
PaaS Federation Analysis for Seamless Creation and Migration
of Cloud Applications

Daniel A. Rodríguez Silva, Lilian Adkinson-Orellana, Dolores M. Núñez-Taboada
and F. Javier González-Castaño

Gradiant, Network and Applications Area, Ed. Citexvi, Campus Vigo, 36310 Vigo, Spain

Keywords: Cloud Federation, Platform as a Service, Modular Programming, Provider Lock-in, Interoperability.

Abstract: A major concern regarding the development of cloud applications is provider lock-in. There are no standard
solutions to this problem with the exception of some attempts of achieving interoperability at the
infrastructure level. This paper presents an analysis focused on the federation at PaaS level. Furthermore,
the proposed schemes are intended to simplify the design of cloud applications by means of a declarative
programming based on a set of modules available in all supported platforms. Hence, designed applications
can migrate between platforms easily, enabling the creation of new fault-tolerant architectures.

1 INTRODUCTION

The Platform as a Service (PaaS) paradigm offers a
simple way of building cloud applications, hiding
the complexity of the underlying infrastructure
(Lawton, 2008). However, when a developer selects
a platform, its applications usually get tied to the
underlying technologies, hindering the migration to
other PaaS (Louridas, 2010). Google App Engine,
Microsoft Azure or Heroku are popular platforms,
highly heterogeneous in terms of supported
languages (Python, Java, .NET...) and programming
environments (NetBeans IDE, Eclipse IDE, Visual
Studio...), which illustrates the strong dependence
inherent to the adoption of a particular solution.
Moreover, the complexity of transferring large
amounts of data between cloud providers makes
migration between platforms particularly difficult.
Therefore, users have no option but accepting
unexpected changes on the conditions of the services
(Bradshaw, Millard and Walden, 2010).

For this reason, an abstraction layer over
different PaaS, which will allow easy development
and seamless deployment of applications in any of
them, is of great interest. PaaS federation minimizes
the problems aforementioned, as an intermediate
layer that guarantees interoperability between PaaS
providers. In this paper we introduce this concept.
Section 2 reviews related work. Section 3 analyzes
the features of the federated PaaS and presents three

different approaches for its architecture. Finally,
section 4 concludes the paper.

2 RELATED WORK

Even though the federation of cloud resources is an
extended concept at IaaS level (Rochwerger,
Breitgand, Levy, Galis and Nagin, 2009), it does not
have a clear equivalent at the platform level.
CumuLogic (http://www.cumulogic.com) is a
service that allows creating customized PaaS for
Java applications. However, the migration of its
developed applications to other existing PaaS is
complex. There are other open source solutions like
Cloud Foundry (http://www.cloudfoundry.com) and
the mOSAIC FP7 project (Di Martino, Petcu, Cossu,
Goncalves, and Máhr, 2011) that provide platforms
deployable in several public or private clouds.
Nevertheless, they focus on federation at IaaS level.
In (Paraiso, Haderer, Merle, Rouvoy and Seinturier,
2012) a federated multi-cloud PaaS infrastructure is
presented. However, it considers some infrastructure
services for managing both the multi-cloud PaaS and
its SaaS applications, so it also relies on the IaaS
layer and depends on Java. In (Gonçalves, Cunha,
Neves, Sousa and Barraca, 2012) present a cloud
service broker that allows managing applications
through a PaaS and an IaaS manager. These
managers support multi-provider and multi-cloud

156 Rodriguez-Silva D., Adkinson-Orellana L., Nuñez-Taboada D. and Javier González-Castaño F..
PaaS Federation Analysis for Seamless Creation and Migration of Cloud Applications.
DOI: 10.5220/0004407201560159
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 156-159
ISBN: 978-989-8565-52-5
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

environments. Nevertheless, the framework does not
make the selection of implementation technologies
transparent, limiting the target PaaS.

3 PaaS FEDERATION ANALYSIS

3.1 Federated PaaS Requirements

A federated PaaS is a high level platform that
supports a set of traditional PaaS to provide an
abstraction layer simplifying the creation and
deployment of cloud applications. In order to build a
federated PaaS it is important to consider some
requisites and functionalities.

3.1.1 Ease of Application Design

The development of applications in the federated
PaaS is reduced to a simple process of selecting and
configuring a set of predefined modules available in
all the underlying platforms. Modules should be
created beforehand and mapped to the corresponding
implementations in each supported PaaS. Following
the modular declarative programming approach,
application development becomes a simple choice of
the appropriate modules to obtain the desired
functionality at lower effort. Figure 1 illustrates the
concept proposed. Modules are represented by boxes
connected through the different cloud layers. Each
module can work autonomously and has a well-
defined interface to facilitate interoperability.

Figure 1: General architecture of the proposed system.

The federated PaaS will also provide
mechanisms to add modules to its repository
according to the needs of the SaaS developers.

3.1.2 Monitoring

The federated PaaS will include a monitoring
module to verify that the quality parameters of
interest stay within the established thresholds. The
measurable parameters are standard ones: input and
output bandwidth (GB), consumed RAM memory
(MB), consumed CPU time (CPU hours) and stored
data (GB/month). This data will allow billing based

on average resource consumption during a time
window, besides the verification of SLA fulfilment.

3.1.3 Efficient Resource Provisioning

Regarding resource provisioning, the main goal is
the creation of an intelligent delivery system capable
of determining the most appropriate PaaS fitting
application requirements and SLAs. This process,
transparent to developers, will minimize costs by
migrating applications to other platforms when their
performance improves. However, developers can
choose the PaaS to deploy applications manually.
The federated PaaS will hide the complexity of
dealing with underlying PaaS. Another interesting
feature is the possibility for an application of using
modules from different PaaS, in order to obtain the
best price or performance combining all of them.

3.1.4 Security and Privacy

The federated PaaS should provide mechanisms to
build secure applications, a secure communication
with the underlying PaaS, an adequate authentication
mechanism and protection for sensitive information,
among other. Moreover, applications developed on
the federated PaaS are intrinsically fault-tolerant: in
case of PaaS failure, applications will automatically
migrate to another PaaS satisfying their constraints.

3.2 Federated PaaS Approaches

The first proposed approach to build a federated
PaaS is shown in Figure 2. In the design phase
developers can create applications by choosing the
components from a catalogue and connecting them.
The result is a configuration file describing how the
application must be built. This file is processed by a
component (PaaS selector), in charge of choosing
the most suitable PaaS attending to SLA constraints
and the status of the underlying PaaS. Once the
target PaaS is chosen, the builder component creates
the application combining the appropriate modules
from the repository and deploying them on the
selected platform. Hence, each application created in
the federated PaaS will have a unique equivalence
with an application deployed on the target PaaS.
Besides, all modules belonging to an application will
always be deployed on the same platform. The main
benefit of this model is that it offers the possibility
of easily exploiting the monitoring and accounting
capabilities of each underlying PaaS. As all the
modules of an application are deployed on the same
platform, it is straightforward to obtain these values.

PaaS�Federation�Analysis�for�Seamless�Creation�and�Migration�of�Cloud�Applications

157

Figure 2: Model A.

However, this design has the drawback that, as
each deployment on a PaaS needs to be registered, it
is necessary to automatize the registration of
applications in each platform.

The second approach (model B) is shown in
Figure 3. In an initial stage all the predefined
modules are deployed in each supported PaaS.
Therefore, when a new application is created there is
no real deployment, but only instantiation and
configuration of the corresponding modules.

Figure 3: Model B.

To support this scheme, there is an agent in each
PaaS in charge of orchestrating the modules
according to the configuration file of the design
phase. This agent receives the specific rules from the

PaaS selector to assemble the modules dynamically
and acts as the entry point for external access.

The main advantage of this approach is that
deployment time is almost null. In addition, it is
possible to combine modules deployed in different
platforms to compose a federated PaaS application,
which allows developers to benefit from the most
suitable option in each case. The main disadvantage
is that, as all the modules are shared by all the
developers, it is necessary to develop a specific
federated PaaS monitoring system to evaluate and
register the resources consumed by each application
in each shared module.

Figure 4: Model C.

The third approach (Figure 4) is a hybrid solution
from model A and model B. The configuration file
generated in the design phase is processed by a
deployment agent in charge of deploying all the
required modules in the corresponding underlying
PaaS. Each module is configured before being
deployed following the federated PaaS application
rules and has logic inside for interacting with other
modules depending on its configuration. Thus, the
modules of each application in the federated PaaS
are not shared and several modules of the same type
can be deployed in the same PaaS for different
applications. Moreover, the same application can use
several modules from different PaaS.

With this model, the federated PaaS can exploit
the monitoring capabilities of each PaaS. However,
since the modules are deployed on-demand, it is
necessary to register and deploy them
programmatically.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

158

3.3 Discussion

The three models presented have different
characteristics depending on how the federated PaaS
interact with the different underlying PaaS. Table 1
compares four important features to be considered,
because there is not always direct control over
public PaaS supported by the federated PaaS

Table 1: Analysed models comparison.

 Model
Feature A B C
Need of dynamical application
registration

Yes No Yes

Monitoring capability exploited Yes No Yes
Applications can combine
modules from different PaaS

No Yes Yes

Instant deployment of
applications

No Yes No

Public PaaS usually provide an API to access
specific functionalities programmatically. However,
in some cases the registration of new applications
must be manual, via a web interface. For that reason
model B is the only valid option when dynamic
registration is not available. On the other hand,
public PaaS provide mechanisms to monitor
resource consumption in order to verify their billing.
This feature can be exploited in models A and C, but
model B requires implementing a specific
monitoring system.

Regarding combination of modules deployed in
different PaaS, model A is the only one that cannot
support this, because applications are specifically
built for the PaaS where they are going to be
deployed. Combining modules from different PaaS
in one application brings flexibility, for example
when some module is only available for one PaaS.
However this can be dangerous in the sense the final
application cannot always migrate to another PaaS.
Finally, model B is the fastest option to deploy
applications as modules are only instantiated and
configured.

To sum up, the option that has less dependency
with regard to the underlying PaaS is model B,
despite a monitoring system has to be implemented.
If all supported PaaS have a complete API to
manage applications, model C is the most flexible
option.

4 CONCLUSIONS

Due to the variety of current PaaS solutions, it is not

easy to unify criteria for the development of
applications, so further work is needed to map the
functionalities of the provided modules –at federated
PaaS level– for each supported platform. The current
state of the art indicates that this problem is still not
solved. Application development independently of
the underlying PaaS technologies mitigates the
problem of provider lock-in, which hinders the
migration to other PaaS and, as a consequence,
provides fault tolerance across different vendors.
The three architectures analysed give an idea of the
difficulties involved in federation at PaaS level.
Developers must pay the price of lower freedom for
creating applications, since they will have to rely on
a set of predefined modules extendable on demand.

ACKNOWLEDGEMENTS

This research has been supported by the CloudMeUp
grant (IDI-20101357), funded by CDTI, Spain.

REFERENCES

Bradshaw, S., Millard, C. and Walden, I. (2010). Contracts
for clouds: A comparative analysis of terms and
conditions for cloud computing services. In Queen
Mary School of Law Legal Studies Research (Paper
No. 63/201), London.

Di Martino, B., Petcu, D., Cossu, R.. Goncalves, P., Máhr,
T. and Loichate, M. (2011). Building a Mosaic of
Clouds. In Euro-Par 2010 Parallel Processing
Workshops, Lecture Notes in Computer Science, vol.
6586/2011, pp.571-578.

Gonçalves, C., Cunha, D., Neves, P., Sousa, P. and
Barraca, J. (2012). Towards a Cloud Service Broker
for the Meta-Cloud. In CRC 2012, Construction
Research Congress, West Lafayette, IN, U.S.A.

Lawton, G. (2008). Developing Software Online with
Platform-as-a-Service Technology. Computer, vol. 41,
no. 6, pp. 13-15.

Louridas, P. (2010). Up in the Air: Moving Your
Applications to the Cloud. Software, IEEE, p. 6-11.

Paraiso, F., Haderer N., Merle P., Rouvoy R. and
Seinturier L., (2012). A Federated Multi-Cloud PaaS
Infrastructure. In CLOUD 2012, 5th IEEE
International Conference on Cloud Computing,
Honolulu, Hawaii, EEUU.

Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin,
K., Llorente I. et al. (2009). The reservoir model and
architecture for open federated cloud computing. IBM
Journal of Research and Development, vol. 53, no. 4.

PaaS�Federation�Analysis�for�Seamless�Creation�and�Migration�of�Cloud�Applications

159

