
Boosting Performance and Scalability in Cloud-deployed Databases

J. E. Armendáriz-Iñigo1, J. Legarrea1, J. R. González de Mendı́vil1, A. Azqueta-Alzuaz1,
M. Louis-Rodrı́guez1, I. Arrieta-Salinas1 and F. D. Muñoz-Escoı́2

1Dpto. de Ing. Matemática e Informática, Univ. Pública de Navarra, Campus de Arrosadı́a, 31006 Pamplona, Spain
2Instituto Tecnológico de Informática, Univ. Politècnica de València, 46022 Valencia, Spain

Keywords: Uncritical Data, Databases, Transactions, Replication, Scalability.

Abstract: Eventual consistency improves the scalability of large datasets in cloud systems. We propose a novel technique
for managing different levels of replica consistency in a replicated relational DBMS. To this end, data is
partitioned and managed by a partial replication protocol that is able to define a hierarchy of nodes with a
lazy update propagation. Nodes in different layers of the hierarchy may maintain different versions of their
assigned partitions. Transactions are tagged with an allowance parameterk that specifies the maximum degree
of data outdatedness tolerated by them. As a result, different degrees of transaction criticality can be set and
non-critical transactions may be completed without blocking nor compromising the critical ones.

1 INTRODUCTION

Distributed architectures have been proposed as a so-
lution to deal with diverse issues of web systems,
like component development to service an increasing
number of users, replicating dynamic web content,
achieving fault-tolerance and performance by replica
proximity. So far, however, there has been little dis-
cussion about web data critical nature influence in the
replication techniques. Our objective is to determine
whether it is possible to work in a replicated environ-
ment and manage web data criticality to increase the
system performance, its scalability and availability.

We consider systems with two types of data: crit-
ical and non-critical. For example, information about
hotels and their rates can be found on some websites.
One can think that the information about their avail-
ability and rates is non-critical while the booking pro-
cess is critical. This paper emphasizes the treatment
of such non-critical data in a special way to boost the
system throughput.

Data is partially replicated; i.e., no replica holds
the entire state of the database. Data consistency is
managed with a hybrid replication protocol following
the ideas presented in (Arrieta-Salinas et al., 2012).
This system assigns a certain number of replicas to
each partition and these replicas are placed following
an onion structure. The core layer will have the most
recent data version while outer layers will have stale

data versions, though still consistent. Thus, we im-
plement adjustable consistency so it provides strong
consistency at the core and eventual consistency in the
outer layers.

This model is extended to handle the critical/non-
critical data. The client sets up which data is non-
critical. The system partitions the data in a smart
way (Curino et al., 2010). Some non-critical data is
inside each partition and the critical data is accessed
in the core while non-critical data will be modified
and accessed in the outer layers. The latter also forms
another set of multiversioned layers where the origi-
nal core (critical data) of the partition behaves as an
outer layer of non-critical data. Thus, we are generat-
ing different data cores inside each partition.

We set some replication rules to infer if non-
critical data will need to process updates or defer them
in order to provide the consistency demanded by the
application. Clients will identify their transaction as
non-critical. This kind of transaction will commit but
its changes will not be viewed in other nodes until a
given time or on demand. This increments the system
throughput by delaying non-critical transactions.

The rest of the paper is organized as follows: Sec-
tions 2 and 3 deal with the motivation and model of
our proposal. Section 4 describes how to include the
features of critical and non-critical data in a system.

525E. Armendáriz-Iñigo J., Legarrea J., R. González de Mendívil J., Azqueta-Alzúaz A., Louis-Rodriguez M., Arrieta-Salinas I. and D. Muñoz-Escoí F..
Boosting Performance and Scalability in Cloud-deployed Databases.
DOI: 10.5220/0004405605250528
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 525-528
ISBN: 978-989-8565-52-5
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 MOTIVATION

Observing the increase of web services, we can notice
that some of the data managed by those systems could
be classified as really critical information, like money
management transactions or on-time auction transac-
tions but some of the data in the same system could
be classified as uncritical information, like static in-
formation featured by your bank or auction site. Our
approach tries to maximize the scalability and avail-
ability of the whole system by taking this novel ap-
proach.

Web applications choose to store data on
databases with Snapshot Isolation (SI) (Berenson
et al., 1995). This is due to the non-blocking nature
of each read operation executed under that isolation
level, as it reads from a snapshot of committed up-
date transactions up to that transaction beginning.If
we extend the notion of SI to a replicated environ-
ment we obtain the Generalized Snapshot Isolation
(GSI) level (Elnikety et al., 2005): the snapshot got by
a transaction could be any of the previous history of
committed transaction up to its start; thus, SI is a par-
ticular case of GSI. This will cause a benefit in repli-
cated databases, as clients access their closest replicas
and reduce their latency.

Replicated databases run a replication protocol to
manage transactions. It is well known that replica-
tion protocols perform differently depending on the
workload characteristics. For instance, a read inten-
sive partition may provide a higher throughput with
a primary-backup scheme (Wiesmann and Schiper,
2005). On the contrary, a partition whose items
are frequently updated might benefit from an up-
date everywhere replication solution based on total
order broadcast such as certification based replica-
tion (Wiesmann and Schiper, 2005). However, update
everywhere protocols suffer from a serious scalability
limitation, as the cost of propagating updates in total
order to all replicas is greatly affected by the number
of involved replicas.

We take the system presented in (Arrieta-Salinas
et al., 2012) as a basis to provide higher scalability
and availability. Hence, data is partitioned (Curino
et al., 2010) and each partition is placed in a set of
replicas, sayM, whereK of them run a given repli-
cation protocol (either update everywhere or primary
backup) and the rest (M −K) are placed in a repli-
cation tree whose depth and composition depends on
the application. Several, or all, of theK replicas act as
primaries for other backup replicas (those of the first
level in the tree) which would asynchronously receive
updates from their respective primaries. At the same
time, backup replicas could act as pseudo-primaries

for other replicas placed at lower layers of the hier-
archy, thus propagating changes along the tree in an
epidemic way. If we augment the replication degree
of a given partition, then we can forward transactions
to different replicas storing it, and thus, transactions
will be more likely to obtain old, though consistent,
snapshots (GSI) and alleviating the traditional prob-
lem of scalability in the core.

The novelty in our approach is to take advantage
of this replication hierarchy and place non-critical
data along the hierarchy tree and proceed with it in
a similar way as with normal data. We will run a pri-
mary copy protocol based on the principles given in
the COLUP (Irún-Briz et al., 2003) algorithm. The
resulting protocol increases the performance and re-
duces the abort rate of non-critical update transac-
tions, by re-partitioning (apart from its original par-
titioning based on graphs or any other approach) the
data according to its critical nature. Hence, having
a traditional partitioning schema where critical and
non-critical data are placed in the same partition, we
establish that a certain replica should handle the up-
dates of non-critical data while critical data is updated
at another replica. Under this assumption, critical
transactions can be executed faster and not interleaved
with transactions accessing uncritical data. Those un-
critical transactions may access older data. Mean-
time, other critical transactions could be scheduled,
increasing the age of the snapshots accessed by un-
critical transactions. However, every uncritical trans-
action is characterized by a threshold on the age of the
data it needs to access. As a result, accessing old data
is tolerated by these transactions in the regular case
and such situation will not necessarily lead to their
abortion.

Compared with traditional GSI, what our model
does is to try to anticipate when a transaction is go-
ing to impact (i.e., to present a write-write conflict)
with other transactions and when a non-critical trans-
action is going to impact, then we control an alter-
native mechanism. In that case, a transaction A is
aborted in the validation phase only when at least one
of its conflicting transactions is critical (or uncritical
but with an allowing threshold lower than that of A).

Uncritical transactions are characterized by anal-
lowanceparameterk. The value ofk indicates the
number of missed updates tolerated by the uncritical
transaction. This value is 1 or greater than 1 for un-
critical transactions. Implicitly, critical transactions
are those that access at least one critical item and have
a zero value fork. When conflicts arise between trans-
actions that access critical data (i.e., critical transac-
tions) and transactions that only access uncritical data
(i.e., uncritical transactions), no critical transaction

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

526

may be aborted by an uncritical transaction. Addi-
tionally, conflicts between uncritical transactions are
allowed in some applications (i.e., in those applica-
tions admitting different values for thek parameter).
For instance, an application may decide that it needs
three different kinds of transactions: (a) critical ones
with k= 0, (b) intermediate uncritical ones withk= 4,
and (c) relaxed uncritical ones withk = 10. In that
scenario, a transaction withk = 4 is able to toler-
ate (and overwrite) conflicts generated by transactions
with k = 10 without being aborted in its validation
step. Note that with this validation strategy, a critical
transaction C will be never aborted by any concurrent
conflicting transaction withk> 0 that had been com-
mitted while C has been executed.

Nodes maintaining database replicas should mon-
itor the update frequency over their non-primary data
partitions. Based on this, they are able to forecast the
“age” of their maintained snapshot; i.e., the number of
transaction writesets that have been applied in its pri-
mary replica but that have not been applied yet in the
local database replica. When a transaction B is started
with a k value lower than the local forecast snapshot
age, a forced update propagation is requested from
the primary replica. Transaction B is not started until
such update propagation is completed.

3 MODEL

The system model, shown in Figure 1, is divided into:
a) a set ofclient applications; b) ametadata manager
(MM) that holds the system state (stored in the meta-
data repository) and orchestrates the communication
with both clients and replicas in the replication clus-
ters; and, c) a set ofreplication clusters(RC), each
storing one data partition.

Client applications interact with the system by us-
ing a library, which acts as a wrapper for the man-
agement of connections with both the MM and the
replicas that serve the transactions. In order to submit
a transaction, the client library sends a request with a
non-critical data threshold to the MM. This informa-
tion determines the partition (or partitions) involved
in the transaction, selects one of the replicas of the
replication cluster storing that partition and sends the
address of the selected replica(s) to the client. Then,
the client directly submits the transaction operations
to the indicated replica(s). The client library main-
tains a cache with replica addresses to avoid perform-
ing a request for each transaction.

The MM module is in charge of maintaining the
metadata repository, which contains the following in-
formation: a mapping between each data item, its

Client

Application Logic

Client Library

Replication Protocol n

GCS

Replication Protocol 2

GCS

Replication Protocol 1

GCS

Client

Application Logic

Client Library

Metadata Manager

Workload Manager

Transaction Manager

Replication Manager

Metadata

Repository

Replication clusters

Data flow

Data flow

Control flow

Client requests

Client requests

Monitoring info

Figure 1: System model.

criticality and the partition it is stored in; a mapping
between each data partition (critical/non-critical) and
the set of replicas that belong to the RC that handles
the partition and their respective hierarchy (for criti-
cal partitions, it is needed the replication protocol run-
ning on the core level); and, status and metrics of each
replica.

This information has stringent consistency and
availability requirements. For this reason, the MM
can be replicated among a small set of nodes to pro-
vide fault tolerance while ensuring consistency with
a Paxos algorithm. The information of the metadata
repository is used and updated by the following com-
ponents of the MM:
- Workload manager: it monitors the set of active
replicas in the system. Every active replica must peri-
odically send a heartbeat message to let the workload
manager know that it is alive. These messages also
attach information regarding the status of the sending
replica. This component is also responsible for deter-
mining the partitioning scheme and deciding when a
replica should be upgraded or downgraded in the hi-
erarchy.
- Transaction manager: it assigns partitions to repli-
cas and synchronizes data when a transaction accesses
data items stored in several partitions.
- Replication manager: it chooses the replication pro-
tocol that best fits for each replication cluster and de-
termines the hierarchy level that corresponds to each
replica.

Each RC of Figure 1 consists of a set of replicas
organized as a hierarchy of levels. Recall that inside
each partition, data is split in critical and non-critical
data. Both types of data have their own hierarchy
of levels. Let us start with the critical data, the core
level comprises a group of replicas that propagate up-
dates among themselves by means of a traditional dis-

Boosting�Performance�and�Scalability�in�Cloud-deployed�Databases

527

Figure 2: Critical (blue) and non-critical (green) data man-
agement and epidemic propagation of updates in our sys-
tem.

tributed replication protocol (Wiesmann and Schiper,
2005) that makes use of a group communication sys-
tem to handle the messages among replicas and mon-
itor the set of replicas belonging to the group (blue
filled circles in Figure 2). The core level of each RC
may be managed by a different replication protocol,
which will be determined by the replication manager
of the MM depending on the current workload char-
acteristics. On the other hand, the replicas that do not
belong to the core level of the hierarchy can be dis-
tributed into several levels forming a tree whose root
is the aforementioned core level, where a replica that
belongs to a given level acts as a backup for a replica
of its immediately upper level and may also act as a
primary for one or more replicas of its lower level (cir-
cles whose line colors are green and blue in Figure 2).
These replicas communicate with their respective pri-
maries using reliable point-to-point channels. On the
non-critical data side, the MM will choose for each
RC one replica along the hierarchy level as the core
of these data items (the green filled circle in Figure 2)
and the rest of replicas will constitute the non-critical
hierarchy tree of this RC. With the aim of exploiting
the advantages of in-memory approaches, we assume
that every replica keeps all its data in main memory.

4 CONTRIBUTIONS

We are currently developing a partitioning algo-
rithm (Curino et al., 2010) adapted to our system. We
have successfully included the definition of the proper
replication protocol and the composition of the repli-
cation hierarchy tree. We are going to increase its fea-
tures so as to infer which data should be considered

as non-critical (e.g. data hardly updated). However,
we also consider that this information can be set in
advance by the application. Once the MM establishes
the replica that interacts with the client for a given par-
tition, this replica may manage non-critical transac-
tions. Update transactions are ruled by COLUP (Irún-
Briz et al., 2003), so these transactions are executed
in the primary and lazily propagated to other replicas.
We are going to adapt it to our system by way of three
different variants: read the data stored locally (pure
lazy approach); ask for the last version to the primary
copy; or, a hybrid approach. This hybrid approach
may be thought as follows, along with the propaga-
tion of updates (either critical or non-critical) it can
be piggybacked the current version of the non-critical
data. Meanwhile, the user can set a threshold at the
beginning of the transaction saying that it is fine to
read data locally if data is not older thank versions;
otherwise, it will need to connect to the primary and
retrieve the most recent versions.

ACKNOWLEDGEMENTS

This work has been funded by the Spanish Govern-
ment and European FEDER under research grants
TIN2009-14460-C03 and TIN2012-37719-C03.

REFERENCES

Arrieta-Salinas, I., Armendáriz-Iñigo, J., and Navarro, J.
(2012). Classic replication techniques on the cloud.
In Availability, Reliability and Security (ARES), 2012
Seventh International Conference on, pages 268 –273.

Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil,
E., and O’Neil, P. (1995). A critique of ANSI SQL
isolation levels.SIGMOD Rec., 24(2):1–10.

Curino, C., Zhang, Y., Jones, E. P. C., and Madden,
S. (2010). Schism: a workload-driven approach
to database replication and partitioning.PVLDB,
3(1):48–57.

Elnikety, S., Zwaenepoel, W., and Pedone, F. (2005).
Database replication using generalized snapshot isola-
tion. In SRDS, pages 73–84. IEEE Computer Society.

Irún-Briz, L., Muñoz-Escoı́, F. D., and Bernabéu-Aubán,
J. M. (2003). An improved optimistic and fault-
tolerant replication protocol.Lecture Notes in Com-
puter Science, 2822:188–200.

Wiesmann, M. and Schiper, A. (2005). Comparison of
database replication techniques based on total order
broadcast.IEEE Trans. Knowl. Data Eng., 17(4):551–
566.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

528

