore, in the future we
want to look into the adaptations required in the man-
agement plans, to adapt to the changes in the topology.

ACKNOWLEDGEMENTS

This work was partially funded by the BMWi project
CloudCycle (01MD11023).

REFERENCES

Andrzejak, A., Arlitt, M., and Rolia, J. (2002). Bounding the
resource savings of utility computing models. Inter-
net Systems and Storage Laboratory, Hewlett Packard
Laboratories, Palo Alto.

Binz, T., Breiter, G., Leymann, F., and Spatzier, T. (2012a).
Portable Cloud Services Using TOSCA. IEEE Internet
Computing, 16(03):80–85.

Binz, T., Fehling, C., Leymann, F., Nowak, A., and Schumm,
D. (2012b). Formalizing the Cloud through Enterprise
Topology Graphs. In Proceedings of 2012 IEEE Inter-
national Conference on Cloud Computing.

Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., and
Schumm, D. (2012). Vino4TOSCA: A Visual Nota-
tion for Application Topologies based on TOSCA. In
Proceedings of the 20th International Conference on
Cooperative Information Systems (CoopIS 2012), Lec-
ture Notes in Computer Science. Springer.

Chong, F. and Carraro, G. (2006). Architecture strategies for
catching the long tail.

Eberle, H., Leymann, F., Schleicher, D., Schumm, D., and
Unger, T. (2010). Process Fragment Composition Op-
erations. In Proceedings of APSCC 2010, pages 1–7.
IEEE Xplore.

Gottschalk, F., Aalst, W. M., and Jansen-Vullers, M. H.
(2008). Merging event-driven process chains. In Pro-
ceedings of the OTM 2008 Confederated International
Conferences, CoopIS, DOA, GADA, IS, and ODBASE
2008, OTM ’08, pages 418–426. Springer-Verlag.

Guo, C., Sun, W., Huang, Y., Wang, Z., and Gao, B. (2007).
A framework for native multi-tenancy application de-
velopment and management.

Küster, J. M., Gerth, C., Förster, A., and Engels, G. (2008).
Detecting and resolving process model differences in
the absence of a change log. In Proceedings of the 6th
International Conference on Business Process Man-
agement, BPM ’08, pages 244–260. Springer-Verlag.

La Rosa, M., Dumas, M., Uba, R., and Dijkman, R. (2010).
Merging business process models. In Proceedings of
the 2010 On the move to meaningful internet systems,
OTM’10, pages 96–113. Springer-Verlag.

Leser, U. and Naumann, F. (2006). Informationsintegration:
Architekturen und Methoden zur Integration verteilter
und heterogener Datenquellen. Dpunkt.Verlag GmbH.

Mietzner, R., Leymann, F., and Unger, T. (2010). Horizon-
tal and Vertical Combination of Multi-Tenancy Pat-
terns in Service-Oriented Applications. 13th Interna-
tional IEEE EDOC Enterprise Computing Conference
(EDOC 2009), 4(3):1–18.

OASIS (2012). Topology and Orchestration Specification
for Cloud Applications Version 1.0 Working Draft 05.

Pottinger, R. A. and Bernstein, P. A. (2003). Merging models
based on given correspondences. In Proceedings of
the 29th international conference on Very large data
bases - Volume 29, VLDB ’03, pages 862–873. VLDB
Endowment.

Sanfeliu, A. and Fu, K.-S. (1983). A distance measure
between attributed relational graphs for pattern recog-
nition. Systems, Man and Cybernetics, IEEE Transac-
tions on, SMC-13(3):353 –362.

Wagner, R. A. and Fischer, M. J. (1974). The string-to-string
correction problem. J. ACM, 21(1):168–173.

Weiß, A. (2012). Merging of TOSCA Cloud Topology Tem-
plates. Master thesis, University of Stuttgart.

Improve�Resource-sharing�through�Functionality-preserving�Merge�of�Cloud�Application�Topologies

103

