
Deontic Database Constraints
From UML to SQL

Pedro Nogueira Ramos
ADETTI /ISCTE-IUL, Computer Science Department, Lisbon, Portugal

Keywords: UML, SQL, Case, Relational Model, Deontic Constraints.

Abstract: Deontic constraints (obligations, forbiddances, violations) can be easily and explicitly represented in UML
Class Diagrams. They deal with formal representation of requirements, which ideally should always be
fulfilled, but can be violated, in atypical situations. In this paper we adopt and extend previous work on
deontic constraints. Our contribution is the development of a tool that fully generates code based on UML
Class Diagrams representation of those constraints. We overcome some limitations of previous work, and
consequently we only adopt standard UML notations. Our tool (a Sybase PowerDesigner plugin) generates
OCL constraints, a standard relational model, and SQL code to hold the deontic requirements. SQL is coded
in views and triggers. Since we adopt a commercial tool, these enrichments will benefit any non-
professional users.

1 INTRODUCTION

The paper addresses the automatic generation of
database constraints. Our approach is based on the
formal representation of constraints, using OCL
(Object Constraint Language) and UML (Unified
Modeling Language) Class Diagrams. The
advantages of CASE (Computer-Aided Software
Engineering) Tools are well known, and a wide
range of commercial tools are largely adopted by
companies. Code generation usually ensures a well-
documented, accurate and efficient code. Software
maintenance costs can be highly reduced as a
consequence of CASE tools adoption. Our main
contribution is the development of a tool that fully
generates code based on UML (Boock et. al., 1998)
constraints represented in a diagrammatic notation.
Within the wide scope on software constraints, we
have focused our work in database constraints, more
specifically, the paper deals with a relational model
enrichment that allows a flexible notion of the
mandatory property in foreign key fields. The paper
considers the distinction between the so called Soft
and Hard constrains (Elliman, 1995). This
distinction is explicitly represented in the graphical
notation.

In the database domain, the boolean mandatory
attribute is adequate for requirements that must hold
unavoidably, but is not adequate to deal with
requirements that ideally should always be fulfilled,
but can be violated in atypical situations. If those
violable requirements are explicitly represented it is
possible to maintain both the requirement and its
violation and, consequently, recur to monitoring
procedures for violation warnings. Without that
explicit representation, the designer must always
choose a non-mandatory value if there is a chance,
even if a small one, that in an atypical situation the
field will not be filled in.

Consider the following real example - taken from
(Ramos, 2008) - concerning the overtime hours
control in an organization where sometimes the
employees work for several days outside the
organization (at the client’s organization facilities).
An organizational rule states that all overtime hours
must be authorized by the employee hierarchic
superior. Using a workflow system the employee
fills in a requirement form that, if authorized by his
superior, will be stored in a table record in which the
ID of the superior must be filled in. However,
sometimes the need for overtime hours is only
detected when the employee is working outside the
organization. A problem may arise if the employee
is outside during a change of month (the problem is
related with technical issues regarding the total

102 Nogueira Ramos P..
Deontic Database Constraints - From UML to SQL.
DOI: 10.5220/0004415801020109
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 102-109
ISBN: 978-989-8565-60-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

amount of monthly overtime hours). When the
employee is working outside with his superior the
usual procedure consists of the employee sending a
fax or an email (and then someone fills in the
requirement form for them) and their superior
making a phone call or sending a fax authorizing the
overtime hours. Due to organizational security
procedures no one can electronically authorize
overtime hours without a proper password. When
the superior is outside and cannot access the system,
the system cannot accept overtime hours. The
solution adopted by the organization was to remove
the requirement, which stated that all records of the
overtime hours’ authorization table should always
have the superior’s ID.

The important aspect of the previous example is
that, because of one atypical situation (which
nevertheless happens several times) an important
requirement was abandoned (the overtime
authorization control is now made manually, where
previously it was validated by the database). That
happened because the requirement was inflexible.

The paper is organized as follows: in section 2
we present some relevant related work; in section 3
we analyze the related work presented in (Ramos,
2008), and in section 3 we introduce its limitations,
our counterproposal and the plugin we developed for
the automatic generation of OCL, Views and
Triggers. Some concluding remarks are presented in
the last section

2 RELATED WORK

There are already some tools that generate code
based on OCL constraints (Loecher and Ocke,
2010), (Briand, 2005). These tools haven’t yet
reached a final stage, some limitations were found
during their testing. Also, they do not support
graphical notation. Graphical notation is critical
when we want to support the daily work of database
designers in organizations. OCL(Warmer and
Kleppe, 2003) hasn’t yet become a common
language, even in the database community. Its use
requires a deeper knowledge than UML Class
Diagrams.

We follow the work presented in (Ramos, 2008)
where the author, based on deontic notions, already
proposes a flexible notion of the mandatory
property. However, the author does not support his
approach on a computational implementation.
Furthermore, we have detected that the solution
presented in (Ramos, 2008) has some serious
limitations, which can be avoided. Moreover, in

(Ramos, 2008) the role of OCL seems useless since
the author does not present any guidelines regarding
the automatic generation of OCL expressions based
on the UML Class Diagram. In this paper we present
an integrated solution that generates OCL
expressions and SQL scripts based only on the Class
Diagram. Unlike the approach proposed in (Ramos,
2008), we don’t need to extend the relational model
with odd tables. In our approach the relational model
is generated based only on standard rules. Additional
knowledge is stored in triggers and views. In the
next section this work is analyzed with more detail.

Borgida, in his work with exceptions in
information systems (originally in (Borgida, 1985)
with further extensions, e.g., (Borgida et. al., 1999))
considers that exceptional situations arise when
some constraints are violated, and that exceptions
are considered as violations. In his proposal, the
occurrence of a violation is signaled by the creation
of an object in a class called ANY_VIOLATION.
The author proposes an exception handling
mechanism to specify failure actions. Again, this
author also recurs to an odd class (more precisely, he
uses two classes: one for the violations as such and
another for the violation constraints). Borgida
proposes a much more general mechanism to deal
with exceptions handling in object oriented
programming languages. Our approach, apart from
being only oriented on one particular constraint (not
considered in Borgidas work), is focused on the
database generation. Borgida, contrary to us,
explicitly rejects triggers approach, because he
wants to maintain the control in a middleware
software level. What we call Contrary-To-Duties
constraints isn’t addressed in Borgidas work.

The distinction between violable requirements and
mandatory ones is similar to the so called Soft and
Hard constraints. The Semantics of Business
Vocabulary and Business Rules (SBVR), an adopted
standard of the Object Management Group (OMG)
for a formal declarative description of business
rules, considers the deontic modal operators
obligation and necessity (www.omg.org/). Those
operators also intend to deal with the distinction on
hard and soft constraints. The idea is to use them in
computer systems in the context of the
OMG’s Model Driven Architecture (MDA).

3 DEONTIC CONSTRAINTS

In (Ramos, 2008) the author addresses a specific
subject: the mandatory property in relational models
tables attributes. The proposed approach is inspired

Deontic�Database�Constraints�-�From�UML�to�SQL

103

in deontic logic, namely in the notions of Deontic
Obligation, Deontic Prohibition and Deontic
Necessity (Wieringa and Meyer, J., 1991). The main
idea is to maintain in the system both the
requirements (ideal situations) and their violations,
and, additionally, the emerging consequences of
those violations. In deontic terminology, we are
talking about Obligations (requirements), their
Violations and Contrary-To-Duties (new emerging
Obligations or Prohibitions).

In the paper the author presents the following
example to motivate the need for a deontic approach.
 “All students must have a zip code address”. That
requirement exists due to the fact that the university
regularly needs to send correspondence to the
student. However, is that a requirement that intends
to capture an ideal situation or a requirement that the
database should always fulfill? What will be the
procedure if one student tries to register in the
school and has forgotten his zip code? If we want to
conditionally accept his registration (telling him that
he must supply the zip code as soon as possible)
then the requirement is about an ideal situation that
sometimes doesn’t happen (neither in the real world
nor in the database). Blocking the registration could
be a wrong choice because, apart from the fact that
all data already inserted in the application form
would be lost, the school would convey an
unpleasant image of unnecessary bureaucracy. The
zip code will be indispensable in the future, but
during a short period of time the zip code is
dispensable.

In (Ramos, 2008) the author distinguishes
between two kinds of requirements:

 requirements that ideally should always be
fulfilled, but can be violated in atypical
situations and;

 requirements that must hold unavoidably.

Furthermore, the author, inspired by the deontic
logic approach, considers the so-called Contrary-To-
Duties scenarios (Carmo and Jones, 1996), i.e., new
constraints that emerge as a consequence of the
violations of the Violable Requirements. Those sub-
ideal states represent situations where deontic
obligations are violated and consequently new
obligations or prohibitions arise to deal with that
undesired but tolerated situation. In the paper the
author considers different emerging scenarios, but
since that distinction is not very clear, in this paper
we would rather adopt a different classification (very
similar to the OMG standard for the semantics of
Business Vocabulary and Business Rules). In the
presence of an unfulfilled obligation three different
kinds of constraints may arise:

 New obligations;
 Forbiddance constraints (explicit

representation of undesired situations);

 Necessary constraints (the same as hard
constraints: requirements that must hold
unavoidably).

Notice that those three situations can be expressed as
soft and hard constraints, but from a user
perspective, we agree that the deontic semantics of
Obligation, Forbiddance and Necessity (also adopted
by OMG) are more intuitive.

In Figure 1 we present an example taken from
the author’s paper that illustrates the proposed
graphical notation.

Figure 1: Graphical notation for deontic constraints.

The example refers to an application that supports
the budget control of a building company. The
example will also be used in the next section. Every
building project has its own budget. The budget is
disaggregated into several items. When the project
leader adjudicates a new work to a supplier, he fills
in a Purchase Order (PO) (to be delivered to the
supplier) and also fills in a Withhold Request (WR)
(to ensure that the money will be available when the
payment takes place). The Withhold Request (WR) is
only allowed by the application if there is enough
money in the corresponding budget item (a PO for a
specific item). In order to control the budget the
following rule is implemented in the application:
every PO must be associated to a WR.
Consequently, POs are only allowed if there is
enough money available in the budget item.
However there are situations where adjudications
must take place (the PO must be created) even if
there is no budget (for example, unpredictable

<<Obligation>>

<<Necessity>>

0..* 0..1

0..*

0..1

0..1

0..*

1..1

0..1

Purchase Order
Withhold Request

Violation

Minute Meeting

Budget Rearrabgement Request

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

104

works). In such situations the standard procedure is
to request a budget rearrangement (for example, to
exchange values between items). That request takes
some time (even days) to be analyzed and sometimes
the urgency of the work forces the project leader to
violate the control rule (for example, an imminent
land falling that requires a sustentation wall). In
order to allow the violation of the rule, the
application must accept that sometimes a PO is not
associated to a WR. Given that flexible
interpretation, what the rule really states is that
ideally every PO must be associated to a WR. In
order to ensure a rigorous budget, when the rule is
violated (a PO is not associated to a WR), apart
from the Budget Rearrangement Request (BRR), the
project leader must organize a work meeting to
elaborate a formal minute that justifies the decision
to adjudicate the new work (in this kind of meeting a
third party entity – surveillance company - is always
present). Notice that ‘new obligation’ (to have a
minute signed by the three entities: the project
leader, the supplier and the third party company)
also represents an ideal situation. Sometimes (rare
situations) the adjudication must occur before the
meeting takes place.

The obligation to have an association between
the PO and the WR is represented with a special
class: Violation. The disjunction (XOR) means that
if the PO does not have a WR then a violation will
be associated with the PO. In the paper the author
adopts the approach first presented in (Tan and
Torre, 1994). Deontic rules are represented with
violation constants: the previous expression
Ideally() (or Obligation()) is represented as
Vi, in which Vi represents a violation constant.
The author considers a finite set of violation
constants, each of them associated to one deontic
rule. The semantics is intuitive: Vi means that
if rule i isn’t violated then is a fact (in other
words, rule i states that there is an obligation to
ensure). The author considers that the Class
Violation corresponds to the finite violation
constants V (i Vi V).

In the example there are two contrary-to-duties
situations. When a PO is not associated to a WR two
new situations arise that can be expressed with two
new rules:

 If a PO is not associated with a WR then a BRR
is necessary;

 If a PO is not associated with a WR then the PO
must be associated with a Minute Meeting
(MM).

The author proposes the use of the UML
Dependency Relation to capture the contrary-to-
duties requirements. The stereotypes must be read as
follows: “the Budget Rearrangement Necessity and
the Minute Meeting Obligation depend on the
Purchase Order violation”. The notion of
Forbiddance is also considered (not illustrated in the
example) and also represented with a dependency
relation.

The author presents an OCL representation for
the deontic requirements (based on the Violation
Class) but he does not link the OCL expressions to
SQL code. The relational model implementation is
based on the built-in table called Violation (with
seven columns), and the SQL code depends on that
table. We do not present any further details, because
our approach does not take that odd table into
account. We do not need to create any tables apart
from the ones that are generated by standard
transposition rules. We also generated complete
SQL code that covers all requirements. Our
approach is presented in the next section.

4 DEONTIC CONSTRAINTS:
FROM UML TO SQL

We follow the deontic approach described in the last
section because we believe that it is intuitive and
also because OMG has adopted it has well. We
consider the three contrary-to-duties scenarios that
may arise when obligations are violated:

 New Obligations;
 Forbiddance;
 Necessity.

We represent all requirements only with
stereotyped dependency relations: <<Obligation>>,
<<Necessity>>, <<Forbiddance>>. For each
stereotype we generate the OCL expression, and
afterwards, the SQL code (triggers and views).

In Figure 2 we present the previous example
with a new requirement and minor changes. We
tested the diagram in the plugin. We adopt the
Sybase PowerDesigner tool (www.sybase.com)
because we think it is one of the best UML-To-
Relational tools and it allows the development of
plugins without any restriction. Since we adopt a
commercial tool, any non-professional user can use
our approach in their projects.

We create a new association between
Collaborator and Zip Code to illustrate the
Forbiddance requirement. If the system does not
know the collaborator zip code, he cannot place

Deontic�Database�Constraints�-�From�UML�to�SQL

105

orders. We choose a “many to many” association
between the Collaborator and the Zip Code just to
enhance the potentialities of the plugin. It will be
more realistic to consider that one collaborator is
only associated with a zip code, but this situation
(more than one zip code) is more complex in what
regards the obligation and the consequent
forbiddance. As we will see we only use standard
Class Diagram and we do not make use of the
Violation Class. The corresponding OCL constraints
are the following:

Table 1: OCL constraints for deontic constraints.

Stereotype OCL Expression

Obligation
Context:

Colaborator
ZC-> notEmpty()

Context: source
class. Requirement:
there must be an
object in the target
class. Obligation

Context: Purchase
Order

WR->notEmpty()

CTD
Obligation

Context: Purchase
Order

WR -> Empty()
implies
MM ->

notEmpty();

Context: source
class. of the primary
obligation.
Requirement: there
must be an object in
the target class.

CTD
Necessity

Context: Purchase
Order

WR -> Empty()
implies

no_role_ctd
-> notEmpty();

Context: source
class. of the primary
obligation.
Requirement: there
must be an object in
the target class.

CTD
Forbiddan

ce

Context:
Colaborator

ZC->Empty()
implies PO ->

isEmpty();

Context: source
class. of the primary
obligation.
Requirement: there
should not be an
object in the target
class

Since we want to keep the deontic constraints in the
database, triggers are the best choice to implement
them. Using Before and After action triggers it is
possible to ensure that all constraints are fulfilled.
The procedure for monitoring the obligations
fulfillment can be easily achieved using relational
views. For each constraint (OCL invariant) we can
generate a SQL view, which retrieves the records
that don’t satisfy it. That’s, for example, what the
Dresden Toolkit does, one of the few OCL-SQL
generators (Loecher and Ocke, 2010), (dresden-
ocl.sourceforge.net/). In what regards the SQL
generated code, our plugin automatically generates

the code explained in Table 2. Notice that in the
current version we haven´t yet implemented the
after/before update and delete triggers, however, the
process is very similar to the after/before insert
triggers:

Table 2: SQL code for deontic constraints.

Stereotype SQL Code

Obligation
Generates a view that retrieves
violations (null foreign keys or missing
records)

CTD
Obligation

Generates a view that retrieves
violations (null foreign keys or missing
records).

CTD
Necessity

Generates a trigger that cancels an
insert operation (an obligation not
fulfilled) if it finds a null foreign key or
doesn’t find a joined record (a
mandatory association not instantiated).

CTD
Forbiddance

Generates a trigger that cancels an
insert operation if it finds a null foreign
key or doesn’t find a joined record (an
obligation not fulfilled).

Figure 2: Deontic constraints, Order Example.

<<Obligation>>

0..*
ZC

0..*
COL

1..1
COL

0..*
PO

<<Obligation>>

0..*
PO

0..1
WR

0..*

0..1

0..1
MM

0..*
PO

<<Forbiddance >>

<<Obligation>>

<<Necessity>>

Colaborator

-
-

Colaborator Name
Colaborator Address

: varchar(100)
: varchar(200)

Zip Code

-
-

Zip Code ID
Location

: int
: varchar(100)

Purchase Order

-
-
-

PO Number
Amount
Date

: int
: decimal(8,2)
: date

Withhold Request

-
-

Date
Amount

: date
: decimal(8,2)

Budget Reaagement Request

-
-

Date
Amount

: date
: decimal(8,2)

Minute Meeting

-
-
-

Minute ID
Data
Text

: int
: date
: text

Colaborator Zip Code

Purchase Order Withhold Request
Purchase Order Budget Request

Purchase Order Minute Meeting

Colaborator Purchase Order

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

106

In Figure 3 we present the plugin steps to generate
the desired code.

Figure 3: Steps to generate the SQL Code.

OCL constraints are generated based only on the
Class Diagram. The association role names are used
to name the constraints, but they aren’t mandatory,
as it can be noticed in the
CTD_Nec_Purchase_Order_PO_Withhold_Request
_no_role_ctd constraint (we haven’t named the
Purchase_Order_ Budget_Request roles, that’s the
reason for the no_role expression).

Figure 4: An example of an OCL constraint.

Primary obligations’ names start with
OCL_OBLIG_, and contrary-to-duties constraints
start with OCL_CTD_. Contrary-to-duties can be
new obligations (OCL_CTD_Oblig_), prohibitions
(OCL_CTF_For_) or hard constraints

(OCL_CTF_NEC_). The remainder of the name for
the primary obligations is the conjunction of both
classes names. For the contrary-to-duties constraints
the remainder is the conjunction with the context
class name and the role associated to the opposite
class. An OCL code example can be checked in
Figure 4 (the remainder are presented in Table 1).

The relational model depicted in Figure 5 results
essentially from the application of standard
transformation rules (Scott Ambler, 2013). We
haven’t followed exactly PowerDesigner rules
because it has some limitations regarding one to one
relations, foreign keys integrity constraints, primary
keys, etc. The adaptations we made do not in any
aspect relate to our extension. The adaptations only
concern relational model optimizations and do not
affect the plugin code covered by this paper.

Figure 5: Relational Model, Order Example.

Each Obligation generates one view as presented in
Figure 6, Figure 7 and Figure 8. Our criterion was
not to generate the most efficient SELECT
commands. Our goal was to find a generic
algorithm, which copes with any obligation, that’s
the reason why we always recur to the EXISTS
operator.

Considering the second example regarding the
obligation, which stands that all collaborators must
have a zip code. The view retrieves collaborators
that do not exist in the colaborator_Zip_Code table,
the table that holds the collaborators zip codes.

One trigger is generated for each Forbiddance
and Necessity dependency relation. The
corresponding code is presented in Figure 9 and
Figure 10. Again, our criterion was not to generate
the most efficient SQL code. We are aware that
sometimes it is possible to generate a more simple

Deontic�Database�Constraints�-�From�UML�to�SQL

107

code, and in future versions we will address that
subject. The current version generates an effective
code.

Figure 6: View for monitoring the fulfilment of the
primary obligation of having a zip code.

Figure 7: View for monitoring the fulfilment of the
primary obligation of having a withhold request.

Figure 8: View for monitoring the fulfilment of the sub-
ideal obligation of having a minute meeting.

Figure 9: Trigger for cancelling and insertion that violates
a forbiddance requirement.

In Figure 11 we can see an example of one
trigger avoiding one insertion that will violate a
Forbiddance requirement. When generating the

Relational Model we can choose the database engine
that will hold the database. In our example we
choose Sybase Adaptive Server. We tried to use
only standard SQL code in order to cope with the
most known database engines.

Figure 10: Trigger for cancelling and insertion that
violates a necessity requirement.

Figure 11: Cancelling and insertion that violates a
forbiddance requirement.

5 FINAL REMARKS
AND FUTURE WORK

In this paper we have extended existing work in
order to provide us with a tool that fully supports an
automatic generation of the extended relational
(deontic) model. With the tool, a database designer
can explicitly represent in standard UML class
diagram deontic constrains and automatically obtain
the final SQL code.

The reason for focusing our attention on the
relational model is the fact that Object Databases
Management Systems aren’t yet an efficient solution
for demanding applications. The object-oriented
paradigm is becoming the main background for
system modeling, but unfortunately the object-
oriented databases don’t progress at the same speed,
making relational databases the standard for data
storing. The reason for choosing UML is the fact
that it has become a standard language for design
and conception of systems.

Our tool needs to be tested with complex

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

108

scenarios (diagrams) in order to correct any bugs
that there may be. For that reason we delivered the
tool to information system course students (master
degree).

Furthermore, in the near future it will be
necessary to cover more complex situations like
relations with more than two arguments and
composite obligations. For example, how to
represent that: all courses should be associated to a
degree and all courses should be associated to a
coordinator; but if obligation to be assigned to a
coordinator disappears if the course isn’t assigned to
a degree (the two obligations must only be processed
as a whole and not separately).

REFERENCES

Boock, G., Rumbaugh, J., Jacobson, I., 1998. The Unified
Modeling Language Reference Manual. In Addison-
Wesley object technology series.

Warmer, J., Kleppe, A., 2003. The Object Constraint
Language: Getting Your Models Ready for MDA (2nd
Edition). Ed The Addison-Wesley Object Technology
Series .

Ramos, P. 2008.. Contrary-to-duties Constraints: From
UML to Relational Model. In ACM/IEEE 11th
International Conference on Model Driven
Engineering Languages and Systems,Toulouse

Wieringa, R. J., Meyer, J., 1991. Applications of Deontic
Logics in Computer Science: a concise overview In J.
Meyer and R. J. Wieringa, , editors, Procs. First Int.
Workshop on Deontic Logic in Computer Science.

Elliman, D. G., Burke, E., Weare, R. F., 1995. The
automation of the timetabling process in higher
education. Journal Educational Technol Systems, 257-
266.

Scott Ambler. Mapping Objects to Relational Databases:
O/R Mapping In Detail,
http://www.agiledata.org/essays/mappingObjects.html
(visited 10/01/2013)

Carmo, J., Jones, A., 1996. A New Approach to Contrary-
To-Duty Obligations. In, Defeseasible Deontic Logic,
I, Donald Dute (ed.), Synthese Library

Tan, Y., T. L., 1994. Representing Deontic Reasoning in a
Diagnostic Framework, in ILCP’94 Workshop on
Legal Applications of Logic Programming, Genova,
Italy.

 Loecher, S., Ocke, S., 2010. A metamodel-based OCL-
compiler for UML and MOF.In Elsevier, editor,
Proceedings of the 6th International Conference on the
Unified Modelling. San Francisco.

Borgida, A., 1985. Language features for flexible handling
of exceptions, in ACM Transactions on Database
Systems (TODS).

Borgida, A., Murata, T., 1999. Tolerating Exceptions in
Workflows: A unified framework for Data and
Process. in Proc. International Joint Conference on

Work Activities Coordination and Collaboration
(WACC), USA.

Briand, L. C., Dzidek, W., Labiche, Y., 2005. Using
aspect-oriented programming to instrument OCL
contracts in Java. Proc. of IEEE International
Conference on Software Maintenance (ICSM), pp.
687-690, Budapest, Hungary

dresden-ocl.sourceforge.net/ (Dresden OCL Toolkit.)
(visited in11/01/2010)

www.omg.org/ spec/SBVR/1.0/, Semantics Of Business
Vocabulary And Business Rules (SBVR), Version
(visited 10/01/2013)

www.sybase.com/products/modelingdevelopment/powerd
esigner Sybase PowerDesigner. (visited 10/01/2013)

Deontic�Database�Constraints�-�From�UML�to�SQL

109

