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Abstract. Results of the recognition of multi-spectral satellite data by an auto-
mated classification procedure (ACP) are presented. The procedure is based on 
the approximation of an unknown probability density of a given set of observa-
tions by a multi-dimensional Gaussian mixture. For a given number of mixture 
components, optimal estimates for unknown parameters are found by the Day-
Shlezinger algorithm as such solution of simultaneous likelihood equations, that 
maximizes the likelihood function. Optimal number of classes is determined by 
the step-by-step testing of two composite statistical hypotheses. The classifica-
tion of a set of observations is performed by the Bayes rule. To reduce the cal-
culus number, a preliminary analysis of the structure of the investigated set is 
carried out, which provides rough estimates of the number of classes and their 
basic characteristics. Results of automatic classification of the main types of 
clouds and underlying surface are described. 

1 Introduction 

The data on clouds and thermal characteristics of the Earth's atmosphere and surface 
are widely used both in synoptical practice and in models employed in weather fore-
cast and analysis. Therefore, the development of automated methods for recognition 
of various types of clouds is a topical problem. Data obtained from measurements by 
high-resolution radiometers aboard geostationary satellites is one of the most promis-
ing information sources. The large amounts of information received from satellites 
and the need for fast processing make it necessary to apply mathematical methods of 
pattern recognition to such data most promising. 

The first experiments on automated recognition of satellite images based on 
previously acquired data on various types of clouds under different geographic 
conditions and attempts to use them as reference data have shown that methods of 
data processing need further refinement [1-3]. The approach based on studies of 
multispectral data on radiative transfer in clouds with different properties and on the 
threshold classification of clouds did not lead to the development of highly efficient 
automated recognition techniques [4, 5]. Application of statistical automated 
classification algorithms to this problem has a number of advantages and improves 
the efficiency of recognition to 75-80% [6, 7]. For this reason, this approach was 
chosen for deciphering the parts of images containing relatively small areas occupied 
by frontal clouds. We tested the statistical algorithm of automated classification based 
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on the approximation of an unknown probability density function for a given set of 
observations by a multidimensional Gaussian mixture with different vectors of mean 
values and equal covariance matrices. 

2 Recognition Algorithm 

A sample of n p-dimensional observations (p≥1, n > p) is given, 

X(n) = {Xl, ..., Xn},   Xj = {Xjl ..., Xjp},   j = 1,2, ..., n, (1) 

where all the features have the numerical values. The unknown probability density of 
a given sample f(X, Θ) can be approximated by a mixture of k normal distributions 
fi(μi, Σ) [8, 9]. 

݂ሺܺ, Θሻ ൌߨ௦ ௦݂ሺܺ, ,௦ߤ Σሻ,



௦ୀଵ

 (2) 

௦݂ ቀܺ, ,௦ߤ  ቁ ൌ
|ஊ|ష

భ
మ

ሺଶగሻ

మ
∙ ሾെሺ1/2ሻሺܺݔ݁ െ ௦ሻΣିଵሺܺߤ െ  ,௦ሻ′ሿߤ

 

where ߨ௦ is the prior probability of the sth component of the mixture, ߤ௦ is the expec-
tation value vector of the sth mixture component, and Σ is the covariance matrix: 
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In this model, a class is the universe described by a unimodal probability density 
fs(μs, Σ) (s = 1, 2, ..., k). For a known value of k, the optimal estimate Θopt for Θ is as 
such a solution of the simultaneous of likelihood equations (SLE) that maximizes the 
likelihood function 
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For k=1 the SLE has a unique solution  [10]; for k≥2, the SLE has several solutions, 
which are obtained by the Day-Shlezinger algorithm for various initial conditions 
[11]. 

The Day-Shlezinger algorithm is difficult to apply, because the probability Popt of 
the random choice of an optimal initial values Θ depends on the dimension p of the 
sample space, the Mahalonobis distances ρst between classes (s, t = 1, 2, ..., k), the 
directions of the major axes of scattering ellipsoids, and the number of classes k [12, 
13]. When the values of ρst (s, t = 1, 2, ..., k) are small, then Popt may approach zero. 
Therefore a preliminary analysis of the structure of the investigated set X(n) is is car-
ried out towards representative subsample X ' obtained from (1) by random choice 
without replacement. Such analysis provides rough estimates for the number of clas-
ses k and their basic characteristics [14]. 
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Introducing on the set X(n) the Euclid distance d, we calculate the distances dmi be-
tween all the different elements of the supsample X ', m <i, m = 1,2, ..., nl–1, 
i = 2, 3, ..., nl,  nl is the volume X ',  nl ≪ n. Arranging the set {dmi} in increasing or-
der, we construct the basic variational series (BVS) of the set X. An analysis of the 
BVS provides the estimates of the low bound k0 for the number of classes k and for 
the maximal diameter dmax of the classes. Then, we apply a cluster-analysis algorithm  
[15] towards the subsample X ' to obtain rough estimates for the mixture parameters, 

k0, π0s, μ0s, Σ0,    s = 1,2, ..., k0, (4) 

which are used as the first guesses in the Day-Shlezinger algorithm. 
An optimal estimate kopt for the parameter k is determined by two methods. One is 

based on consecutive testing of two composite hypotheses, Hk and Hk+1 (k = k0 – 1, k0, 
k0 + 1, ..., t, t ≪ n). The hypothesis Hk assumes that sample (1) contains k classes [16]. 
Of all values of k tested consecutively, the optimal value kl is the first one for which 
the hypothesis Hk is not rejected. If the hypothesis Hk 	is true, then  the statistic 

λk,k+1=–2ln[L(X(n),k, Θopt(k))/ L(X(n),k+1,Θopt(k+1))] (5) 

converges to the χ2-distribution with degrees of freedom, c, c = p + 1, p is the dimen-
sion of the sample space; L(X(n), k, Θopt(k)) is a value of the likelihood function of the 
set (1) for a fixed value of k and Θ = Θopt. 

In the second method, the optimal value k2 is a number equal to the highest value k 
for which the sequence of values of asymptotic likelihood functions {Lac(X

(n), k, Θopt} 
(k = k0, k0 + 1, km, ..., l,   l≪n) increases monotonically [16]: 
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where ns is the number of elements in the class ωs. If the estimates k1 and k2 are dif-
ferent, then either may be taken as optimal; one may be also kopt = min(k1, k2). 

Provided k = kopt and Θ = Θopt, the classification of observations (1) carries out by 
the Bayes rule [10]: an element Xj belongs to the class ߱௦బ (s0 ∈ {1, 2, ..., kopt}) for 
which the value of the posterior probability is maximal, 
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Instead of the true values of mixture parameters, the values of the corresponding 
optimal estimates are substituted into formula (7). 
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3 Recognition of Meteorological Satellite Data 

To test our algorithm for recognition of the types of cloudness and underlying surface 
based on multispectral satellite data, we selected three regions observed from the 
NOAA and METEOSAT satellites. The recognition results for two regions were pre-
sented in [17]. We discuss here the recognition results for the most complex region, 
located in the North Atlantic and observed on December 9, 1991 from the 
METEOSAT satellite. 

The sample volume for this region was 100 ൈ 30 pixels (each pixel corresponds to 
a square with side ~10 km). Data in infrared and water-vapor emission bands were 
used as features. Thus, each pixel was described by two weakly correlated features 
(their correlation coefficient was 0.4): 

ܺ ൌ ൫ ܺଵ, ܺଶ൯, ݆ ൌ 1,… , 3000. (9) 

A preliminary analysis of a subsample of volume n1 = 450 was performed to obtain a 
lower bound for the number k (k≥7) and the maximal diameter 
 dmax = 30. The first guesses k0 and Θ0 were obtained by classifying this subsample by 
MacQueen algorithm, where d0 = dmax/2 was used as a threshold value for intraclass 
distances [15]; the corresponding estimate k0 = 7. Varying the value of d0 (d0 = 16, 15, 
14, 12, 10), according to MacQueen algorithm, we obtained different estimates for k0 
and Θ0 (k0 = 6, ...,10). For each of these values of k0, the estimates for the components 
of Θ were refined by applying the Day-Shlezinger algorithm to subsamples of vol-
umes n1 = 450 and n2 = 750. An optimal value of k was determined from a set of val-
ues (k = 6, ..., 10) by the values of the statistic λk,k+1 (see (5)) for these subsamples 
presented in Table 1. Setting the significance level at α = 0.02, we found that χ.ଶ

ଶ  (3) 
= 9.8 by the table of χ2 distribution with three degrees of freedom [18]. From the data 
of Table 1 we have λ6.7 > 9.8, λ7.8 > 9.8, and λ8.9 < 9.8 for the two subsamples. There-
fore, k1 = 8. 

Table 1. The values of the statistic λk,k+1. 

N λ6.7 λ7.8 λ8.9 λ 9.10 
450 30 34 8 76 
750 34 58 7 –50 

Table 2. The values of logarithms of asymptotic likelihood function. 

N Lac(6) Lac(7) Lac(8) Lac(9) Lac(10) 
450 –3169 –3150 –3126 –3116 –3175 
750 –6375 –6344 –6314 –6317 –6379 

Table 2 shows the values of logarithms of asymptotic likelihood function (6) for k 
= 6, ..., 10 obtained for the same subsamples. 

The second estimation method for k yields k2 = 9 for the subsample of volume 450 
and k2 = 8 for the Table 1 subsample of volume 750. Therefore, kopt = 8 [19], and the 
vector Θ0 in (4) for k0 = 8 was taken as the initial value of Θ in the Day-Shlezinger 
algorithm. For kopt = 8, the estimate for the vector parameter Θ was refined by apply-
ing the Day- Shlezinger algorithm, so as to use this estimate in classifying the obser-
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vation data by the Bayesian rule. Since the computer employed in this study had lim-
ited RAM resources, instead of inputting sample (9) as a whole, each of its three in-
dependent subsamples of volume ni=1100 (i=1, 2, 3), obtained by random sampling 
without replacement, was processed separately. Note that some of the observation 
data were left out of the subsamples. 

The figure shows the images of the region under investigation. Panel (a) contains 
an infrared image obtained in the 10.5-12.5 μm band; the image obtained in the water-
vapor emission band (5.7-7.1 μm) is shown in panel (b); panel (c) contains the image 
obtained as a result of algorithmic classification. The structure of an integral represen-
tation of clouds and sea surface observed from a satellite is easily seen here. Black 
squares correspond to the observation data from (9) not included in each of the three 
samples. 

 
Fig. 1. The images of the region under investigation. 

An analysis of synoptic data and isobaric maps shows that the selected region is 
characterized by two distinct fronts with a band structure of cloud types, oriented 
from southwest to northeast. The algorithm identified the image classes corresponding 
to four basic cloud types: (1) heavy nimbostratus, (2) cirriform cloud, (3) stratiform 
cloud, and (4) stratocumulus and (5) underlying sea surface. In addition, very small 
classes of reference data points and flashes of reflected light were identified. 

The estimates of the mean values of two indicators sorted by classes, obtained by 
applying the Day-Shlezinger algorithm to one of the subsamples of volume ni = 1100, 
are presented in Table 3 (in arbitrary units). The estimates of the variances ߪ11 and ߪ22 
correlation coefficient ̃12ݎ) are equal for all of the eight classes: ߪ11 = 44, ߪ22 = 81, ߪ21 

 had changed 12ݎ̃ Note that the value of the correlation coefficient .0.2– = 12ݎ̃ ,14– =
drastically, from 0.4 before the classification to –0.2 after it. 

The analysis of all results of automated recognition of satellite information for the 
three selected regions suggests that successful recognition of cloud formations and 
underlying surface can be performed by means of the above algorithm for any region 
around the globe. 
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Table 3. The estimates of the mean values. 

Class 
number, s 

Average A priori 
probability, πs μs1 μs2 

1 199 148 0.17  
2 139  88 0.25  
3 180 129 0.29  
4 151 120 0.26  
5 140  42 0.12  
6  28 264 0.004 
7  36 142 0.002 
8 117 174 0.005 
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