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Abstract: There has been considerable interest in boosting and bagging, including the combination of the adaptive 

techniques of AdaBoost with the random selection with replacement techniques of Bagging.  At the same 

time there has been a revisiting of the way we evaluate, with chance-corrected measures like Kappa, 

Informedness, Correlation or ROC AUC being advocated. This leads to the question of whether learning 

algorithms can do better by optimizing an appropriate chance corrected measure. Indeed, it is possible for a 

weak learner to optimize Accuracy to the detriment of the more reaslistic chance-corrected measures, and 

when this happens the booster can give up too early.  This phenomenon is known to occur with conventional 

Accuracy-based AdaBoost, and the MultiBoost algorithm has been developed to overcome such problems 

using restart techniques based on bagging.  This paper thus complements the theoretical work showing the 

necessity of using chance-corrected measures for evaluation, with empirical work showing how use of a 

chance-corrected measure can improve boosting. We show that the early surrender problem occurs in 

MultiBoost too, in multiclass situations, so that chance-corrected AdaBook and Multibook can beat standard 

Multiboost or AdaBoost, and we further identify which chance-corrected measures to use when. 

1 INTRODUCTION 

Boosting is a technique for turning a weak learner 

into a strong learner in terms of Valiant’s (1984, 

1989) Probably Approximately Correct framework, 

where a strong learner is defined informally as being 

arbitrarily close to perfect and a weak learner is 

defined informally as being marginally better than 

chance, where the performance of the algorithms is 

limited as a polynomial of the reciprocals of the 

arbitarily small deviations from perfection or chance 

respectively. However, Schapire’s (1989) original 

algorithm and proof for boosting only considered the 

dichotomous (two class) case and made the 

assumption that chance level performance was 
1
/2 on 

the basis that guesses are unbiased coin tosses. 

Practical boosting algorithms (Freund, 1995) followed 

based on the same idea an iteratively applied weak 

learner, concentrating on the examples which were 

not classified correctly. 

Adaptive boosting (Freund and Schapire, 1997), 

AdaBoost, used weights on instances for the next 

training of the weak learner were adjusted according 

to the odds a/e of being correct in order to even up 

the score and force finding a new way of making an 

above chance decision, where a is the accuracy 

(proportion right) and e is the error (proportion 

wrong).  In returning the composite classifier, a 

linear weighting using the log odds is used: ln(a/e). 

While 
1
/2  a < 1 boosting can continue – otherwise the 

final classifier is built: equality with 1 means that the 

weak learner returned a perfect result and the 

stronger learner has been successfully achieved, 

while equality with 
1
/2 means that a chance level 

score was achieved and the weak learner has failed. 

Many generalizations exist to the multiclass case 

(Schapire and Freund, 2012), including a variant on 

the dichotomous algorithm that simply used a K-

class learner but retained the far too strong 
1
/2 weak 

learning threshold (M1), and a variant that estimates 

pseudo-loss instead of error, based on modified weak 

learners that return plausibility estimates of the 

classes (M2).  However SAMME attempts to replace 

the e < 
1
/2 or a > 

1
/2 condition by an a > 

1
/K condition 

(Zhu et al., 2009), but this is still problematic as after 
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reweighting the true chance level may be 

considerably different from this.  If a node has just 2 of 

K classes, SAMME still accepts any accuracy over 
1
/K. 

However, there is another problem that affects 

K=2 as well, and relates to a growing concern with 

simple measures of accuracy and error, and has led to 

the proposal and use of chance-corrected measures, 

including in particular the various forms of 

Kappa and the probability of an informed decision, 

Informedness (Powers, 2003), (Powers, 2011): it is 

possible to make your learner dumber and worser but 

get higher accuracy! In all forms of boosting, the 

effective distributions of examples varies as it 

concentrates on the poorly performing instances.  But 

if we have a 60:40 prevalence of one class, then a > 
1
/K is trivial to achieve for any K≥2 simply by 

guessing the majority class.  In fact, the booster may 

just rebalance the prevalences to offset this bias, but 

in doing so perform many needless iterations. 

This therefore raises the questions of whether we 

can ensure that a learner is optimized for chance-

corrected performance rather than accuracy, which 

existing learners have this property, and whether 

boosting will perform better if it boosts based on a 

chance corrected measure rather than accuracy. We 

will review chance-corrected measures in the next 

section and assume a basic familiarity with the 

standard Rand Accuracy and Information Retrieval 

measures, but Powers (2011) provides a thorough 

review of both corrected and uncorrected measures. 

We note that in this paper we use the new 

statistics rather than the deprecated Statistical 

Hypothesis Inference Testing (Cumming, 2012), viz. 

showing effects graphically rather than tabulating 

with p-values or alphas, providing standard 

deviations to allow understanding of the variance and 

bias of the approaches, and confidence intervals of 

two standard errors to allow understanding of the 

reliability of the estimated effects sizes. We also note 

that we avoid displaying or averaging accuracies (or 

F-scores), which are incomparable unless biases and 

prevalences are matched (Powers, 2011), (Powers, 

2012). However these results themselves can look 

much better and it favours our proposed algorithms 

even more if we use these traditional but unsound 

and deprecated measures!   

Boosting Accuracy (as performed by standard 

Adaboost) need not boost a chance corrected 

measure and may not even satisfy weak learnability 

even though Accuracy appears to – it merely satisfies 

2-learnability which is the surrogate used in the proof 

of Adaboost (Freund and Schapire,1997).  On the 

other hand, boosting the appropriate chance-

corrected measure can in general be seen to improve 

Accuracy and F-score, and we will take the 

opportunity to note places where the base learner 

does very poorly, and Accuracy or F1 rises, but the 

chance-corrected measures actually fall. 

1.1 Applications: Text & Signal 
Processing  

Whereas the preceding discussion has been in a general 

Machine Learning context we take a moment to bring the 

discussion to the practical level and discuss the kinds of 

applications and learning algorithms where the proposed 

techniques can make a huge difference. The practical 

context of the work reported here, including the 

development and testing of the various chance-corrected 

measures, is signal processing of Electroencephalographic 

Brain Computer Interface experiments (Fitzgibbon et al. 

2007); (Fitzgibbon et al., 2013); (Atyabi et al., 2013), 

Audiovisual Speech, Gesture, Expression and Emotion 

Recognition (Lewis and Powers, 2004); (Jia et al., 2012), 

(Jia et al., 2013) and Information Retrieval and Language 

Modelling (Powers, 1983), (Powers, 1991); (Yang and 

Powers, 2006); (Huang and Powers, 2001), and it was in 

this Natural Language Processing context that the 

problems of evaluation and its roles in the misleading of 

learning systems were first recognized (Entwisle and 

Powers, 1998). Furthermore, although the work reported 

here uses standard datasets, we use character/letter datasets 

that pertain to this Natural Language task because the 

problem we are identifying, and the advantage of solving 

it, grows with the number of classes. Similarly the 

software used is modifications of standard algorithms as 

implemented in Weka (Witten et al., 2011), so that 

comparison with other multiclass boosting work 

is possible. Two of Weka’s Boosting algorithms, 

AdaBoostM1and MultiBoost (Webb, 2000), are used as 

the basis for the proposed modifications, with Tree-based 

and Perceptron-based learners preferred to stable learners, 

like Naïve Bayes, that don’t boost (Fig. 1). 

There are two practical considerations that make 

these two boosting algorithms (and the whole family 

of boosting algorithms based on equivalently error 

<½ or accuracy >½) unsuited for signal processing 

and classification in our real world applications: the 

multiclass nature of the work (unsuccessfully addressed 

by in the cited work, and the high dimensional noisy 

data (unrelated to the traditional label noise model). 

2 CHANCE CORRECTION 

Several variants of chance-correction exist, with a 

family of accuracy correction techniques, Kappa κ in 

terms of the Accuracy a (which is usually Rand 
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Accuracy, but can be Recall or Precision or any other 

probability-like measure, and we illustrate these in 

terms of counts of various conditions or contingencies): 

κ = [a-Ê(a)]/[1-Ě(a)] 

(1) 
aRand = AllCorrect/AllCases 

aRecall = TruePositives/RealPos 

aPrecision = TruePositives/PredictPos 

The expected accuracy is defined differently 

depending on the particular method of chance 

correction, the common version dropping the hats 

and using the same value of E(a) top and bottom, but 

Cohen’s Kappa using a different definition of 

expectedness from the Scott and Fliess versions, with 

“Bookmaker” Informedness being shown to satisfy a 

similar definition (Powers, 2011) having different 

chance estimates in numerator and denominator, its 

fundamental property being its definition as the 

probability of making an informed decision, with 

other properties relating to the dichotomous measues 

ROC AUC, Gini, DeltaP’, as well as the empirical 

strength of association in psychology (Powers, 2011), 

with Dichotomous Informedness or DeltaP’ given by: 

Ê(aInform) = E(aRecall) = Bias = 

PredictedPos/AllCases 

Ě(aInform) = E(aPrecision) = Prev = 

RealPos/AllCases 

Informed = Recall
+ 
+Recall

– 
−1 = [Recall-Bias]/[1-

Prev] 

(2) 

These equations illustrate clearly why chance-

corrected measures are needed, as Recall follows 

Bias (guess 100% positive and get 100% Recall) 

while Precision follows Prevalence (positives are 

common at 90% while negatives are rare at 10% 

means Precision is an expected 90% by guessing). 

Informedess is basically the same formula as the one 

used to eliminate the effect of chance from multiple 

choice examples. While the Kappa definition 

captures directly the idea of correction of an accuracy 

measure by subtracting off its expected value, and 

renormalizing to the form of a probability, only the 

Informedness form has a clear probablistic 

interpration, although they are all loosely referred to 

as probabilities. In the Kappa form equation for 

Informedness, we can understand the demoninator in 

terms of the room for improvement above the chance 

effect attributable to Prevalence (in our example we 

can only improve from 90% to 100%). In the 

dichotmous (2 class) case, measures equivalent to 

Informedness have been developed under various guises 

by a variety of different researchers as reviewed by 

Powers (2011), but here we merely note that the version 

that sums Recall for +ves and –ves can be easily related 

to ROC (being the height of the system above the chance 

line as tpr=Recall
+
 and fpr=1–Recall

–
).  

In this paper we focus on the multiclass case 

(K>2 classes) using the most commonly used 

(Cohen) Kappa and (Powers) Informedness 

measures. However, all Kappa and Informedness 

variants, including Powers’ (2011) Markedness and 

Matthews’ Correlation, give a probability or score of 

0 for chance-level performance, and 1 for perfect 

performance, taking values on a [-1,+1] scale as they 

can be applied to problems where higher or lower 

than chance performance is exhibited.  But for ease 

of substitution in the various boosting algorithms it is 

convenient to remap the zero of these double-edged 

“probabilities” to a chance level of 
1
/2 on a [0,1] 

scale. In fact, in the dichotomous case, Gini, and the 

single operating point ROC, correspond to such a 

renormalization of Informedness. As all of the 

chance=0 measures we consider can be related to the 

Kappa definition, we refer to these generically as 

Kappa, while for any accuracy like measure on a 

[0,1] scale we refer to it as Accuracy. 

We thus define a corresponding Accuracy  

aκ = (κ+1)/2 (3) 

for any chance-corrected Kappa κ, and we define the 

associated Error as 1 – Accuracy  

eκ = (1−κ)/2 (4) 

AdaBoost and many other boosting algorithms are 

defined in terms of Rand Accuracy or equivalently the 

proportion of Error, and can thus be straight-forwardly 

adapted by substituting the corresponding alternate 

definition. Our prediction is that optimizing Cohen’s 

Kappa and Powers’ Bookmaker Informedness are 

expected to do far better than the uncorrected Rand 

Accuracy (or proportional Error) or other tested 

measures including Powers’ Markedness and  

Matthews’ Correlation, when tested in Weka’s 

implementation (Witten et al., 2011) of AdaBoost.M1 

using tree stumps/learners as the weak learners.  

Informedness is expected to perform best if the weak 

learner is unbiased or prevalence-biased, but sometimes 

Kappa can be expected to be better, in particular, when 

the weak learner optimizes Kappa or Accuracy, which is 

linearly related to Kappa for a fixed estimate of the 

expected accuracy (which for Cohen Kappa corresponds 

to fixed marginal probabilities).  Kappa can go up and 

Informedness down, when the predictive bias 

(proportion of predictions) for a particular label varies 

from population prevalence (proportion of real labels) 

(Powers, 2012). No learners that explicitly optimize 
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Informedness are known, but all learners that match 

Label Bias to Class Prevalence will maximize all forms 

of Kappa and Correlation, including Informedness, 

whatever form of error they minimize or 

accuracy they maximize subject to that constraint.  This 

has long been a heuristic for the setting of thresholds in 

neural networks, and can also be used in Receiver 

Operating Characteristics (ROC) optimization.  

However in ROC Analysis this corresponds with 

intersecting the fn=fp diagonal and is not in general the 

optimum operating point. Mismatching Bias and 

Prevalence can lead to gains over equal Bias and 

Prevalence (Powers, 2011). 

Moreover, the base learners originally used with 

AdaBoost were tree-type learners, and in a leaf node 

these algorithms can be expected to make the 

majority decision or an equiprobable guess. The former 

seems to be ubiquitous but biased by the locally 

conditioned prevalences of that node rather than the 

global population prevalences that are appropriate for 

optimizing a chance-corrected measure, and this in 

particular is inappropriate for Informedness. On the 

other hand, network-based learners, and Bayesian 

learners, do not have such a simple majority voting 

bias. Moreover, AdaBoost as a convex learner has 

strong similarities to neural networks and SVM, but a 

Naïve Bayes learner could provide a quite distinct 

behaviour and provide a weak learner that also satisfies 

the requirement of being a fast learner. 

Note that if a weak learner doesn’t have the local 

majority bias of a tree learner, it may not be improved 

by the use of Bookmaker weighting (AdaBook) or 

Kappa weighting (AdaKap)  rather than a conventional 

uncorrected accuracy or error optimizing learner. This 

raises an empirical question about whether boosting 

 

Figure 1: Boosting Naïve Bayes rarely works and chance-

correction makes little difference (2x5-CV x 26 or 260 

iterations) and we show better results in Figure 3. 

will work with different algorithms, and whether the 

form of chance-correction that corresponds to our 

analysis and hypotheses indeed performs best.  

Our second prediction is that failure of AdaBook 

and AdaKap and standard AdaBoost with Rand 

Accuracy, can be expected at times, with “early 

stopping” due to the weak learner failing to satsify 

the 
1
/2 condition. But for different distributions, and 

different weak learner optimization criteria, one can 

improve and another worsen. 

Multiboost (Webb,2000) seeks to avoid this 

“early stopping” by interleaving bagging amongst 

the Adaboost iterations – we use the Weka  default 

“committee size” or interleave of 3 in our experiments 

to test our second empirical question: Can 

Multiboost with Bookmaker Informedness 

(MultiBook) or Kappa (MultiKap) weighted accuracy 

achieve better boosting and overcome the hypothesized 

disadvantage of MultiBook due to the weak learner 

being optimized for Accuracy? 

3 DATA SETS 

AND ALGORITHMS 

For comparability with the other work on multiclass 

boosting (e.g. Zhu et al., 2009), we use the same 

character set datasets as shown in Table 1 along with 

their number of classes, attributes and instances.  

2x5-fold Cross Validation was used for all 

experiments. As we in general had 26 English letters, 

26, 260 and 2600 boosting iterations were tested (a 

weak learner may boost just one class). Graphs for 

the Multiboost vs Adaboost comparisons show 

Standard Deviations (red extension bars) and 2 

standard error Confidence Intervals (black whiskers). 

Table 1: Datasets and Statistics. Tra indicates Training set 

only used although Test set exists (2x5-CV always used). 

Dataset with K Classes Attributes Instances 

Handwritten 10 256 1593 

Isolet 26 617 7797 

Letter 26 16 20000 

OptDigitsTra 10 64 3823 

PenDigitsTra 10 17 7494 

Vowel 11 13 990 

We have explored the chance-corrected boosting of 

Naïve Bayes with results as summarized in Fig. 1. It 

is noted that only for one data set, Vowel, was 

significant boosting achieved, and for one, Letter, all 

the chance-corrected versions made things 

marginally worse (but not to a degree that is either 

practically or statistically significant). Also as 
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expected, neither of the chance correction measures 

was particularly effective, and there was no clear 

advantage of Booking over Kapping or vice-versa, 

except that on the one dataset where any boosting 

happened, Booking was faster than Kapping (with a 

difference that was only marginally significant at 

p<0.05 for 26 iterations, and disappeared completely 

by 260 iterations), but they did not do significantly 

differently from standard AdaBoost with Rand 

Accuracy, which actually appeared to be best for this 

dataset, as well as for Letter as previously noted. 

Bayesian approaches were thus not pursued further. 

 

  

Figure 2: 2x5CVx 26 & 260 iteration AdaBoost & MultiBoost with & without chance correction on Decision Stumps. A 1 

standard deviation baseline range (Decision Stump) and treeline range (REPTree) are also shown for reference. 
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Figure 3: 2x5CVx 26 iteration AdaBoost & MultiBoost with & without chance correction on REPTrees. 2x5CV 26, 260 & 

2600 iteration AdaBoost with Informedness, DS baseline, RT bestline shown for comparison (as Fig.2). 
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Table 2: AdaBoost & MultiBoost by Accuracy, Kappa and Informedness, vs Decision Stump, REPTree & SimpleCART. 

Wins within 5% equivalence range are counted, plus Boosts & Losses outside 5% equivalence range round weak learner. 

SimpleCART is not shown for space reasons, but is generally slightly better than RT and slightly worse than Boosted SC. 

Informedness is shown but if there is a sig. qualitative/directional discrepancy with Accuracy or F1 this is marked A|F. 

Informedness   AdaBoost.M1   Baseline Treeline 

Dataset AccRT26B AccD260B KapRT26B KapD260B InfRT26B InfD260B DS RT SC 

Handwritten 0.84 0.52 0.87 0.56 0.87 0.73 0.52 0.69 0.72 

hypothyroid 0.99 0.38 0.97 AF 0.89 AF 0.97 AF 0.84 AF 0.96 0.99 0.99 

iris 0.93 0.91 0.93 0.91 0.93 0.90 0.67 0.92 0.92 

Isolet 0.92 0.52 0.92 0.48 0.92 0.53 0.52 0.81 0.82 

letter 0.94 0.40 0.94 0.40 A 0.94 0.49 0.40 0.83 0.86 

nursery 0.99 0.66 0.99 0.62 0.99 0.73 0.66 0.94 0.99 

optdigits.tra 0.96 0.54 0.97 0.69 0.97 0.85 0.54 0.86 0.89 

pendigits.tra 0.98 0.51 0.98 0.66 0.98 0.62 0.51 0.94 0.95 

segment 0.96 0.53 0.97 0.80 0.97 0.81 0.53 0.94 0.95 

sick 0.84 0.77 AF 0.88 0.86 0.88 0.86 AF 0.86 0.84 0.84 

vowel 0.85 0.47 0.90 0.41 0.90 0.41 AF 0.47 0.59 0.74 

waveform 0.73 0.62 0.72 0.74 0.72 0.74 0.54 0.64 0.65 

Average 0.91 0.57 0.92 0.67 0.92 0.71 0.60 0.83 0.86 

EquiWins 8  9 1 9 1 2 2 2 

SigBoosts 10 3 10 8 9 11  11 11 

SigLosses  2    1    

   MultiBoost.AB   Baseline Treeline 

Dataset AccRT26M AccSC26M AccD260M InfRT26M InfSC26M InfD260M DS RT SC 

Handwritten 0.86 0.89 0.52 0.87 0.90 0.69 0.52 0.69 0.72 

hypothyroid 0.98 AF 0.99 0.38 0.98 AF 0.98 AF 0.84 AF 0.96 0.99 0.99 

iris 0.94 0.91 0.92 0.93 0.92 0.92 0.67 0.92 0.92 

Isolet 0.92 0.94 0.52 0.92 0.94 0.56 0.52 0.81 0.82 

letter 0.94 0.96 0.40 0.94 0.96 0.49 0.40 0.83 0.86 

nursery 0.99 1.00 0.66 0.99 1.00 0.75 0.66 0.94 0.99 

optdigits.tra 0.96 0.97 0.54 0.97 0.97 0.84 0.54 0.86 0.89 

pendigits.tra 0.98 0.99 0.51 0.99 0.99 0.61 0.51 0.94 0.95 

segment 0.97 0.98 0.53 0.97 0.98 0.84 0.53 0.94 0.95 

sick 0.86 0.86 0.81 AF 0.87 0.87 0.86 0.86 0.84 0.84 

vowel 0.85 0.93 0.47 0.89 0.94 0.45 AF 0.47 0.59 0.74 

waveform 0.75 0.76 0.62 0.75 0.76 0.74 0.54 0.64 0.65 

Average 0.92 0.93 0.57 0.92 0.93 0.72 0.60 0.83 0.86 

EquiWins 8 8   10 12 1 2 2 2 

SigBoosts 8 8 3 9 9 11  11 11 

SigLosses   2   1    

Key:  Bold Italic represents Maximum; Bold represents better than Treelines (REPTree & SCART);  

 Italic is near Treelines; Underscore is near Baseline; Strikeout is below Baseline (Decision Stump); 

 Shading distinguishes underlying learner: REPTree (green) or SCART (lilac) vs Decision Stump (none) 
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4 RESULTS 

For weak and strong rule/tree learners where 

boosting was expected and confirmed (Weka’s  

REPTree and Simple Cart), we tested MultiBoost as 

well as AdaBoost using Accuracy, Cohen Kappa and 

Powers Informedness, and selected results are shown 

in Figs 2 & 3. For reference both the single level 

and complete Decision Tree are shown as baseline 

(REPTree Decision Stump) and bestline (REPTree 

Full Tree). Table 2 also shows 260 cycles for a 

weak base learner and 26 for 2 strong base learners 

for additional datasets with SimpleCART as the 

additional strong base learner.  

Although we have tested the family of Perceptron 

and SVM learners extensively, they are beyond the 

scope and space of this paper, where for fairness we 

concentrate on tree-type weak learners as originally 

proposed for AdaBoost, but we note that similar 

results pertain. We cannot confirm that MultiBook is 

better than AdaBook but rather they seem evenly 

balanced as to which is best: we see no evidence of 

avoiding early surrender, but suggest that the bagging 

iterations lead to lower performance on weak learners 

as less boosting iterations are performed.  Matching 

boosting iterations is a matter for future work, but we see 

slightly better performance on stronger base learners. 

For Decision Stumps (DS in Figs and D260 Table 

2) there are two character recognition cases where 

MultiBook was significantly better (Vowel and 

Isolet) and for the other datasets AdaBook seems to 

be a bit better. In all cases, the uncorrected accuracy 

versions failed to boost, but boosting was achieved 

with corrected accuracies.  In two of the six cases 

(Opt and Hand), AdaBook was already comparable 

with or better than the full REPTree learner, and 

MultiBook and AdaKap performed slight less 

spectacularly.  It is telling that standard AdaBoost is 

uncompetitive, and that even with chance-corrected 

boosting, it mostly fails to attain the REPTree 

Bestline.  In Fig. 2 for both experiments we use 26 and 

260 iterations of DS boosting, but in Fig. 3 we show 

2600 iterations of AdaBook gives no further gain. 

When boosting a stronger REPTree learner 

(noting that the Decision Stump learner is REPTree 

restricted to a single branch decision), the story is 

quite different: in all case all boosting approaches 

achieved significant improvement over REPTree, 

with MultiBook apparent best in four of the six cases 

(similar results for all boosters were achieved for Pen 

and Opt, but as we approach 100% accuracy, there is 

less scope to show their mettle, and these had the  

underlying learners with the highest inherent 

accuracy). The results for boosting SimpleCART are 

very similar, and often slightly better than for 

REPTree as seen in Table 2. 

5 CONCLUSIONS 

We have extended chance-corrected adaptive 

boosting of standard weak learners to include 

bagging iterations according to the MultiBoost 

algorithm. Chance correction is found to make a 

considerable difference to the performance of both 

AdaBoost.M1 and MultiBoost (with three iterations 

of AdaBoost.M1 to one of Bagging).  Indeed, for a 

weak learner it tends to make the difference between 

boosting nicely, and not boosting at all, whilst for a 

stronger learner, better results tend to be achieved, 

and no worse results were achieved, except for two 

of the additional datasets shown in Table 2 where for 

Sick neither REPTree nor Simple CART showed 

improvement either, and for Hypothyroid the 

boosting with Accuracy failed and both Kappa and 

Informedness regressed the strong learners minor 

improvement above baseline. 

Compared with other variants of boosting or 

AdaBoost, no inbuilt learning or regression 

mechanism is required, and no probability or 

plausibility or confidence rating or ranking needs to 

be generated for the weak learner: a standard learner 

can be used and no extension is required.  However, 

it is usually better to start with a strong learner. 

Moreover, it is not necessary to run separate 

training sessions for each class – learning across all 

classes simultaneously is possible for base classifiers 

that support this. 

On the other hand, boosting performance for 

Naïve Bayes was spectacularly absent, with only one 

dataset achieving boosting, and no chance-correction 

mechanisms showing any advantage versus accuracy. 

The Naïve Bayes learner is significantly different 

from a Tree Learners, and this apparent independ-

ence may make it suitable for use in multi-classifier 

variants of boosting, bagging or stacking, based on 

ensemble fusion techniques involving variation to the 

classifier rather than just the selection or weighting 

of data, and using optimization of weights. 

A major deficiency of this work is that we used 

only base learners that were optimized in terms of 

uncorrected accuracy or error, and it is noted (Powers, 

2011) that such optimization can actually make things 

worse in chance-correct or cost-penalty terms. There 

is thus a strong chance that the weak learner will 

detrain and thus not satisfy the boosting condition, 

and this is particularly likely for Informedness, but 

less likely for Kappa which is more closely related to 
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Accuracy, and tends more to move with Accuracy, 

although its divergence from Informedness is itself a 

source of reduced performance.  This explains why 

often Kappa will seem to do better than 

Informedness, which should do better on theoretical 

grounds given a chance-correct weak learner. 

6 FUTURE WORK 

Chance correction has been advocated for decades, 

but only now is it being incorporated into learners, 

starting with boosting.  It is clear that it should be 

incorporated into base learners as well, and further 

studies are needed to explore those existing learners 

that optimize Informedness or some other chance-

corrected measure. 
In addition further variations and combinations 

on boosting, bagging and stacking would seem to be 

worth exploring to address the limitations of 

particular weak learners and ensure that boosting is 

allowed to continue.  In particular, techniques that 

revert to lower K-learners on failure of the weak 

learner, would gain the best of both worlds – fast 

multiclass learning where possible, and solid but 

slow low cardinality or single class learning when 

not. As noted above, this includes exploring the 

sensitivity of MultiBoost and its chance-corrected 

variants to the number of bagging and boosting 

iterations. 

We identify the fact that weak learners are still 

optimizing an uncorrected measure as the major 

obstacle to achieving the theoretical performance of 

chance-corrected boosting, and in Table 2 we have 

not with A resp. F cases where the Accuracy res. F1 

have risen but chance-corrected measures fell. We 

are working on general modifications/wrappers for 

broad classes of learner to address this issue, 

including a specific focus on ANNs, SVMs and 

Decision Trees. 

It is also a priority to explore boosting of learners 

that are less sensitive to noise and don’t have the 

convexity constraints of AdaBoost, including 

learners that are based on switching and can explore 

and unify alternate learning paths. Since boosting 

works well with tree learners, such a tree-like 

approach would produce a consistent but potentially 

more comprehensible model due to the structural risk 

minimization properties of boosting and the noise 

sensitivity minimization properties of switched 

boosting. However we are also exploring 

performance with SVM and MLP learners with 

promising but inconsistent results. 

Our focus here was the language/character 

multiclass problems, but we also have more general 

problems in robotics, vision, diagnostics etc. 

However, the diverse natures of these problems, as 

illustrated by the other half dozen datasets in Table 2, 

remain to be characterized and understood. It is 

particularly important to explore what difference 

chance-correction makes in practical applications, 

and an obvious application where AdaBoost is a 

mainstay component, is face finding and object 

tracking (Viola and Jones, 2001).  

This paper has concentrated on two particular 

kinds of ensemble technique: boosting; and bagging in 

combination with boosting. One of the explanations 

of why these techniques work, and why boosting is in 

general more effective than bagging, is that the 

different subsets of instances that are selected for 

learning, and thus the different trained weak learners, 

correspond to different weightings on the features as 

well as the examples.  Techniques like that explore 

feature evaluation and selection, including ensemble 

techniques like Random Forests and Feating, more 

directly select features. When features have different 

sources (e.g. biomedical sensors, audio sensors and 

video sensors combined) or have spatiotemporal 

interrelationships (e.g. pixels or MRI voxels or EEG 

electrodes sampled at a specific rate), then there is 

additional structure that may be usefully explored. 

AdaBoost, AdaBook and AdaKap may all be 

used reasonably effectively as early fusion 

techniques because of these implicit feature selection 

properties, and in our current work the chance-

correction advantage is again clear, although this is 

beyond the scope of this paper.  Nonetheless there 

seems to be a lot more room for improvement 

including selecting features and combining weak 

classifiers in ways that bias towards independence (or 

decorrelation) rather than using simple majority or 

convexity fusion techniques as implemented in 

traditional boosting.  This is something else we are 

exploring. 

We have also glossed over the existence of a 

great many other boosting algorithms, and the known 

limitations of convex learners such as AdaBoost in 

dealing with noise. These convex learners are 

Perceptron-like and the boosted learner is a simple 

linear combination of the trained weak learners, and 

are known not to be able to handle label noise.  The 

original boosting algorithms were based on Boolean 

or voting ideas, and further work is needed on 

variants of boosting that don’t overtrain to noise like 

Adaboost can, but are insensitive to the occasional 

bias introduced by label noise, or the regular variance 

introduced by attribute and measurement noise, or the 

kind of artefacts and punctuated noise we get in signal 
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processing, including EEG processing, audio speech 

recognition, and video image or face tracking. The 

idea is that successive stages bump an instance up or 

down in likelihood but our mislabelled instance is not 

repeatedly trained on with increasing weights until it 

is labelled “correctly” (Long and Servidio, 2005, 

2008, 2010). 

We advocate the use of chance-corrected 

evaluation in all circumstances, and it is important to 

modify all learning algorithms to use a better costing. 

Uncorrected measures are deprecated and should never 

be used to compare across datasets with different 

prevalences or algorithms with different biases. 
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