
Enhanced Iterated Local Search Algorithms for the Permutation Flow
Shop Problem Minimizing Total Flow Time

Xingye Dong1;2, Maciek Nowak2, Ping Chen3 and Houkuan Huang1

1School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
2Quinlan School of Business, Loyola University, Chicago, IL 60611, U.S.A.

3TEDA College, NanKai University, Tianjin 300457, China

Keywords: Scheduling, Permutation Flow Shop, Total Flow Time, Iterated Local Search, Neighborhood.

Abstract: Flow shop scheduling minimizing total flow time is a famous combinatorial optimization problem. Many
algorithms have been proposed to solve it. Among them, iterated local search (ILS) is a simple, efficient and
effective one. However, in existing ILS, one basic insertion neighborhood is generally used, greatly limiting
the search space. In this work, an enhanced iterated local search (EILS) is proposed, using a hybrid of insertion
and swap neighborhoods. The perturbation method also plays an important role in ILS. Two perturbation
methods, the insertion method and a destruction and construction heuristic are tested in this paper. Both
perform significantly better in comparison to three state of the art algorithms, indicating that the hybrid use
of insertion and swap neighborhoods is effective for the discussed problem. However, there is no significant
difference between the destruction and construction and the insertion perturbation methods.

1 INTRODUCTION

As a simple but efficient and effective metaheuristic,
iterated local search (ILS) has attracted a great deal
of attention (Lourenço et al., 2010). The framework
of ILS is quite simple, with the pseudo code listed in
Figure 1, where s� denotes the best solution found so
far. There are several key components in the ILS al-
gorithm: the method generating the initial solution in
step 1, the local search procedure in step 2, the ac-
ceptance criterion in step 3 and the method to perturb
solution s in step 4.

1. Generate an initial solution s; let s
0
= s, s� = s;

2. Generate s
00
= LocalSearch(s

0
); update s� if bet-

ter solution is found in the process;

3. Let s = Accept(s;s
00
);

4. If the termination criterion is not satisfied, then
generate s

0
= Perturb(s) and go to step 2; oth-

erwise, output s�.

Figure 1: Pseudo code of an ILS framework.

The ILS algorithm has been applied to a variety of
combinatorial optimization problems, including the

permutation flow shop scheduling problem (PFSP). In
the PFSP, there are n jobs requiring m operations to be
performed on m machines in the same sequence, i.e.,
no pre-emption is allowed. All of the jobs are avail-
able for processing when the problem begins, the ith
operation needs to be processed on the ith machine,
each machine can serve at most one job at any time,
and an operation can be processed only if the previous
operation is completed and the requested machine is
available. In literature, the solution of the PFSP is
usually presented as a permutation of the jobs.

In practice, local search has been most frequently
implemented as part of a more complex metaheuris-
tic. The metaheuristics for solving the PFSP min-
imizing total flow time include the M-MMAS and
PACO (Rajendran and Ziegler, 2004), the ACO1 and
ACO2 (Rajendran and Ziegler, 2005), the differen-
tial evolution algorithm and iterated greedy algorithm
(Pan et al., 2008), genetic algorithms (Tseng and Lin,
2009; Tseng and Lin, 2010; Zhang et al., 2009) and
the artificial bee colony algorithm (Tasgetiren et al.,
2011). Local search algorithms are also used in-
dependently and iteratively. For example, Dong et
al. (Dong et al., 2009) propose an ILS algorithm to
solve the PFSP minimizing total flow time, show-
ing improvement over three constructive heuristics
and four metaheuristics. More recently, Dong et al.

58 Dong X., Nowak M., Chen P. and Huang H..
Enhanced Iterated Local Search Algorithms for the Permutation Flow Shop Problem Minimizing Total Flow Time.
DOI: 10.5220/0004410100580065
In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2013), pages 58-65
ISBN: 978-989-8565-70-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

(Dong et al., 2013) presented the multi-restart ILS
(MRSILS), improving the ILS by restarting the local
search from a group of elite solutions. Their experi-
ments show that the MRSILS is better than or com-
parable to five state of the art metaheuristics, as well
as the ILS presented in (Dong et al., 2009). Finally,
four independent local search methods are developed
by Pan and Ruiz (Pan and Ruiz, 2012) and shown to
be quite effective.

However, a defect in many current state of the art
algorithms is a relatively limited search space. Quite
often, only one neighborhood structure is used for lo-
cal search, e.g., only an insertion neighborhood struc-
ture is used in the ILS algorithms by Dong et al.
(Dong et al., 2009; Dong et al., 2013) and the algo-
rithms by Pan and Ruiz (Pan and Ruiz, 2012). Us-
ing more than one neighborhood structure, as with
variable neighborhood search (VNS), is an effective
way to expand the search space. However, too many
neighborhood structures can lead to a significant in-
crease in computation time. Finding an appropriate
balance between search space and computation time
is vital.

In this work, an enhanced ILS (EILS) frame-
work is proposed that uses both insertion and swap
neighborhoods sequentially during the local search.
The use of just one additional neighborhood struc-
ture opens up the search space considerably while
limiting the increase in computational time. In or-
der to further expand the search space, the EILS ap-
plies two perturbation methods, a simple insertion
perturbation method and a destruction and construc-
tion heuristic. The insertion perturbation method is
drawn from Dong et al. (Dong et al., 2013), and the
destruction and construction heuristic is derived from
an iterated greedy algorithm (Ruiz and Stützle, 2007),
which has been successfully used by Pan and Ruiz
(Pan and Ruiz, 2012).

The proposed EILS is evaluated on Taillard’s set
of benchmark problem instances (Taillard, 1993), and
compared with the MRSILS developed by Dong et al.
(Dong et al., 2013) and the ILS and IGA developed by
Pan and Ruiz (Pan and Ruiz, 2012). These two algo-
rithms have outperformed other algorithms on numer-
ous data instances and they have established the cur-
rent benchmark for comparison. While a great deal
of research now focuses on more intricate and sophis-
ticated metaheuristics, this work shows that a deeper
analysis of the core problem through the utilization of
a simple heuristic such as ILS has considerable poten-
tial to improve established methodologies.

The remainder of this paper is organized as fol-
lows. In Section 2, the formulation of the PFSP with
total flow time criterion is presented. In Section 3,

the EILS is described in detail. The computational re-
sults are illustrated and analyzed in Section 4, and the
paper is concluded in Section 5.

2 PROBLEM FORMULATION

In this paper, the PFSP is discussed with the objective
of minimizing total flow time. This problem is an im-
portant and well-known combinatorial optimization
problem, first gaining attention through Johnson’s pi-
oneering work (Johnson, 1954). Many researchers
focus their attention on this problem as it is consid-
ered more relevant to today’s dynamic production en-
vironment (Liu and Reeves, 2001), as it tends to sta-
bilize the use of resources and minimize the work-in-
process inventory (Tseng and Lin, 2009).

In the PFSP, a set of jobs J = f1;2; : : : ;ng avail-
able at time zero must be processed on m machines,
where n � 1 and m � 1. Each job has m operations,
each of which has an uninterrupted processing time.
The processing time of the ith operation of job j is
denoted by pi j, where pi j � 0. The ith operation of a
job is processed on the ith machine. An operation of a
job is processed only if the previous operation of the
job is completed and the requested machine is avail-
able. Each machine processes these jobs in the same
order and at most one operation of each job can be
processed at a time. This problem is usually denoted
by FmjprmujåC j (Pinedo, 2001), where Fm describes
the environment, prmu is the set of constraints and C j
denotes the completion time of job j. Let p denote a
permutation on the set J, representing a job process-
ing order. Let p(k), k = 1; : : : ;n, denote the kth job
in p, then the completion time of job p(k) on each
machine i can be computed through a set of recursive
equations:

Ci;p(1) = å
i
r=1 pr;p(1) i = 1; : : : ;m (1)

C1;p(k) = å
k
r=1 p1;p(r) k = 1; : : : ;n (2)

Ci;p(k) = maxfCi�1;p(k);Ci;p(k�1)g+ pi;p(k)
i = 2; : : : ;m;k = 2; : : : ;n (3)

Then Cp(k) = Cm;p(k), k = 1; : : : ;n. The total flow
time is åCp(k), or the sum of completion times on ma-
chine m for all jobs. The objective of the PFSP when
minimizing total flow time is to minimize åCp(k), or
Cp for short. This problem is NP-complete even with
only two machines (Garey et al., 1976).

Enhanced�Iterated�Local�Search�Algorithms�for�the�Permutation�Flow�Shop�Problem�Minimizing�Total�Flow�Time

59

3 ENHANCED ITERATED LOCAL
SEARCH

As aforementioned, there are four key components in
an ILS algorithm. In this section, three key compo-
nents, initial method, local search procedure and per-
turbation method, are discussed and the framework of
the EILS is illustrated.

3.1 Initialization Method

In literature, a good heuristic is often used as the ini-
tialization method. The H(x) heuristics by Liu and
Reeves (Liu and Reeves, 2001), which rank jobs ac-
cording to the ascending order of a defined index
function reflecting weighted total machine idle time
and artificial flowtime, are highly effective for the this
purpose. H(x) heuristics are used to generate initial
solutions for several state of the art metaheuristics,
such as the four local-search-based algorithms by Pan
and Ruiz (Pan and Ruiz, 2012). Dong et al. (Dong
et al., 2009) used the H(2) method to generate an ini-
tial solution in negligible time, allowing for the ILS
algorithm to perform very well. H(2) is also used in
the MRSILS algorithm (Dong et al., 2013). In this
work, the H(2) heuristic is used to generate initial so-
lutions.

3.2 Local Search Procedure

An efficient local search procedure is very important
to the success of ILS as it mainly determines the so-
lution space that may be explored. Driving the search
to a promising area is vital to an ILS algorithm, such
as with the MRSILS, which is successful because it
extends the search space by generating new start solu-
tions from a set of elite solutions. However, the search
space can also be extended through the use of a local
search based on a variety of neighborhood structures.

In this work, two commonly used local search
methods are jointly applied, insertion and swap. The
neighborhood of an insertion local search is all solu-
tions that may be found by moving a job and inserting
it elsewhere. This is described in Figure 2, where p�

denotes the best solution found so far, f lag = true in-
dicates that p� is improved during the search, idx de-
notes the index of the inserting job in pseq, and each
of these is a global variable. In this local search, each
of the n jobs is inserted into each of the other n� 1
positions and the current solution is updated when a
better neighbor is found. The job that is being in-
serted is denoted by pseq(idx+ 1). When the search
is trapped in a local optimum, such that cnt = n in

line 3, it is stopped and the current solution p is re-
turned. The search sequence is determined by pseq,
which equals the start solution p at the beginning, and
then updated when the p� is improved (line 11). This
search sequence scheme is derived from the idea of
the referenced index search method (Rajendran and
Ziegler, 1997).

Insertion LS(p)
1. f
2. Set pseq = p, cnt = 0;
3. while(cnt < n)
4. f
5. Find j, where p(j) = pseq(idx+1);
6. Insert p(j) to other n�1 positions,

respectively, and let p
0

be the best
generated solution;

7. if(C
p
0 <Cp)

8. f
9. cnt = 1, p = p

0
;

10. if(Cp <Cp�)
11. p� = p, f lag = true, pseq = p;
12. g
13. else
14. cnt ++;
15. idx = (idx+1) mod n;
16. g
17. return p;
18. g

Figure 2: Pseudo code of the insertion local search.

The neighborhood of a swap local search is those
solutions that may be found by swapping the posi-
tion of two jobs in the sequence. This is illustrated in
Figure 3, where the p�, f lag and idx have the same
meaning as in the insertion local search. The job be-
ing swapped is denoted by pseq(idx+1). This neigh-
borhood search swaps each job with earlier jobs in the
current solution, and the current solution is updated
when a better neighbor is found. When the search
is trapped in a local optimum, such that cnt = n in
line 4, it is stopped and the current solution p is re-
turned. The search sequence is also determined by
pseq, which equals the start solution p throughout the
procedure. In this search, idx always starts from zero.

There are (n�1)2 neighbors in an insertion neigh-
borhood, while n� (n� 1)=2 neighbors in a swap
neighborhood, given that swapping job a with b is
the same as swapping b with a. Since the computa-
tional complexity to evaluate one solution is O(nm),
the computational complexity for evaluating all the
neighbors with both local search methods is at least
O(n3m).

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

60

Swap LS(p)
1. f
2. Set pseq = p, cnt = 0;
3. Set global variable idx = 0;
4. while(cnt < n)
5. f
6. Find j, where p(j) = pseq(idx+1);
7. Swap p(j) with the jobs earlier

in the sequence, and let p
0

be
the best generated solution;

8. if(C
p
0 <Cp)

9. cnt = 1, p = p
0
;

10. else
11. cnt ++;
12. idx = (idx+1) mod n;
13. g
14. if(Cp <Cp�)
15. p� = p, f lag = true;
16. return p;
17. g

Figure 3: Pseudo code of the swap local search.

3.3 Perturbation Method

When the local search procedure is trapped in a local
optimum, a new start solution is generated in order to
continue the local search. The new start solution is of-
ten generated by perturbing an elite solution, such that
the perturbation method plays an important role in the
success of an ILS algorithm. Insertion and swap per-
turbation are two commonly used methods. In litera-
ture, several researchers have reported that the former
performs better than the latter (Tasgetiren et al., 2011;
Dong et al., 2013) and this paper focuses on insertion
perturbation. The insertion perturbation is described
in Figure 4, where idx is a global variable, denoting
the start index of the job to be inserted in the next it-
eration of local search. After perturbation, idx is set
according to the insertion position.

The variable idx is used to avoid cycling, particu-
larly when the new start solution is generated through
insertion perturbation. For example, suppose an elite
solution p� = (1;2;3;4;5) is selected for perturbation
to create a new start solution p= (4;1;2;3;5). If job 4
is the first repositioned job, then it will be reinserted
to position 4 as p� is a local optimum. In order to
avoid cycling, the job that was moved to generate the
new start solution should be the last one selected in
the following local search.

Another perturbation method comes from the iter-
ated greedy (IG) algorithm, which is introduced by
Ruiz and Stützle (Ruiz and Stützle, 2007) to solve

Insertion Perturb(p)
1. f
2. Randomly select a job in p and remove

it from the sequence; Insert the job into
any randomly chosen position (except
in its original position j) ;

3. Set idx = j mod n, pseq = p;
4. return p;
5. g

Figure 4: Pseudo code of the insertion perturbation method.

the PFSP minimizing makespan. The IG algorithm
runs iteratively over a destruction and construction
procedure. In the destruction stage, several jobs are
removed randomly from a solution to form a partial
solution, after which the jobs are reinserted sequen-
tially in a greedy way to reconstruct a full solution.
This method has been used by Pan and Ruiz (Pan and
Ruiz, 2012) as a perturbation method in their IGA. In
this work, the destruction and construction procedure
is also used as a perturbation method. It is illustrated
in Figure 5, where d is the number of removed jobs,
reflecting the perturbation strength, while pR is a pool
for the removed jobs, and the first job in this pool is
denoted by pR(1). In the work of Pan and Ruiz (Pan
and Ruiz, 2012), d is set to 8, which is the value used
here. After perturbation, the global variable idx is set
to zero.

Destruct Construct(p, d)
1. f
2. Define pR, i = 0;
3. while(i < d)
4. f
5. Delete a job from p randomly, and

add the job to the end of pR;
6. Set i = i+1;
7. g
8. while(i > 0)
9. f

10. Insert pR(1) back to p to the posi-
tion where the new partial solution
p is optimized;

11. Delete pR(1) from pR, set i = i�1;
12. g
13. Set idx = 0;
14. return p;
15. g

Figure 5: Pseudo code of the destruction and construction
perturbation method.

Enhanced�Iterated�Local�Search�Algorithms�for�the�Permutation�Flow�Shop�Problem�Minimizing�Total�Flow�Time

61

3.4 Framework of the proposed
Enhanced ILS

The framework of the full EILS is illustrated in Fig-
ure 6, where p� denotes the best solution during the
search, pool indicates a set of elite solutions which is
empty at the start.

1. Define global variable p�, f lag and idx;
2. Generate an initial solution p; Set pool = /0,

pool size; Let p� = p, idx = 0;
3. while(termination criterion is not satisfied)
4. f
5. f lag = f alse;
6. p = Insertion LS(p);
7. p = Swap LS(p);
8. if(f lag)
9. Set pool = /0;
10. if(p =2 pool)
11. Add p to pool;
12. if(jpoolj> pool size)
13. Delete the worst solution in pool;
14. if(jpoolj< pool size)
15. p = p�;
16. else
17. Randomly choose one solution from
18. pool as p;
19. Perturb p to generate a new p;
20.g
21.Output p� and stop.

Figure 6: Pseudo code of the proposed EILS.

In literature, there are usually two termination cri-
teria: a maximum number of iterations and limited
computational time. In this work, the latter is applied
on line 3 in order to more easily compare the EILS
with other algorithms. The insertion local search and
swap local search are used sequentially in line 6 and
line 7. If the best solution p� is improved during the
local search, the elite solution set pool is emptied;
otherwise, the local optimum p is added to pool as
an elite solution if it is not in pool yet, and the worst
solution in pool is erased if the size of pool is larger
than its limitation pool size. In this work, the param-
eter pool size is set to 5 as the value is found most
effective in Dong et al. (Dong et al., 2013), though it
is quite robust. This pooling strategy is drawn from
Dong et al. (Dong et al., 2013).

If pool is not full, the best solution found so far,
p�, is chosen to generate a new start solution p by
the specified perturbation method. While pool is full,
a solution is randomly chosen from pool and per-
turbed by the specified perturbation method to gen-

erate a new start solution p. A version of EILS is
implemented for both insertion perturbation and de-
struction and construction perturbation, denoted by
EILS-INS and EILS-DC, respectively. If the inser-
tion perturbation is used and the swap local search
(line 7) is removed, EILS is the same as MRSILS
(Dong et al., 2013), except for the adjustment in the
search sequence. In order to inspect the effect of the
adjusted search sequence, this version of EILS is de-
noted by EILS-NoSwap and compared with MRSILS
in the next section.

EILS is similar to a variable neighborhood search
algorithm; however, in a variable neighborhood
search algorithm, the search is restarted from the first
neighborhood when the best solution found so far
is improved (Lourenço et al., 2010). Regardless of
whether the best solution found so far is improved
with local search in EILS, the algorithm will continue
into the perturbation stage.

4 COMPUTATIONAL RESULTS

In this section, EILS is compared with three state of
the art metaheuristics, MRSILS by Dong et al. (Dong
et al., 2013) and two of the four algorithms by Pan and
Ruiz (Pan and Ruiz, 2012). These are some of the best
available metaheuristics for this version of the PFSP,
producing the highest quality solutions available.

MRSILS by Dong et al. (Dong et al., 2013) per-
forms better than the ILS algorithm developed by
Dong et al. (Dong et al., 2009), the discrete dif-
ferential evolution algorithm and the iterated greedy
algorithm by Pan et al. (Pan et al., 2008), the hy-
brid genetic algorithm by Zhang et al. (Zhang et al.,
2009), and the discrete artificial bee colony and dis-
crete differential evolution algorithms by Tasgetiren
et al. (Tasgetiren et al., 2011).

Pan and Ruiz present four local search based algo-
rithms, one based on the idea of iterated local search
(denoted as PR-ILS) and another on iterated greedy
algorithm (denoted as PR-IGA), with each extended
to a population-based algorithm. PR-ILS and PR-IGA
perform better than the population-based versions, as
well as 12 other powerful metaheuristics published
in recent years. In this work, PR-ILS and PR-IGA
are re-implemented with the same parameters as used
by Pan and Ruiz and compared with EILS. The lo-
cal search procedure used in PR-ILS and PR-IGA is
insertion-based, with a computational complexity of
at least O(n3m).

Each algorithm is implemented in C++, running
on a PC with an Intel Core2 Duo processor (2.99
GHz) with 2G main memory. Though the com-

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

62

Table 1: Comparison in ARPD for MRSILS, PR-ILS, PR-IGA, EILS NoSwap, EILS INS and EILS DC (0:004�n3�m ms
CPU time).

njm MRSILS PR-ILS PR-IGA EILS NoSwap EILS INS EILS DC
20j5 0.007 0.007 0.007 0 0 0
20j10 0 0.002 0 0.004 0.006 0
20j20 0 0 0 0 0 0
50j5 0.339 0.411 0.373 0.342 0.298 0.303
50j10 0.495 0.467 0.436 0.337 0.407 0.391
50j20 0.284 0.378 0.375 0.314 0.405 0.241
100j5 0.328 0.410 0.340 0.350 0.218 0.242
100j10 0.464 0.443 0.513 0.473 0.346 0.523
100j20 0.484 0.540 0.560 0.558 0.387 0.515
Avg. 0.267 0.295 0.289 0.264 0.230 0.246

Table 2: Comparison in ARPD for MRSILS, PR-ILS, PR-IGA, EILS NoSwap, EILS INS and EILS DC (0:012�n3�m ms
CPU time).

njm MRSILS PR-ILS PR-IGA EILS NoSwap EILS INS EILS DC
20j5 0.007 0 0 0.007 0 0
20j10 0 0 0 0 0.002 0
20j20 0 0 0 0 0 0
50j5 0.203 0.255 0.233 0.211 0.128 0.139
50j10 0.240 0.354 0.383 0.329 0.259 0.212
50j20 0.209 0.238 0.281 0.176 0.251 0.168
100j5 0.179 0.291 0.191 0.131 0.031 0.073
100j10 0.234 0.308 0.330 0.183 0.123 0.203
100j20 0.289 0.161 0.259 0.153 0.239 0.188
Avg. 0.151 0.179 0.186 0.132 0.115 0.109

puter has two processors, only one is used in the
experiments, as no parallel programming technique
has been applied. In order to show the performance
with increased CPU time, the CPU time is limited to
t� n3�m milliseconds, where t equals 0.004, 0.012
and 0.02, respectively.

The benchmark instances used for analysis are
taken from Taillard (Taillard, 1993), with 120 in-
stances evenly distributed among 12 different sizes.
The scale of these problems varies from 20 jobs and
5 machines to 500 jobs and 20 machines. In the lit-
erature, most metaheuristics are tested on the first 90
benchmark instances (Pan et al., 2008; Tseng and Lin,
2009; Tseng and Lin, 2010; Zhang et al., 2009; Tas-
getiren et al., 2011; Dong et al., 2009; Dong et al.,
2013), as the largest instances with 200 and 500 jobs
are too time consuming. This study also uses the first
90 instances. For each algorithm, five independent
runs are performed on each benchmark instance and
the best solution among the five runs is recorded. The
relative percentage deviation (RPD) is calculated as:

RPD = (F�Fbest)=Fbest �100 (4)

where F is the result found by the algorithm being
evaluated and Fbest is the best result provided by Dong
et al. (Dong et al., 2013), and it is obtained by running

the MRSILS ten independent times with an extended
time period of 0:4� n�m seconds for each instance
and the best among these ten runs is chosen as the
result.

The average RPD (ARPD) for each combination
of n and m and the ARPD for all 90 instances are pre-
sented in Table 1 - 3. These tables show that on aver-
age EILS-INS and EILS-DC perform the best, with
EILS-NoSwap, MRSILS, PR-ILS and PR-IGA fol-
lowing in that order.

Compared with MRSILS, EILS-NoSwap only dif-
fers in that it has an adjusted search sequence, which
can avoid cycling. From the experimental results,
EILS-NoSwap performs slightly better than MRSILS
on average, showing the effectiveness of the adjust-
ment. However, the difference is not significant.
EILS-INS builds on EILS-NoSwap with the addition
of the swap local search. On average, the ARPD is
lower for EILS-INS, indicating that this local search
has considerable benefit. While several researchers
have reported that the swap local search is not better
than the insertion local search (Tasgetiren et al., 2011;
Dong et al., 2013), this experiment shows that it is
more effective when the two are combined to expand
the search space.

EILS-INS performs slightly better than EILS-DC

Enhanced�Iterated�Local�Search�Algorithms�for�the�Permutation�Flow�Shop�Problem�Minimizing�Total�Flow�Time

63

Table 3: Comparison in ARPD for MRSILS, PR-ILS, PR-IGA, EILS NoSwap, EILS INS and EILS DC (0:02� n3�m ms
CPU time).

njm MRSILS PR-ILS PR-IGA EILS NoSwap EILS INS EILS DC
20j5 0.007 0 0.007 0 0 0
20j10 0 0 0 0 0 0
20j20 0 0 0 0 0 0
50j5 0.155 0.191 0.228 0.159 0.160 0.074
50j10 0.192 0.209 0.290 0.167 0.226 0.178
50j20 0.130 0.240 0.151 0.137 0.189 0.062
100j5 0.128 0.203 0.156 0.067 -0.075 0.039
100j10 0.200 0.325 0.238 0.137 0.042 0.147
100j20 0.007 0.096 0.258 0.106 0.004 0.122
Avg. 0.091 0.141 0.148 0.086 0.061 0.069

with the shortest and longest computational times,
while EILS-DC is slightly better with a CPU time
of 0:012� n3�m ms. This indicates that the more
complex destruction and construction perturbation
method is not necessarily better than the simpler in-
sertion perturbation method. The average RPDs for
PR-ILS and PR-IGA confirm this, with PR-IGA per-
forming slightly better than PR-ILS when computa-
tional time is more limited, while it performs slightly
worse when the time is extended. For the most part,
this is in accordance with Pan and Ruiz (Pan and Ruiz,
2012), where the authors show that PR-IGA performs
slightly better than PR-ILS, but not significantly.

5 CONCLUSIONS

In this paper, an enhanced iterated local search frame-
work is proposed to solve the permutation flow shop
scheduling problem minimizing total flow time, an
intensively studied combinatorial optimization prob-
lem. In EILS, two commonly used local search meth-
ods, insertion local search and swap local search, are
used. Further, two different perturbation methods are
applied. EILS searches the solution space intensively
near a group of elite solutions. Compared with some
sophisticated metaheuristics, EILS is simple and easy
to implement.

Comparisons on Taillard’s benchmarks show that
both EILS versions, EILS-INS and EILS-DC, are sig-
nificantly better than three state-of-the-art algorithms.
The improved performance is mainly due to the com-
bined use of the two neighborhood searches. In the
literature, several researchers have reported that the
swap local search is not better than the insertion lo-
cal search, and so only the insertion local search is
used. This work shows that the joint use of insertion
and swap local search results in a more powerful lo-
cal search. Applying this combined strategy to other
metaheuristics may be beneficial, while it may also

be helpful with other combinatorial problems. This
work indicates that the local search-based algorithm
deserves deeper study.

ACKNOWLEDGEMENTS

This work is supported by The Fundamental Research
Funds for the Central Universities of China (Project
Ref. 2009JBM018, Beijing Jiaotong University).

REFERENCES

Dong, X., Chen, P., Huang, H., and Nowak, M. (2013).
A multi-restart iterated local search algorithm for the
permutation flow shop problem minimizing total flow
time. Computers and Operations Research, 40:627–
632.

Dong, X., Huang, H., and Chen, P. (2009). An iterated
local search algorithm for the permutation flowshop
problem with total flowtime criterion. Computers and
Operations Research, 36:1664–1669.

Garey, M., Johnson, D., and Sethi, R. (1976). The complex-
ity of flowshop and jobshop scheduling. Mathematics
of Operations Research, 1:117–129.

Johnson, S. (1954). Optimal two and three-stage production
schedule with setup times included. Naval Research
Logistics Quarterly, 1(1):61–68.

Liu, J. and Reeves, C. (2001). Constructive and composite
heuristic solutions to the p==åci scheduling problem.
European Journal of Operational Research, 132:439–
452.

Lourenço, H., Martin, O., and Stützle, T. (2010). Hand-
book of Metaheuristics, volume 146 of International
Series in Operations Research & Management Sci-
ence, chapter Iterated Local Search: Framework and
Applications, pages 363–397. Springer US.

Pan, Q.-K. and Ruiz, R. (2012). Local search methods for
the flowshop scheduling problem with flowtime mini-
mization. European Journal of Operational Research,
222:31–43.

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

64

Pan, Q.-K., Tasgetiren, M., and Liang, Y.-C. (2008). A dis-
crete differential evolution algorithm for the permu-
tation flowshop scheduling problem. Computers and
Industrial Engineering, 55:795–816.

Pinedo, M. (2001). Scheduling: theory, algorithms, and
systems. Prentice Hall, 2nd edition.

Rajendran, C. and Ziegler, H. (1997). An efficient heuris-
tic for scheduling in a flowshop to minimize total
weighted flowtime of jobs. European Journal of Op-
erational Research, 103:129–138.

Rajendran, C. and Ziegler, H. (2004). Ant-colony algo-
rithms for permutation flowshop scheduling to mini-
mize makespan/total flowtime of jobs. European Jour-
nal of Operational Research, 155:426–438.

Rajendran, C. and Ziegler, H. (2005). Two ant-colony algo-
rithms for minimizing total flowtime in permutation
flowshops. Computers and Industrial Engineering,
48:789–797.

Ruiz, R. and Stützle, T. (2007). A simple and effective
iterated greedy algorithm for the permutation flow-
shop scheduling problem. European Journal of Op-
erational Research, 177:2033–2049.

Taillard, E. (1993). Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research,
64:278–285.

Tasgetiren, M., Pan, Q.-K., Suganthan, P., and Chen, A.
H.-L. (2011). A discrete artificial bee colony algo-
rithm for the total flowtime minimization in permu-
tation flow shops. Information Sciences, 181:3459–
3475.

Tseng, L.-Y. and Lin, Y.-T. (2009). A hybrid genetic lo-
cal search algorithm for the permutation flowshop
scheduling problem. European Journal of Opera-
tional Research, 198:84–92.

Tseng, L.-Y. and Lin, Y.-T. (2010). A genetic local search
algorithm for minimizing total flowtime in the per-
mutation flowshop scheduling problem. International
Journal of Production Economics, 127:121–128.

Zhang, Y., Li, X., and Wang, Q. (2009). Hybrid genetic
algorithm for permutation flowshop scheduling prob-
lems with total flowtime minimization. European
Journal of Operational Research, 196(3):869–876.

Enhanced�Iterated�Local�Search�Algorithms�for�the�Permutation�Flow�Shop�Problem�Minimizing�Total�Flow�Time

65

