
Clustering the Cloud
A Model for (Self-)Tuning of Cloud Data Management Systems

Siba Mohammad, Eike Schallehn and Sebastian Breß
Institute for Technical and Business Information Systems, Otto-von-Guericke-University, Magdeburg, Germany

Keywords: Cloud Data Management, Tradeoff, Optimization, Tuning, Self-tuning, Logical Cluster.

Abstract: Popularity and complexity of cloud data management systems are increasing rapidly. Thus providing sophis-
ticated features becomes more important. The focus of this paper is on (self-)tuning where we contribute the
following: (1) we illustrate why (self-)tuning for cloud data management is necessary but yet a much more
complex task than for traditional data management, and (2) propose an model to solve some of the outlined
problems by clustering nodes in zones across data management layers for applications with similar require-
ments.

1 INTRODUCTION

Cloud-based data management and data processing
solutions are significantly different from conventional
database management systems (DBMS) by mainly
focusing on providing scalability and availability to
meet the main requirements of cloud applications
while disregarding typical DBMS features such as
complex query interfaces, transactional consistency
management, and stringent data models.
While tuning of conventional DBMSs is a typical task
of administration and its automation as self-tuning has
gained attention in industrial and academic research,
the (self-)tuning of cloud data management systems
(CDMS) is only in its infancy. Because of the typ-
ical shared nothing architectures with data partition-
ing and replication, some performance aspects can
be easily addressed for the overall system. Never-
theless, the typical multi-layered architecture of sev-
eral component systems adds complexity to the tun-
ing tasks. Moreover, if there are several applica-
tions with different and possibly changing require-
ments using the same database cluster, there is lit-
tle chance to tune for a specific application. Cur-
rent research efforts on (self-)tuning of CDMSs in-
clude approaches that focus on specific aspects such
as MapReduce performance (Ahmad et al., 2012), en-
ergy conserving (Bostoen et al., 2012), and minmal
cluster size (Herodotou et al., 2011). To the best of
our knowledge, there is only the work of Florescu
and Kosmann (Florescu and Kossmann, 2009) that
provides an overall view on the tuning problem of

databases in the cloud environment and provides an
architecture designed for the new optimization prob-
lem, as they call it. The idea of creating zones within
a cluster that we present as model for (self-)tuning, is
a generalization of the concept of cold, and hot zones
presented in greenHDFS (Kaushik and Bhandarkar,
2010).

2 TUNING GOALS AND
TRADEOFFS

What makes optimization for a CDMS a complicated
task is the fact that it is not a monolithic system, but
rather a combination of loosely coupled systems that
complement each other. Thus, optimizing a CDMS
for a certain goal becomes a task that expanses across
several system layers and within each one, where de-
cisions in one layer affect possibilities and decisions
in other layers.

Tuning Tradeoffs. Next, we summarize the funda-
mental tradeoffs for a CDMS:
• Read Performance versus Write Performance.In

the cloud, challenges related to partitioning and
replication add to the problem (Cooper et al.,
2010).

• Latency versus Durability.Many CDMSs choose
to write to memory and sync to disk later. This
lowers latency but could result in data loss in the
case of failure (Cooper et al., 2010).

520 Mohammad S., Schallehn E. and Breß S..
Clustering the Cloud - A Model for (Self-)Tuning of Cloud Data Management Systems.
DOI: 10.5220/0004403405200524
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 520-524
ISBN: 978-989-8565-52-5
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Distributed Storage System

Structured Data System

Distributed Processing System

Query Language

Users / Applications

Operating System

 Hardware

Query optimization

MapReduce tasks, # Input streams

Replica placement, Conflict resolution,

Partitioning, (Key, Row) caching,

Compaction

Read ahead buffer, Compression,

#(Nnode, Dnode) per RPC call

JVM Heap, OS page cache, Swapping

#CPU cores , RAM size, Disk I/O

Consistency level, Data modeling

Figure 1: Architecture for Cloud Data Management System (CDMS) extended from (Mohammad et al., 2012).

• Security versus Performance.Existing models
supporting security of cloud data depend mainly
on encryption. This affects performance of sys-
tems (Yu et al., 2010), because it leads to over-
head in reading and writing data and increases the
overall latency.

• Resource Utilization versus Performance.Reduc-
ing operating cost is important for private and
public cloud operators. This usually results in
trading performance for higher resource utiliza-
tion (Chen et al., 2010).

• CAP Tradeoffs. The CAP theorem (Fox et al.,
1997) states that consistency, availability, and par-
tition tolerance are systematic requirements of de-
signing and deployment of applications in a dis-
tributed environment. It also states that a scal-
able system can fulfill at most two of these three
properties. In the context of CDMS, this means
in most cases scarificing consistency. More de-
tails about this and other implications of CAP on
CDMS are in (Mohammad et al., 2012)

Optimization Goals/Opportunities. Next, we
summarize the fundamental optimization goals for
CDMSs:

Performance.Performance is crucial for CDMSs. It
is affected by several aspects such as geograph-
ical distribution of data, replication, consistency
and durability requirements. Overhead caused by
events, such as data compaction and scaling the
DB cluster, also impacts the overall performance.

Availability and Fault Tolerance.CDMSs work on
clusters of nodes where failure is the normal case,

not the exception. Most of these systems sup-
port fault tolerance and recovery. However, the
promised 99.9% availability is not always suf-
ficient. Leading cloud storage providers, such
as Amazon, Salesforce.com, and Rackspace, had
several outages in the last years causing major
websites and businesses to be out of service. Out-
ages result not only in services time outs, but also
unrecoverable data losses (Dahbur et al., 2011).

Consistency Level.For CDMSs, consistency is not
a matter of yes or no question. There are sev-
eral levels of consistency and one can tune it even
on the granularity of a single query or data ob-
ject. Depending on data type, strict consistency
is not always a requirement (Kraska et al., 2009).
Since decisions about the level of consistency af-
fect the system performance and availability, it
is important to determine the highest achievable
level of consistency for specific performance re-
quirements.

Minimum Resource Consumption.It is very impor-
tant to minimize resource consumption, but within
specified performance thresholds. The first per-
spective regarding this goal ismonetary costs.
The second perspective isenergy efficiency.En-
ergy consumption of data centers, whether it is
for cooling or operating machines, is high and is
estimated to increase by 18% every year (Zhang
et al., 2010). Besides, up to 35% of this energy
consumption is caused by the storage subsystems.
Hence, minimizing energy consumption is getting
more important (Bostoen et al., 2012).

Clustering�the�Cloud�-�A�Model�for�(Self-)Tuning�of�Cloud�Data�Management�Systems

521

Local and horizontal (self-)tuning for tier n

. . .

Local and horizontal (self-)tuning for tier n-1

. . .

Vertical

(self-) tuning

accross

tiers

Application Application Application Application

Workload Workload Workload Workload Requirements

. . .

Figure 2: Illustration of complexity of (Self-)tuning multi-layerd CDMSs according to divergent requirements and different
and changing workloads.

3 SELF-TUNING BASED ON
CLUSTERING

An example of a cloud data management system is
composed of a Cassandra cluster that builds on top of
Hadoop Distributed File Systems (HDFS). We take
the case that this cluster should be optimized re-
garding its read performance. Among the factors
that should be dealt with are the following (Capriolo,
2011): index, bloom filter, consistency level, replica
conflict resolution, caching (row and key caching,
Java Virtual Machine (JVM) heap, Operating System
(OS) page cache and swapping), compaction, com-
pression, and hardware deployment (Random Access
Memory (RAM), Central Processing Unit (CPU),
disk and number of nodes). In addition, depending
on whether the application works with mainly range
queries, it would be better to use an order preserv-
ing partitioning technique. In the case that the appli-
cation will use Cassandra as input for MapReduce,
other factors such as the number of input streams,
and the number of map and reduce tasks, etc., would
have to be considered. Figure 1 illustrates how tun-
ing works across several layers with parameter exam-
ples on the right side. As a step toward (self-)tuning
CDMSs for divergent requirements across several lay-
ers, we propose the concept of logical clustering of
shared nothing systems into zones applying the ba-
sic principal of divide and conquer. As illustrated
in Figure 2, tuning becomes even more complicated
when the DB cluster is serving different workload
types with different optimization goals: either in the
case of one application with shifting workloads or
several applications with different workloads.Hori-
zontal (self-)tuningincludes aspects such as partition-
ing/load balancing, replication/update strategies, au-
tomatic scaling, etc., which are typically better sup-
ported because of homogeneous processes of a sin-

gle component type within one layer. Nevertheless,
there are still open research questions, e.g., for het-
erogeneous resources/hardware across nodes.Verti-
cal (self-)tuningrepresents mapping application re-
quirements expressed as optimization goals, service
levels, strategies, etc., to specific tuning measures on
each level of the architecture. To support this com-
plex process of (self-)tuning, we suggest the idea of
creating logical clusters within a CDMS by cluster-
ing nodes based on application requirements as il-
lustrated in Figure 3. A logical cluster (LC) can be
identified by applications requirements and assigned
specific physical resources. This is a generalization
of the concepts introduced by Kaushik and Bhan-
darkar (Kaushik and Bhandarkar, 2010). Their model
depends on an energy-aware data-classification data
placement strategy to define two zones, hot and cold,
with the main purpose of energy saving.

Clustering based on Application Requirements.
We classify applications based on these criteria: data,
workload, optimization goals, and thresholds. Then,
for each class, an LC is created and assigned spe-
cific physical resources. There are common workload
patterns that are defined by the write/read mix. We
take into consideration other aspects such as the size
and freshness of data that will be accessed to define
a list of workload types. Typical workload classes
are on-line access and batch processing. On-line ac-
cess is characterized by heavy update, read latest, read
ranges (with small ranges it is equal to lookups), and
random reads (lookups). Batch processing scenarios
typically perform batch writes and scans. Zhang et
al. (Zhang et al., 2010) discusses challenges in ana-
lyzing and defining data traffic patterns in the cloud
computing environment.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

522

Horizontal (self-)tuning

Horizontal (self-)tuning

Ve
rti

ca
l (

se
lf-

)tu
ni

ng

Application Application

Workload Workload Requirements

. . .

Horizontal (self-)tuning

Horizontal (self-)tuning

Ve
rti

ca
l (

se
lf-

)tu
ni

ng

Application Application

Workload Workload

. . .

Figure 3: Clustering applications with similar requirements and workloads(divide and conquer) to ease tuning.

Clustering based on Physical Resources. Finding
the right cluster size, deciding when to scale, and
minimizing the system overhead that results from
adding new nodes, should be addressed. All CDM
solutions support scalability to satisfy applications
growth. However, some systems, such as Cassan-
dra and Yahoo! Pnuts, show degradation in perfor-
mance and need time to stabilize after adding new
nodes (Cooper et al., 2010). For this reason, and
for cost and energy conserving, increasing cluster
size should not always be the first suggested solution
for performance problems. Since the assumption of
homogeneous clusters does not stand in real appli-
cations, CDM is evolving towards adopting hetero-
geneity. In addition, systems supporting heterogene-
ity allow the possibility of improving performance by
adding nodes with higher capacity instead of having
to upgrade, at once, all nodes within a cluster (De-
Candia et al., 2007). However, only with resource-
aware scheduling and load balancing performance im-
proves. Various studies (Rasool and Down, 2012; Ah-
mad et al., 2012) show that the current implementa-
tions of data-intensive applications do not take into
consideration heterogeneous nodes and show degra-
dation in performance.

Alternatives for Cluster Structures and Cluster-
ing Strategies. While the outlined proposal of log-
ical clusters is already supported in a static manner,
with our research we want to focus on dynamic clus-
tering to support workload-based optimization. This
dynamic clustering requires support for splitting and
merging or re-computing clusters. Furthermore, an
LC may contain other LCs, so hierarchical structures
are desirable for the clustering process as well as the
mapping to clustering criteria. Furthermore, the pos-
sibility to build clusters only on several layers or inde-
pendent clusters across layers should be considered.

4 CONCLUSIONS

In this paper, we outlined the tuning tradeoff decisions
and optimization goals for cloud data management
systems. The complexity of (self-)tuning for these
systems results from their highly distributed multi-
layerd architecture. (Self-)Tuning gets even more
complicated when one cloud database cluster is serv-
ing one application with shifting workloads or sev-
eral applications with multiple workloads. With the
aim of supporting (self-)tuning in such case, we sug-
gested a general model for creating logical clusters
within a cloud DB system. To create logical clus-
ters, we depend on clustering of applications based
on data, workload, optimization goals and thresholds.
Finally, we briefly discussed different problems and
alternatives for this model.

REFERENCES

Ahmad, F., Chakradhar, S. T., Raghunathan, A., and
Vijaykumar, T. N. (2012). Tarazu: Optimizing
MapReduce On Heterogeneous Clusters.SIGARCH,
40(1):61–74.

Bostoen, T., Mullender, S., and Berbers, Y. (2012). Analy-
sis of disk power management for data-center storage
systems. Ine-Energy, pages 2:1–2:10. ACM.

Capriolo, E. (2011).Cassandra High Performance Cook-
book. Packt Publishing.

Chen, Y., Ganapathi, A. S., Griffith, R., and Katz, R. H.
(2010). Towards understanding cloud performance
tradeoffs using statistical workload analysis and re-
play. Technical report, EECS Department, University
of California, Berkeley.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R.,
and Sears, R. (2010). Benchmarking Cloud Serving
Systems with YCSB. InSoCC, pages 143–154. ACM.

Dahbur, K., Mohammad, B., and Tarakji, A. B. (2011). A
survey of risks, threats and vulnerabilities in cloud

Clustering�the�Cloud�-�A�Model�for�(Self-)Tuning�of�Cloud�Data�Management�Systems

523

computing. InProceedings of ISWSA, pages 12:1–
12:6. ACM.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. (2007). Dynamo: Ama-
zon’s Highly Available Key-value Store.Symposium
on Operating Systems Principles, 41(6):205–220.

Florescu, D. and Kossmann, D. (2009). Rethinking cost and
performance of database systems.SIGMOD Record,
38(1):43–48.

Fox, A., Gribble, S. D., Chawathe, Y., Brewer, E. A., and
Gauthier, P. (1997). Cluster-based scalable network
services. InProceedings of the sixteenth ACM sym-
posium on Operating systems principles, SOSP ’97,
pages 78–91. ACM.

Herodotou, H., Dong, F., and Babu, S. (2011). No one
(cluster) size fits all: Automatic cluster sizing for data-
intensive analytics. InProceedings of SOSP, pages
18:1–18:14. ACM.

Kaushik, R. T. and Bhandarkar, M. (2010). GreenHDFS:
Towards An Energy-Conserving, Storage-Efficient,
Hybrid Hadoop Compute Cluster. InHotPower, pages
1–9. USENIX Association.

Kraska, T., Hentschel, M., Alonso, G., and Kossmann, D.
(2009). Consistency Rationing in the Cloud: Pay only
When It Matters. InVLDB, pages 253–264. VLDB
Endowment.

Mohammad, S., Breß, S., and Schallehn, E. (2012). Cloud
data management: a short overview and comparison
of current approaches. InGvD, pages 41–46. CEUR-
WS.

Rasool, A. and Down, D. G. (2012). An Adaptive Schedul-
ing Algorithm for Dynamic Heterogeneous Hadoop
Systems.

Yu, S., Wang, C., Ren, K., and Lou, W. (2010). Achiev-
ing Secure, Scalable, and Fine-grained Data Access
Control in Cloud Computing. InINFOCOM, pages
534–542. IEEE.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud com-
puting: State of the Art and Research Challenges.In-
ternet Services and Applications, 1(1):7–18.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

524

