
F3 - From Features to Framework

Matheus C. Viana1, Rafael S. Durelli2, Rosângela A. D. Penteado1 and Antônio F. do Prado1

1Department of Computing, Federal University of São Carlos, São Carlos, SP, Brazil
2Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos, SP, Brazil

Keywords: Reuse, Framework, Pattern, Domain, Feature.

Abstract: Frameworks allow applications to be developed more efficiently and with higher quality since application
functionality can be designed and implemented by reusing framework classes. However, frameworks are
hard to develop, learn and use, due to their adaptive nature. The effort to develop a framework tends to be
greater than an application. In this paper we propose an approach to facilitate the development of white box
frameworks. In this approach, denominated From Features to Framework (F3), the domain of the framework
is modeled and a set of patterns guides the developer to design and implement the framework according to the
elements and rules defined in this model. An example of use of the F3 approach is also presented in this paper.

1 INTRODUCTION

Frameworks support the design and the
implementation of applications providing abstract
classes with partially implemented functionality.
When a framework is reused, developers complete its
functionality with application-specific details. Thus,
applications are not developed from scratch, reducing
the time spent in their development and making use
of the quality of framework code (Abi-Antoun, 2007;
Lopes et al., 2005; Johnson, 1997).

Due to these advantages, when many closely
related applications are developed, like in a software
product line, a framework can be used as the core
asset (Kim et al., 2004; Weiss and Lai, 1999).
Common features of the domain are implemented in
the framework and applications can have their specific
elements. Moreover, frameworks are often used
in the implementation of common non-functional
requirements, such as persistence (JBoss Community,
2013) and software architectures (Spring Source
Community, 2013).

However, frameworks are hard to develop,
because their classes must be abstract enough to
be reused by several applications. Developers
must determine the domain of the applications
able to be instantiated from the framework and
how the framework accesses the application-specific
elements, despite these elements are unknown during
framework development (Parsons et al., 1999; Weiss
and Lai, 1999).

Frameworks are also hard to learn and use.
Typically, it is a steep learning curve since application
developers need to understand the complex design of
the framework to know which classes will be reused
by the application and the rules to do it. Some of
these rules may not be apparent in the framework
interface (Srinivasan, 1999). Even developers who
are conversant with a specific framework may make
mistakes while reusing it to instantiate an application.

In a previous paper we devised an approach
for building Domain-Specific Modeling Languages
(DSML) to facilitate framework reuse (Viana et al.,
2012). A framework DSML could be built by
identifying the features of the framework and the
information required to instantiate them. Application
models created with the DSML were used to
generate application code, protecting developers from
framework complexities.

In this paper we propose the approach that
aims to facilitate the development of white box
frameworks that are domain-specific. In this
approach, denominated From Features to Framework
(F3), the domain of a framework is modeled and a
set of patterns guides the developer to design and
implement the framework according to the features
and rules defined in this model.

The novelty of our research is that F3 provides
a set of patterns that can be identified in the feature
models and present design and implementation
solutions to the development of white box
frameworks. In addition to show to the developers

110 C. Viana M., S. Durelli R., A. D. Penteado R. and F. do Prado A..
F3 - From Features to Framework.
DOI: 10.5220/0004417701100117
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 110-117
ISBN: 978-989-8565-60-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

how they can proceed, the F3 patterns provide a
systematic way to develop frameworks.

The remainder of this paper is organized as
follows: the background concepts applied in this
research are discussed in Section 2; the F3 approach
is presented in Section 3; an example of framework
development based on the F3 approach is presented
in Section 4; some related works are discussed in
Section 5; and conclusions and further works are
presented in Section 6.

2 BACKGROUND

2.1 Patterns and Frameworks

Reuse is a practice that aims to reduce time spent in
a development process and to increase the quality of
the final product (Shiva and Shala, 2007). Copy/paste
is the simpler form of reuse. Programming
languages allow the reuse of operations, classes,
modules and other blocks without the need of
access to the original code. However, other reuse
techniques, such as patterns and frameworks, are
more sophisticated and offer reuse at more abstract
levels than implementation (Frakes and Kang, 2005).

Patterns are successful solutions that can be
reapplied to different contexts (Johnson, 1997). They
provide reuse of the experience to help developers
to solve common problems (Fowler, 2003). The
documentation of a pattern mainly contains its
name, the context it can be applied, the problem
it is intended to solve, the solution it proposes,
illustrative class models and examples of use. There
are patterns for several purposes, such as design,
analysis, architectural, implementation, process and
organizational patterns (Pressman, 2009).

Frameworks are reusable software that can be
instantiated into several applications in a domain
(Johnson, 1997). Applications are linked to the
framework by reusing its classes. Unlike library
classes, whose execution is controlled by the
applications, frameworks control the execution flux
of the applications accessing the application-specific
code (Pressman, 2009).

The fixed parts of the frameworks are called
frozen spots. These parts implement common
functionality of the domain that is reused by all
applications. The variable parts, called hot spots,
can adapt according to the specifications of the
desired application. What differs one application
from another is the way in which the framework hot
spots are configured (Srinivasan, 1999).

Frameworks can be classified according to the
way they are reused: white box frameworks
are reused by class specialization; black box
frameworks work like a set of components; and
gray box frameworks are reused by the two previous
ways (Abi-Antoun, 2007; Johnson, 1997).

There is another classification that takes in
consideration the purpose of the frameworks:
System Infrastructure Frameworks (SIF) simplify
the development of software that controls low-level
operations, such as operator systems and graphical
window managers; Middleware Integration
Frameworks (MIF) help the modularization and
the integration of applications; and Enterprise
Application Frameworks (EAF) originate
applications that are specific to domains of industry,
commerce, services, etc. (Abi-Antoun, 2007; Fayad
and Schmidt, 1997).

2.2 Modeling Domains

A domain, or family, of software consists of a set of
applications that share common features. A feature
is a distinguishing characteristic that aggregates value
to applications (Jezequel, 2012; Lee et al., 2002;
Kang et al., 1990). For example, Rental, Customer,
Resource and Payment could be features of the
domain of rental applications.

Different domain modeling approaches can be
found in the literature (Jezequel, 2012; Gomaa, 2004;
Bayer et al., 1999; Kang et al., 1990). Although there
are differences in the graphical notation they adopt,
the semantic of the elements and rules of their features
models are almost the same. The features of a domain
can be mandatory or optional, have variations and
require or exclude other features.

In a feature model, the features are arranged in
a tree-view notation. Usually, the feature that most
represents the purpose of the domain is put in the
root and a top-down approach is applied to add the
other features. For example, the main purpose of the
domain of rental applications is to perform rentals, so
Rental is supposed to be the root feature. The other
features are arranged following it.

Other way to model domains is by using
metamodels, such as MetaObject Facility (MOF)
(OMG, 2013). They are similar to class models
and therefore they are more appropriate to developers
accustomed to the UML. While feature models can
only define the features that compose the domain and
the conditions for these features to take part in the
applications, metamodels can specify attributes and
operations for their elements and how these elements
can communicate to each other. On the other hand,

F3�-�From�Features�to�Framework

111

feature models can define dependencies between the
features, while metamodels depend on declarative
languages to do it (Gronback, 2009).

3 THE F3 APPROACH

The F3 approach has two steps: 1) Domain Modeling,
in which a white box framework domain is defined;
and 2) Framework Construction, in which the
framework is designed and implemented according to
the definitions of its domain.

3.1 Domain Modeling

The domain of applications that can be developed
with the framework is determined in this step.
However, feature models are too abstract to contain
information enough to develop frameworks and
metamodels depend on other languages to define
dependencies between elements. Therefore, a new
type of feature model, called F3 model, has been
created to define the features of the frameworks in the
F3 approach.

F3 models incorporate the characteristics of both
feature models and metamodels. The elements
represent the features of the framework domain, i.e.,
the domain of applications that can be developed with
the outcome framework. In white box frameworks,
an instance of a feature is an application class that
reuses the framework class of this feature. As in
conventional feature models, the features in the F3
models can also be arranged in a tree-view, in which
the root feature is decomposed in other features.
However, the features in the F3 models do not
necessarily form a tree, since a feature can have a
relationship targeting a sibling or even itself, as in
metamodels. The elements and relationships in F3
models are:

� Feature: represent the entities that compose the
domains. graphically represented by a rounded
square, it must have a name and it can contain any
number of attributes and operations;

� Decomposition: a relationship that indicates that
a feature is composed of another feature. This
relationship specifies a minimum and a maximum
multiplicity. The minimum multiplicity indicates
whether the target feature is optional (0) or
mandatory (1). The maximum multiplicity
indicates how many instances of the target feature
can be associated to each instance of the source
feature. The valid values to the maximum
multiplicity are: 1 (simple), for a single feature

instance; * (multiple), for a list of a single feature
instance; and ** (variant), for any number of
feature instances.

� Generalization: a relationship that indicates that
a feature is a variation and it can be generalized
by another feature.

� Dependency: a relationship that define a
constraint for a feature to be instantiated. There
are two types of dependency: requires, when
the A feature requires the B feature, an application
that contains the A feature has to include the B
feature as well; and excludes, when the A feature
excludes the B feature, no application can include
both features at the same time.

3.2 Framework Construction

The F3 approach define a set of patterns to assist
developers to design and implement a framework
from the domain model. The patterns treat problems
that go from the creation of classes for the features
to the definition of the framework interface. The
name and the purpose of some of the F3 patterns are
presented in Table 1.

The documentation of the F3 patterns is organized
into topics to assist the developers to identify when
a certain pattern should be applied. The topics
of this documentation are described as follows and
exemplified in Table 2:

� Name: identifies each pattern and summarizes its
purpose.

� Context: describes a desired behavior for the
framework/domain.

� Scenario/Problem: describes the arrangement of
features and relationships in the F3 models that
can imply the pattern.

� Solution: indicates the code units that should be
created to implement the desired behavior.

� Model: shows a generic graphical representation
of the scenario/problem and the solution.

� Implementation: displays a fragment of code, in
a programming language, that illustrates how the
solution can be implemented.

In addition to provide solutions that indicates
the code units that implement the framework
functionality, the F3 patterns also determine how the
framework can be reused by the applications. For
example, the pattern presented in Table 2 suggest the
creation of an operation, getTargetClass, that must
be overridden in the instances of the source feature
to indicate which class is an instance of the target
feature.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

112

Table 1: Some of the F3 patterns.

Pattern Purpose
Domain Feature Indicates the structures that should be created for a feature.
Mandatory
Decomposition

Indicates the code units that should be created when there is a mandatory
decomposition linking two features.

Optional
Decomposition

Indicates the code units that should be created when there is an optional
decomposition linking two features.

Simple Decomposition Indicates the code units that should be created when there is a simple decomposition
linking two features.

Multiple
Decomposition

Indicates the code units that should be created when there is a multiple
decomposition linking two features.

Variant Decomposition Indicates the code units that should be created when there is a variant decomposition
linking two features.

Variant Feature Defines a hierarchy of classes for features with variants.
Modular Hierarchy Defines a hierarchy of classes for features with common attributes and operations.
Requiring Dependency Indicates the code units that should be created when a feature requires another one.
Excluding Dependency Indicates the code units that should be created when a feature excludes another one.

Table 2: The Mandatory Decomposition pattern.

Name Mandatory Decomposition
Context When a target feature is

mandatory to a source feature,
every instance of the source
feature must be associated with
a instance of the target feature.

Scenario/
Problem

A feature has a decomposition
relationship with minimum
multiplicity equals 1.

Solution The class that implements
the source feature must
have an abstract operation
that indicates what class
implements the target feature
in the applications.

Model The scenario and the design
solutions of this pattern are
shown in Figure 1

Implementation
public abstract class Source {

public abstract

Class<? extends Target>

getTargetClass();

}

Figure 1: The (a) scenario described by the pattern in the
domain models and (b) its design solution.

The step of Framework Construction has as output
a white box framework for the domain defined in the
step of Domain Modeling. Although the F3 patterns
support many aspects of framework development,
they have limitations. They do not assist the
implementation of the internal code of the operations
defined in the domain model. They also do not assist
the implementation of non-functional requirements,
such as data persistence, logging and graphical user
interface. However, frameworks specific for these
purposes can be reused together the frameworks
developed with the F3 approach.

4 APPLING THE F3 APPROACH

In this section it is presented an example of use of
the F3 approach for the development of a framework
in the domain of rental and trade transactions. The
requirements of this domain are:

1. One or more resources can be traded or rented
by a destination party. Both rental and
trade transactions have the following attributes:
number, date and total value. Rental transactions
also includes a ending date and a return date.

2. A resource has three attributes: ID, description
and value. When a resource participates in a
transaction, it is regarded as transaction item and
it is necessary to specify its quantity and value.

3. A resource type defines a classification for a
resource based on a perspective. For example,
in an movie rental application, a Movie can be a
resource classified by the types Category, Genre,
Director and so on. Thus, there may be any

F3�-�From�Features�to�Framework

113

Figure 2: F3 model for the domain of rental and trade transactions.

number of resource types for a resource. The
attributes of resource type are ID and description.

4. A destination party has ID and name as attributes
and it is mandatory for rental transactions.

The following sections describe the steps of
Domain Modeling and Framework Construction for
the framework that deal with rental and trade
transactions.

4.1 Rental and Trade Transaction
Domain Modeling

The F3 model of the domain of rental and trade
transactions was created based on the rules described
in Section 3.1 and the requirements of this domain.
This model is shown in Figure 2.

Rental and Trade are variations of the
Transaction feature. Since destination party is
optional for trade transactions, but not for rental
transactions, a dependency of the type requires
was established between the features Rental and
DestinationParty.

Transaction also has a mandatory one-to-many
decomposition with TransactionItem. Each
transaction item register a resource that is involved
in a transaction and the value that must be paid
for it, hence Resource is also mandatory to

TransactionItem.
Resource has a decomposition relationship

with variant maximum multiplicity (**), because
there may be many classes in the applications
that implement the ResourceType feature to
classify the resources defined in these applications.
The minimum multiplicity of this decomposition
relationship indicates that ResourceType is optional
for Resource.

4.2 Rental and Trade Transaction
Framework Construction

The step of Framework Construction for the domain
of rental and trade transactions has been carried out
applying the F3 patterns listed in Table 3.

The Domain Feature pattern was used to define a
class for each feature in the F3 model of Figure 2.
The Variant Feature pattern was applied to implement
Trade and Rental as classes which extend the
Transaction class. The Simple Decomposition and
the Multiple Decomposition patterns were applied to
define the whether an association is implemented as a
single attribute or a list in the framework classes. For
example, the attributes destination and items in
the Transaction class were implemented as follows:
public abstract class Transaction {

Table 3: F3 patterns applied in the step of Framework Construction of the domain of rental and trade transactions.

Pattern Applied to
Domain Feature All features.
Variant Feature Transaction, Trade and Rental.
Simple Decomposition Transaction to DestinationParty and TransactionItem to Resource.
Multiple Decomposition Transaction to TransactionItem.
Optional Decomposition Transaction to DestinationParty and Resource to ResourceType.
Mandatory Decomposition Transaction to TransactionItem and TransactionItem to Resource.
Variant Decomposition Resource to ResourceType.
Requiring Dependency Rental to DestinationParty.
Modular Hierarchy number, id, description and name in Transaction, Resource,

ResourceType and DestinationParty.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

114

Figure 3: Design class model of the framework in the domain of rental and trade transactions.

private DestinationParty destination;
private List<TransactionItem> items;
...

}

The Mandatory Decomposition and the Optional
Decomposition patterns suggest the creation of an
operation that allows the framework to identify
application classes. However, in the Mandatory
Decomposition pattern this operation is abstract to
force applications to inform which class implements
the mandatory feature, while in the Optional
Decomposition pattern this operation has a default
implementation which returns null to indicate that
the optional feature is not being implemented. For
example, in the Transaction class the operations
that identify which application classes extend
TransactionItem and DestinationParty were
implemented as follows:

\\Mandatory Decomposition
public abstract
Class<? extends TransactionItem>
getTransactionItemClass();

\\Optional Decomposition
public Class<? extends DestinationParty>
getDestinationPartyClass() {
return null;

}

The Variant Decomposition pattern was applied
to allow each application class that extends
Resource to be associated with several subclasses
of ResourceType. To identify which classes extend
ResourceType in the applications, the following
operation was implemented in the Resource class:

public abstract
Class[]<? extends ResourceType>
getResourceTypeClasses();

Although destination party is optional for
transactions in general, the requires dependency
makes it mandatory for rental transactions. It implies
in the use of the Requiring Dependency pattern.
Thus, the operation getDestinationPartyClass is
overridden in the Rental class to become abstract.

Finally, to enhance the design of the
framework, the Modular Hierarchy pattern was
applied to organize common attributes and
operations in reusable abstract classes. Then
the IdentifiedObject and NamedObject classes
were created to contain the attributes id and name
(description in some classes), respectively, and all
operations related to these attributes.

After applying all patterns listed in Table 3, the
design class model of the framework that was created
with the support of the F3 patterns is shown in Figure
3. Constructors and the getter/setter operations has
been omitted in this model to simplify it.

5 RELATED WORKS

Keepence and Mannion (1999), Almeida et al. (2007)
and Loo and Lee (2010) proposed the use of design
patterns to model variabilities in domains. Srinivasan
(1999) also discussed the applicability of design
patterns for the development of frameworks, but
she did not work with feature models. Lopes
et al. (2009) and Stanojevic et al. (2011)
performed an research that analyzed framework
reuse difficulties and described some programming

F3�-�From�Features�to�Framework

115

and design techniques that positively impact on
framework reusability. These works served as basis
for the F3 approach, specially regarding the creation
of the F3 patterns (Keepence and Mannion, 1999;
Almeida et al., 2007; Loo and Lee, 2010; Srinivasan,
1999; Lopes et al., 2009; Stanojevic et al., 2011).

Xu and Butler (2006) proposed an cascaded
refactoring method which addresses the identification
of variability and framework development. In this
method, a framework is specified by different models,
sorted from the most abstract (feature model) to the
least abstract (source-code). A set of refactorings is
performed sequentially on the models and alignment
maps are defined to maintain the traceability amongst
the models by linking correspondent elements. In the
F3 approach the domain variabilities are documented
in the F3 models. Moreover, the F3 patterns can
provide a traceability between the features in these
models and the elements of the design and the
implementation of the framework (Xu and Butler,
2006).

Amatriain and Arumi (2011) also proposed a
method for the development of a framework through
iterative and incremental activities. In their method,
the domain of the framework could be defined from
existing applications and the framework could be
implemented through a series of refactorings over
these applications. The advantage of this method
is a small initial investment and the reuse of the
applications. Although it is not mandatory, the
F3 approach can also be applied in iterative and
incremental activities, starting from a small domain
and then adding features. Applications can also be
used to facilitate the identification of the features
of the domain. However, the advantage of the
F3 approach is the fact that the design and the
implementation of the frameworks are performed
with the support of patterns specific for framework
development (Amatriain and Arumi, 2011).

6 CONCLUDING REMARKS AND
FUTURE WORK

This paper proposed the F3 approach for the
development of white box frameworks from feature
models. The F3 approach uses a kind of feature model
that combines characteristics from conventional
feature models and metamodels to define the domain
of the framework. Then, to design and implement the
framework, the approach offers patterns that indicates
the classes, properties and operations that should be
created based on the elements and relationships found
in the domain model of the framework.

The F3 model allows the developers to define
the domain of the framework regardless design and
implementation details. It can reproduce different
domain scenarios that involve decompositions,
dependencies, and variabilities of the features.

The F3 patterns are independent of programming
language, although their documentation contains
examples of code implemented in Java. Their
design solution can be used to develop many versions
of the same framework implemented in different
programming languages.

More F3 patterns are being created to deal with
data persistence in the frameworks. Moreover, a
tool with a F3 model editor and a code generator
based in the F3 patterns are being developed. In
other future works we also intend to create patterns to
provide a Model-View-Controller architecture to the
frameworks created with the F3 approach.

ACKNOWLEDGEMENTS

We would like to thank CAPES and FAPESP for
financial support.

REFERENCES

Abi-Antoun, M. (2007). Making Frameworks Work:
a Project Retrospective. In Companion to the
22nd ACM SIGPLAN conference on Object-Oriented
Programming Systems and Applications, OOPSLA
’07, pages 1004–1018, New York, NY, USA. ACM.

Almeida, E. S., Alvaro, R., Garcia, V. C., Nascimento,
R., Meira, S. L., and Lucrdio, D. (2007). A
systematic approach to design domain-specific
software architectures. Journal of Software, 2(2).

Amatriain, X. and Arumi, P. (2011). Frameworks Generate
Domain-Specific Languages: A Case Study in the
Multimedia Domain. Software Engineering, IEEE
Transactions on, 37(4):544–558.

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D.,
Schmid, K., Widen, T., and DeBaud, J.-M. (1999).
Pulse: a methodology to develop software product
lines. In Proceedings of the 1999 symposium on
Software reusability, pages 122–131. ACM.

Fayad, M. and Schmidt, D. C. (1997). Object-Oriented
Application Frameworks. Communications of ACM,
40(10).

Fowler, M. (2003). Patterns. IEEE Software, 20(2):56–57.
Frakes, W. and Kang, K. (2005). Software reuse research:

Status and future. Software Engineering, IEEE
Transactions on, 31(7):529–536.

Gomaa, H. (2004). Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures. Addison-Wesley.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

116

Gronback, R. C. (2009). Eclipse Modeling Project:
A Domain-Specific Language (DSL) Toolkit.
Addison-Wesley.

JBoss Community (2013). Hibernate. http://
www.hibernate.org.

Jezequel, J.-M. (2012). Model-Driven Engineering for
Software Product Lines. ISRN Software Engineering,
2012.

Johnson, R. E. (1997). Frameworks = (Components +
Patterns). Communications of ACM, 40(10):39–42.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented domain
analysis (foda) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering
Institute.

Keepence, B. and Mannion, M. (1999). Using patterns to
model variability in product families. Software, IEEE,
16(4):102 –108.

Kim, S. D., Chang, S. H., and Chang, C. W. (2004).
A systematic method to instantiate core assets in
product line engineering. In Software Engineering
Conference, 2004. 11th Asia-Pacific, pages 92–98.

Lee, K., Kang, K. C., and Lee, J. (2002). Concepts
and guidelines of feature modeling for product
line software engineering. In Proceedings of the
7th International Conference on Software Reuse:
Methods, Techniques, and Tools, ICSR-7, pages
62–77, London, UK. Springer-Verlag.

Loo, K. N. and Lee, S. P. (2010). Representing
Design Pattern Interaction Roles and Variants. In
Computer Engineering and Technology (ICCET),
2010 2nd International Conference on, volume 6,
pages 470–474.

Lopes, S., Afonso, F., Tavares, A., and Monteiro, J. (2009).
Framework characteristics - a starting point for
addressing reuse difficulties. In Software Engineering
Advances, 2009. ICSEA ’09. Fourth International
Conference on, pages 256 –264.

Lopes, S. F., Silva, C. A., Tavares, A., and Monteiro,
J. L. (2005). Application development by reusing
object-oriented frameworks. In International
Conference on Computer as a Tool (EUROCON’05),
pages 583–586.

OMG (2013). OMG’s MetaObject Facility. http://
www.omg.org/mof.

Parsons, D., Rashid, A., Speck, A., and Telea, A.
(1999). A ldquo;framework rdquo; for object oriented
frameworks design. In Technology of Object-Oriented
Languages and Systems, 1999. Proceedings of, pages
141 –151.

Pressman, R. S. (2009). Software Engineering: A
Practitioner’s Approach. McGraw-Hill Science, 7th
edition.

Shiva, S. G. and Shala, L. A. (2007). Software reuse:
Research and practice. In Information Technology,
2007. ITNG ’07. Fourth International Conference on,
pages 603–609.

Spring Source Community (2013). Spring Framework.
http://www.springsource.org/spring-framework.

Srinivasan, S. (1999). Design Patterns in Object-Oriented
Frameworks. Computer, 32(2):24 –32.

Stanojevic, V., Vlajic, S., Milic, M., and Ognjanovic,
M. (2011). Guidelines for Framework Development
Process. In Software Engineering Conference
in Russia (CEE-SECR), 7th Central and Eastern
European, pages 1–9.

Viana, M., Penteado, R., and do Prado, A. (2012).
Generating Applications: Framework Reuse
Supported by Domain-Specific Modeling Languages.
In 14th International Conference on Enterprise
Information Systems (ICEIS’14).

Weiss, D. M. and Lai, C. T. R. (1999). Software
Product Line Engineering: A Family-Based Software
Development Process. Addison-Wesley.

Xu, L. and Butler, G. (2006). Cascaded refactoring for
framework development and evolution. Software
Engineering Conference, Australian, pages 319–330.

F3�-�From�Features�to�Framework

117

