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Abstract: In this paper we introduce a technological framework to efficiently support data management in a modern
Intelligent Transportation System (ITS). The proposed technology enables the efficient storage of a variety
of recent/historical/static data and guarantees its effective querying by supporting continuous as well as one-
time queries for the delivering of real-time traffic services. The framework also offers a scalable solution for
coping with the acquisition of huge volumes of data by employing data reduction techniques in Vehicle-to-
Infrastructure transmissions. Experimental evaluation on the Linear Road ITS benchmark and along various
simulated scenarios demonstrates that the proposed framework efficiently supports smart city data needs.

1 INTRODUCTION

The congestion in urban areas is, and will become
more and more, a crucial problem of modern soci-
ety and many investments are going to be made in the
direction of the so-called smart cities, whose objec-
tives include the improvement of citizens’ life-style
by pushing innovation in urban mobility (Streetline
Inc., 2011). Smart services, specifically designed to
improve people’s quality of life by making their lives
easier and more efficient, can exploit the recent devel-
opment of sensing technology to collect a multitude
of data from various sources, e.g. vehicles, toll gates,
traffic lights, parking meters, weather stations, and
others. Nevertheless, they are also expected to access
historical and static data, e.g. traffic statistics, street
cleaning programme, upcoming exhibitions. For ex-
ample, by sensing and detecting parking activity in
real time, together with information about possible
road works or street cleaning programme, a driver
would be encouraged to take an alternative means
(e.g. bus, metro, bike sharing) knowing that no park-
ing is available, or that it is not allowed, at the desired
destination. Similarly, a mobility manager could re-
inforce dynamically the transportation services on the
basis of traffic conditions and of the expectation of
large inflows due, for instance, to sporting events. In
�This work is partially funded by the Italian Council In-
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this perspective, in order to make smart transportation
services sustainable, a modern Intelligent Transporta-
tion System (ITS) should:

� collect, process and manage both real-
time/historical data coming from heterogeneous
sources, and static data, in a transparent way;

� provide timely information to be used by ad-
vanced services that pursue the city’s needs;

� be scalable in order to manage huge amounts of
data in the rush hours.

To this end, according to (Cotton, 2011), data man-
agement is a primary challenge to be faced. A care-
ful/rough implementation of it makes an ITS effective
or not.

In order to cope with large volumes of con-
tinuously streaming data in use to common soft-
ware applications, Data Stream Management Sys-
tems (DSMSs) have been introduced (Abadi et. al.,
2003; Arasu et al., 2006). These systems natively
support continuous queries (CQs) over (continuous
unbounded) streams of data according to windows
where only the most recent data is retained (Terry
et al., 1992). Once data goes out of the windows it
is deleted from the system. This model does not com-
pletely fit the needs of a modern ITS in a smart city
context, where, besides CQs, also one-time queries
(OTQs) on a variety of recent/historical/static data
have to be supported, e.g., to provide for statistical
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data and traffic forecasts.
In order to fulfill these needs some DSMSs

have moved towards integrating DBMS functionali-
ties within their own architectures (e.g. (Abadi et. al.,
2003; Arasu et al., 2006)). These approaches have the
main drawback of requiring to redesign from scratch
a core of well-established DBMS techniques that can
not be reused as such in a DSMS architecture. Fur-
ther, in these solutions (Arasu et al., 2006), accord-
ing to the DSMS philosophy, historical data neces-
sarily has to be converted into a stream before being
queried, thus producing an unbearable overhead for
the system.

Other works (Botan et al., 2009) propose two-
layered solutions with the DSMS relying on the func-
tionalities provided by a DBMS. The combination of
these systems, each designed for specific and oppo-
site goals, does not solve the DBMS inefficiencies in
storing/retrieving data at the rate a DSMS requires.

In this paper we introduce a framework that of-
fers data management facilities to make ITS services
sustainable in a smart city, along two main directions:

Data Storage and Querying, by providing ITSs with
a technological support that enables the efficient
storage of a variety of streaming data and its ef-
fective querying for the delivering of real-time
traffic services. This is achieved through specific
extensions to the Transactional Storage Manager
(TSM) of a relational DBMS, where a new type
of table, called streaming table, is introduced;

Data Flow Acquisition, by offering a scalable solu-
tion for coping with the gathering of huge vol-
umes of data. Complementary to approaches that
aim at system upgrades, and with the goal of fos-
tering data management sustainability, our work
aims at selecting information at the sources, by
discarding redundant and less relevant data since
the acquisition phase (Carafoli et al., 2012).

The paper is organized as follows. Section 2 gives
an intuition of the information needs to implement
smart traffic services. Section 3 sketches the archi-
tecture of the proposed framework. In Section 4 de-
tails are given about the Extended DBMS while the
experienced data reduction techniques are introduced
in Section 5. Section 6 shows results of experimental
evaluation and conclusions are drawn in Section 7.

2 A USE CASE

The use case we adopt in this paper concerns manag-
ing parking availability in a “smart” way, so to con-
tribute to reduce traffic congestion and pollution in

cities. It is implemented as an enhanced version of
Dynamic Parking Price (DPP) service (Streetline Inc.,
2011) that leverages real-time information gathering
and analysis. When a driver looks for parking, the
service suggests him/her the most convenient avail-
able one and promptly computes its hourly cost and
the best route to reach it. The most convenient parking
is not always the cheapest one. For instance, it could
be the easiest to reach according to traffic conditions
or the nearest if it is snowing. To rank the parking
alternatives, the service exploits information coming
from three kinds of sources, parking meters, vehicles
and weather stations, together with past driver behav-
ior and base parking prices.

It is worth noting that the DPP service needs to
query and process real time data coming from the
sources, together with historical, i.e. past driver be-
havior, and static data, i.e. base parking prices.

Whenever a driver submits a parking request, DPP
must retrieve the vehicle’s position through location-
based services. This is done by means of a traditional
SQL-based one-time query (OTQ) on the position re-
ports acquired from the vehicles.

Then, it has to calculate the route to the best park-
ing according to the traffic conditions. To obtain
them, DPP relies on traffic monitoring services, which
work on aggregate information. For instance, it relies
on a continuous query (CQ) that, every minute, re-
turns the average traveling speeds of each segment.

To compute parking prices, DPP relies on base
prices that are increased or decreased by means of
multipliers that depend on source status conditions.
For instance, in case of a sunny day the weather mul-
tiplier would be 1, while in a snowy day it could be
lower. In fact, in case of a heavy snowfall, managers
could lower the parking prices to encourage people to
leave their vehicles and move with alternative means,
such as metro or street cars. So DPP needs to join the
base prices, that is static information, with the real-
time information coming from different sources.

3 ARCHITECTURE

The data management framework we propose re-
lies on a typical ITS scenario where distributed data
sources collect raw data from the real world and send
them in the form of data streams to a Control Centre
(CC) through GPRS. As to data sources, we assume
that cars are equipped with On-Board Units (OBUs),
small mobile computing devices that acquire data
through GPS and accelerometer units and perform
real-time GPRS communications. The CC stores and
processes this data to provide end users with various
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Figure 1: The framework architecture.

services enhancing mobility.
As shown in Figure 1, the framework acts both

at data source level and at CC level. At data source
level, in order to reduce communication costs and
CC workload, the framework implements data reduc-
tion techniques on the OBUs. Thanks to these tech-
niques, OBUs aim to send useful information only,
while avoiding redundancy.

The remaining layers are localized in the CC. The
Data Acquisition Layer has the goal to convert data
coming from heterogeneous sources to common for-
mats. For example, as to geographic coordinates, one
possible format is the Universal Transverse Mercator
(UTM-NAD83) (NOAA, 2008). In this case, all data
coming in the system in different formats, e.g. De-
grees, minutes and seconds - WGS84 (NIMA, 2000),
needs to be converted.

Finally, the Extended DBMS layer augments a tra-
ditional DBMS with the capability of retaining data
streams beyond their real-time processing, by manag-
ing and storing them transparently as standard data.
This is an essential requirement for a modern ITS
where many advanced services join real-time data
with past trends to derive not only the current situa-
tion but also to forecast incoming events.

4 THE EDBMS

The EDBMS is in charge of storing data streams com-
ing from sources and to promptly make them avail-
able to be queried together with other kinds of data,
such as historical data, e.g. traffic statistics, and/or
static data, e.g. parking locations.

To this end, besides standard tables, it also sup-
ports a new kind of table, called streaming table, that
stores real-time data. A streaming table, differently
from traditional tables, undergoes continuous writes
and, besides OTQs, it also supports CQs. The design
choice of extending a traditional DBMS towards data
stream management benefits of the exploitation of a
considerable amount of long-established query pro-
cessing and data management techniques.

In order to manage streaming table creation,
we introduce the SQL-like statement CREATE
STREAMING TABLE. The main idea is that each data

source is linked to a streaming table that stores its
data streams. For instance, in our DPP example,
a streaming table VEHICLES is created to store the
position reports received from vehicles:

CREATE STREAMING TABLE
VEHICLES(TIME DATE, VID INT, SPD INT,
XWAY INT, LANE INT, DIR INT, SEG INT,
POSITION POINT) RANGE INTERVAL ’2’
WEEK.

where RANGE defines the time period data stays in the
database. It is worth noting that the VEHICLES table
stores geo-temporal data. To this end, the POSITION
attribute is a POINT, which is made up of the coor-
dinates of the vehicles in the map, and the temporal
attribute TIME is managed with specific methods.

To insert data in streaming tables, we introduce
some changes to the standard SQL INSERT statement:

INSERT INTO VEHICLES VALUES FROM
‘‘VEHICLES.STR’’

where the FROM argument is a stream for continu-
ous data insertion. According to the insert semantics,
an insert request is required for each data insertion.
However, this is incompatible with data streams be-
cause it drastically slows down the insertion rate. In
our approach, the INSERT statement is submitted only
once and, then, the TSM exploits ad-hoc mechanisms
to speed up continuous stream data storage.

Further, as for traditional tables, indices can be de-
fined to speed up data access. For instance, the SQL
command below creates a new index on the attribute
VID of the VEHICLES streaming table:

CREATE INDEX IDX VEHICLES ON
VEHICLES(VID)

With reference to the DPP service scenario, Table
1 shows three different kinds of queries that can be
submitted on three tables: VEHICLES, WEATHER and
PARKING. VEHICLES is a streaming table as described
previously. WEATHER is a streaming table that receives
a weather report update from a weather bureau every
10 minutes. The report contains various information,
such as weather conditions, temperature and other
meteorological measures. PARKING is a traditional
table that stores general information about parkings,
such as the area they are located in (the same field is
also stored in the WEATHER table), the base price, the
number of parking spaces and so on.

It is worth noting that the minimal extensions SQL
should undergo to support streaming tables and CQs
make the EDBMS a powerful means to design and
manage hybrid data-intensive applications.
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Table 1: Q1 is a CQ that calculates the average speed of each road segment. According to the SAMPLE INTERVAL statement,
it runs every minute and the WINDOW INTERVAL statement sets the query’s domain to the data arrived in the last minute. Q2
shows the possibility of querying data coming from both streaming and standard tables, joining them as needed. The goal is
to have an intuition about snowfall intensity. Q3 is an OTQ on a streaming table returning the current position of a vehicle.

Q1: Q2: Q3:
SELECT segment, AVG(speed) SELECT SUM(w.snow), p.id SELECT position
FROM VEHICLES [WINDOW INTERVAL ’1’ MINUTE] FROM WEATHER w [WINDOW INTERVAL ’30’ MINUTE], FROM VEHICLES
GROUP BY segment PARKING p WHERE time=NOW
SAMPLE INTERVAL ’1’ MINUTE WHERE w.area=p.area AND vid=VID X

AND w.condition= “snow”
GROUP BY p.id
SAMPLE INTERVAL ’10’ MINUTE

5 DATA REDUCTION
TECHNIQUES

In order to support ITS services, the CC receives a
large amount of updates, coming in real time from the
vehicles’ OBUs in the form of continuous streams of
GPS-derived time-stamped data. This causes an in-
crease of the communications between the vehicles
and the CC and, in general, of the load in all the
framework layers.

Differently from approaches that aim at system
upgrades by employing massive technologies, e.g.
parallel processing databases, data grids, etc., we
adopt a complementary perspective and foster data
management sustainability by employing data reduc-
tion techniques to select information at the sources,
by discarding redundant and less relevant data since
the acquisition phase. The main objective is to reduce
the number of data communications, bringing the im-
portant benefits of cutting communications costs to-
gether with server side update costs. Data reduction
techniques are implemented in OBUs and they can be
divided in two main categories:

Independent Techniques: the OBU autonomously
decides when to issue updates to the server. The tech-
niques we consider in this context are:

Simple Sampling: an OBU transmits a data report at
a fixed time rate T . This policy has also been con-
sidered in other ITS approaches (Xu et al., 2002) and
for purposes different from data reduction. Using this
policy, the movement of the vehicle is represented as
a constant time “jumping vector” that is independent
from the actual movements and the road network;

Space Sampling: this policy sends a position report
to the CC when the vehicle covers a fixed distance D.
Therefore, differently from simple sampling, an OBU
transmits only if it is actually traveling. This policy
represents the vehicle movements as constant distance
“jumping vectors”. In order to improve accuracy, a

variant of this policy (“stop” version) allows vechicles
to send additional position reports when they stop or
restart their motion;

Map-based Sampling: The basic idea behind this ap-
proach is that the vehicle moves on map segments.
Therefore, in its simplest version, it sends a position
report whenever the end of a map segment is reached.
Similarly to space sampling, also map-based sam-
pling allows vehicles to inform the CC about stops
and restarts (“stop” version). Furthermore, instead of
relying on map segmentation data, it can decide to
transmit whenever a turn in the motion trajectory is
detected (“turn” version).

Information-need Techniques: the OBU decides
when to transmit on the basis of specific information
made available by the CC. The techniques we con-
sider in this category are:

Deterministic Information Need: The main idea of
the deterministic information need policy is to prevent
small differences in velocity from being transmitted
to the CC (Kerner et al., 2005). To this end, a velocity
threshold V is used and the OBU sends its position
report when js� s(seg)t;tj �V , where s is the vehicle
speed and s(seg)t;t is the average speed calculated by
CC in that segment;

Flow Information Need: The flow information need
policy performs data reduction by using randomiza-
tion (Ayala et al., 2010). That means that every OBU
has an equal chance of transmitting to the CC, re-
gardless of its speed. We will test also an alternative
version of this technique where OBUs verify if they
could send their report whenever a turn is detected
(“turn” version), as for Map-Based Sampling.

6 EXPERIMENTAL EVALUATION

In this experimental evaluation, we will show the
results we obtained from the specific tests that are
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mainly focused on the overall performance and scal-
ability of the EDBMS layer and the effectiveness of
the data reduction techniques. Without loss of gener-
ality, we will consider vehicles (i.e., their position and
speed sensors) as the primary source of incoming in-
formation. In particular, we will report on two kinds
of tests which stressed the framework capabilities in
reacting to simulated smart city-like workloads:

� two 3-hours simulations with very intense ITS-
based input rates, based on the Linear Road
stream data management benchmark (Arasu et al.,
2004) which is a reference in this field, for testing
the performance and robustness of our EDBMS
layer in real-time storing, indexing and querying
incoming data (Section 6.1);

� four simulations reproducing actual traffic condi-
tions of as many cities in different parts of the
world (Bologna, Roma, Camden and Beijing) to
put to the test the data reduction techniques in
such real cases (Section 6.2).

6.1 Data Storage and Query Processing

In the Linear Road stream data management bench-
mark, a multitude of cars move on multiple lanes of a
virtual highway and pay dynamically calculated tolls.
In particular, the input data (position reports, toll up-
dates and so on) is generated at varying levels of
complexity (i.e., number of simulated expressways),
where the data for testing each expressway reaches a
rate of 100000 reports per minute. A system is said
to achieve a so-called L-rating if it meets a 5 second
response time constraint for all toll queries while sup-
porting an input level encompassing L expressways
of data (e.g., rating L1 for 1 expressway). Note that
we will stress the unique capabilities of our EDBMS
layer in executing all the complex real-time requests
while, at the same time, we will go beyond the stan-
dard benchmark and also require the system to main-
tain the full stream history of position reports and to
make such history always queryable. We will indicate
these extended one- and two-expressway scenarios as
L1+ and L2+, respectively.

Besides standard table support from PostgreSQL
9.0, all the additional data structures and management
code are implemented in Java 1.6, exploiting Oracle
BDB 11gR2. All the experiments are executed on an
Intel 2.66Ghz Win7 workstation, equipped with 4GB
RAM and a 500GB 7200rpm SATA disk.

It is important to note that, in all Linear Road sce-
narios, the more time goes by, the more data enter the
system. Figure 2 shows, for each simulation minute
in scenario L2+, the average response time computed
up to that minute (line); the growing input workload
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Figure 2: Average response time detail over the 3-hours
simulation time, at level L2+.

is depicted on the background. As we can see, the av-
erage response time increases very slowly even in the
final part of the simulation, when more than 200000
tuples per minute have to be processed.

To contextualize these results, on our hardware (or
a closely comparable one), none of literature state-of-
the-art systems achieves a level of performance ex-
ceeding L2 (Abadi et. al., 2003; Botan et al., 2009),
the same supported by our system but in the much
more demanding extended L+ scenarios.

6.2 Data Reduction

In order to throughly evaluate the effectiveness of the
different data reduction techniques of our framework,
in this second part of our experiments we will discuss
the simulations performed on the following scenarios:

Bologna (BO, for short): a portion of the city cen-
ter, i.e. a typical european urban scenario, involv-
ing medium-width and narrow streets, where vehicle
stops are quite short and infrequent and the vehicle
average speed is low;

Roma (RO, for short): another european portion in-
volving non-central junctions and crossroads in Rome
(Italy), with fast and multi-way segments, vehicle
stops infrequent, and high traffic density;

Toll Plaza (TP, for short): a portion of multi-way
road junctions in Camden (New Jersey, USA), includ-
ing a toll-payment station, with medium traffic den-
sity and nearly one vehicle out of two stops;

Beijing (BJ, for short): a portion of Beijing traffic
network, with very intense, congested and heteroge-
nous (i.e. not only cars but also a significant number
of motorbikes and bicycles) traffic conditions, where
vehicle stops are frequent and long.

All the scenarios simulate the incoming data ex-
changes needed to effectively support a typical traf-
fic monitoring service, i.e. for maintaining the aver-
age travelling speed of each segment in a sufficiently
precise and updated way. The simulations are ten
minutes long and have been created in the PTV Vi-
sion VISSIM2 software taking into account real data

2http://www.ptv-vision.com
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Figure 3: Performance detail graphs for data reduction techniques in the four scenarios

on the detailed topography, traffic volumes, vehicle
speeds and flows representing typical traffic condi-
tions in such environments.

In order to evaluate the actual effectiveness of
each technique, we will consider the communication
cost (messages sent per second) together with the av-
erage error produced by the CC in computing the av-
erage speeds. The error is computed as a mean of
the ”distances” between the expected values and the
actual values (as available from the complete simu-
lation data). We plotted the achieved results in Fig-
ure 3. All techniques were tested with a large variety
of values for their distinctive parameters, producing a
series of points in the graph, and in all their respec-
tive variants (including the “stop” ones, sending stop
and restart information, and the “turn” ones, send-
ing the needed data each time a turn is identified in
the vehicle trajectory). Note that, since space sam-
pling achieved worse results than simple sampling for
all scenarios, for a better readability space sampling
results are not reported in the graphs. Starting our
analysis from the BO and RO scenario, we can see
that the flow-based technique (without turn option) is
able to produce the most satisfying performances, sig-
nificantly decreasing the simple sampling error level.
Indeed, the regularity/predictability of the traffic and
the infrequent stops performed by the vehicles are
well suited to such kind of techniques, while in TP
the higher number of stops makes their effectiveness
less evident. Finally, in BJ, which is a very complex
scenario, with very irregular traffic flows (also due to
the conspicuous presence of different vehicle types),
the error levels of most advanced techniques are quite
high: in this case, simple sampling appears the sim-
plest and most effective option.

7 CONCLUSIONS

In this paper we presented a technological framework
to efficiently support data management in modern In-
telligent Transportation Systems (ITSs). Data is col-
lected from various sources and stored in an Extended
DBMS (EDBMS) that guarantees efficient storage

and access to a variety of recent/historical/static data.
To the authors’ knowledge, no proposal exists that
merges natively DBMS and DSMS paradigms.

The EDBMS’s transactional storage manager ex-
ploits a new type of table, called streaming table, to
store live as well as past streamed data. Streaming
tables are subjected to continuous writes and support
both CQs and OTQs. The EDBMS provides query
capabilities that span streaming tables as well as tra-
ditional relational tables in a transparent way. As to
scalability issues related to the management of huge
amounts of incoming data, we experienced the em-
ployment of V2I data reduction techniques in the data
acquisition phase. A preliminary experimental evalu-
ation on the standard Linear Road ITS benchmark and
along various simulated traffic scenarios has shown
the storage/query efficiency offered by the streaming
table implementation and the effectiveness of the em-
ployed data reduction techniques.
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