
Nested Web Application Components Framework
A Comparison to Competing Software Component Models

Svebor Prstačić and Mario Žagar
Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, Zagreb, Croatia

Keywords: Componentization, Framework, Component Nesting, Web Content Management System, Web Application,
Comparison, Component based Software Engineering.

Abstract: There are many approaches and component models for Web application component development, of varying
complexity, for different platforms using different technologies. All of which have a common problem –
constrained component reusability. In this article, we summarize common software component reusability
shortcomings of the most popular frameworks and component models they provide, and compare against the
solution our own approach “framework as a component” provides to improve reusability.

1 INTRODUCTION

In software engineering, there is no shortage of
component models. Almost every development
framework, complex application or system defines
its own component model and provides ways to im-
plement components. Unfortunately, this makes
component implementation simple, and component
portability and reuse difficult. Components, once
implemented, exist only inside a single framework
that defines them (Wallace, 2010). As a conse-
quence, similar or identical functionality is imple-
mented over and over again using many different
frameworks because none of the existing frame-
works focus on or try to provide inter-framework
interoperability.

Reusable components are inherently abstract, and
harder to engineer, so making complex components
reusable is very hard. As a result, most components
forgo reusability for ease of maintenance and im-
plementation (Schmidt, 1999). This makes reuse of
components, even across applications that are creat-
ed using the same framework complex or even im-
possible.

Component based software engineering defines
two component model types: models that define
components as objects in object-oriented program-
ming, and the more complex components that con-
stitute of multiple classes or other code constructs
(Lau and Wang, 2007; Broy et al., 1998). These,
more complex components, can be defined as archi-

tectural units – that provide a specific functionality
to users, ie. a reusable forum application, built from
many classes, class libraries, user interface tem-
plates, functions etc. Each such component can be
thought of as a Web application in itself, and our,
previously introduced, framework (Prstačić et al.,
2011) focuses on improving such components' reuse.

We defined a component model such that com-
ponents can nest, even recursively, and be more easi-
ly reused even within other applications built using
different frameworks. Our testbed implementation is
done in PHP, but the model can be applied to other
technologies as well.

The framework in question is designed to be
simple to reuse and integrate into an arbitrary Web
application, as a component. Such an application we
call the host application, ie. a blog application could
be easily extended to provide commenting function-
ality for blog posts, and to enable attaching photo
galleries to blog posts. The same same commenting
component could be simply reused to provide com-
menting functionality for the photo gallery compo-
nent.

When such integration of the framework and the
host application is achieved, all the components im-
plemented for our framework become reusable in the
host application, which considerably improves those
components' reusability. Because of this property,
we call our framework the extensions framework and
components built for it extensions.
In this paper we identify accepted component prop-
erties defined in the literature, that contribute to

149Prstačić S. and Žagar M..
Nested Web Application Components Framework - A Comparison to Competing Software Component Models.
DOI: 10.5220/0004421401490156
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 149-156
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

components' reusability, and compare our own re-
sults in this area, to some of the most popular com-
ponent models and approaches to component reuse
that they provide.

2 SOFTWARE COMPONENT
MODELS

One of the pervasive needs of software development
is increase of speed and reliability of both software
development process, and the software created. Ben-
efits that component-based software development
(CBD) promises through reuse of well tested com-
ponents, with well documented and defined func-
tionality, it should be possible to create new soft-
ware, combining and connecting existing software
components instead of implementing the same func-
tionality over and over again. Unfortunately, current
component models fail to deliver on promises of
CBD (Lau and Wang, 2007; Bose, 2011). This is
evident in many very similar components that have
been implemented over and over again for most
popular frameworks in existence – a simple Google
query for a word “forum” in addition to the frame-
work name of choice will always yield results.

This is because software components are always
built for a specific framework or application that
uses a component model, which defines what a
software component is, how it can be constructed,
composed or assembled and finally deployed (Wal-
lace, 2010; Lau and Wang, 2007; Crnković et al.,
2011). Depending on the framework, components
can vary in possible complexity and functionality.

If a component is built for a specific application,
it can be thought of as an architectural unit, and such
a component can span through many layers of the
application, consisting of many classes and other
code or binary constructs. Components built for a
specific application are easy to reuse, but only inside
other instances of the same application.

Similarly, components built for a specific
framework are also architectural units, or even ap-
plications themselves. When reuse of such compo-
nents is intended inside another application, that
uses the same framework, required programming
effort can be significant. The more complex the
component, the harder reuse is. Although reuse can
be complex, it is significantly less complex than
reusing architectural unit type components built for a
specific application, inside another application.

Thirdly, in object oriented programming, the
most simple components are classes, or libraries of

classes. Reuse of such components is easiest to
achieve, but functionality that such components pro-
vide is minimal compared to an architectural unit
type of components.

To enable component reusability in other appli-
cations or frameworks, software adapters (Bishop,
2007) can be employed. Software adapters translate
required interfaces of one component to provided
interfaces of another component. This is obviously
inefficient and potentially very complex and has led
to implementation of very simmilar components for
various frameworks.

2.1 Nested Framework Component
Model

Our framework makes runtime and design-time as-
sembly of components possible, which is discussed
further in section 4. It makes assembly of nested
components possible, ie. a forum component that
extends the functionality of that same forum compo-
nent. This makes possible the creation of a forum to
debate a single forum post or topic, which is dubi-
ously useful in itself, but in some cases could be, ie.
using a commenting application nesting to enable
comment replies, while the component itself pro-
vides only the simple, basic functionality.

To achieve this, it provides both abstract classes
and objects as base building blocks for component
development. Use of these building blocks, for ex-
ample, provides simple access to host application's
execution context (Prstačić et al., 2011) with rele-
vant data commonly found in Web applications
(Prstačić et al., 2012) – user session, current user
data, current user permissions etc., are all translated
by the framework and provided to extensions in a
form that they can use. Integration of the framework
into the host application involves implementation of
abstract classes that are essential to providing this
translated execution context.

Once implemented, components can be used to
extend existing applications, that were built using a
different framework, with minimal effort. This is
possible because our framework is designed and
built as a component that is ready to be integrated
into arbitrary Web applications that we call host ap-
plications. When this integration is achieved, reusing
any component of the framework is possible using a
single line of code, as discussed further in section
4.2.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

150

3 POPULAR COMPONENT
MODELS PROVIDED
BY THIRD PARTY
FRAMEWORKS

There are many component models in existence, and
frameworks built to provide component based Web
application development. Each defines what a com-
ponent is, and even a superficial analysis shows that
many of the frameworks define components in a
similar way and use the same design patterns. For
example, separation of user interface definition and
design from user input handling and application log-
ic functionality using the model-view-controller
(MVC) pattern (MSDN, 2003), localization support,
database access – all are common and mandatory in
a Web application framework (Walker, 2012; Grails,
2012; Django, 2012; Symfony, 2012; Joomla, 2012).
Still, what defines a component in one framework
doesn't in another.

In the following sections we introduce some of
the most popular Web application frameworks' com-
ponent models and compare them at the higher level.

3.1 ASP.NET

ASP.NET provides a few different component mod-
els to build Web application components, one of
them is Web forms and ASP pages, that are a para-
digm to separate application presentation from ap-
plication logic similarly to MVC (MSDN, 2011),
(Alpaev, 2011), and make Web application develop-
ment similar to the event based desktop Windows
programming.

ASP.NET and Web forms provide a fast and sim-
ple way to reuse components of varying complexity:
data access, user interface components, common
application logic and combinations of those. How-
ever, the is no way to easily integrate architectural
unit type of components. For example, a more com-
plex application, such as .NET Nuke CMS, provides
its own array of interfaces to create architectural unit
type of application components (Walker, 2012).
Components for such applications are not easily
reusable inside other applications, regardless being
built with the same underlying framework. Addi-
tionally, more problems can arise if a component is
built using another component model than the appli-
cation uses, for example ASP.NET MVC (explained
in the following section). Integrating such a compo-
nent would require additional programming work to
both the application in which we want to reuse it,
and the component.

3.1.1 ASP.NET MVC 3

ASP.NET MVC 3 (Prstačić et al., 2011; MSDN,
2003) is the newest component model available in
ASP.NET. It provides an alternative way to define
Web application components: a “Razor” template
engine, which strongly resembles Smarty (Prstačić et
al., 2012; Smarty, 2012) for PHP, both in syntax and
the way it is used. Razor also provides “HTML
helpers” which are a way to provide functionality
that Smarty plugins (Prstačić et al., 2012) provide.
Consequently, various components can be nested
inside each other so that they combine various views
of various models. For each reuse case however, one
has to know what parameters a component expects,
or in other words, a component can define an arbi-
trary required interface. This provides flexibility
when developing components, but also has adverse
side effects to component reuse.. For example, reus-
ing components might have to do the work of pre-
paring data that a reused component expects, or a
reused component could be implemented in a way to
integrate with a specific reusing component, making
the reused component hardly reusable for other arbi-
trary components.

3.2 Groovy on Grails

Groovy on grails is a modern and versatile Web ap-
plication framework that provides Web development
using a dynamic language (Groovy) and runs on a
Java virtual machine. This combination provides
easy use of all the power of Java and Java compo-
nents, and flexibility of Groovy. Groovy provides a
MVC pattern for development and a strong Object-
relational mapping (ORM) database access layer.
Classes that define data entities are called domain
classes, and controllers are called domain control-
lers. Groovy on grails defines its own template lan-
guage to define views.

Domain classes, controllers and views can be
packed as plug-ins, which makes them easily porta-
ble to other Groovy on grails applications or pro-
jects. Integration of plug-ins consists of configura-
tion editing – what controller should be invoked for
which URL, but interactions between components
have to be implemented individually. So, again, re-
using an architectural unit component requires pro-
gramming, and more than just a few lines of code,
especially if different components' data has to refer-
ence each other.

3.3 Django Framework

Django is a Python Web development framework

Nested�Web�Application�Components�Framework�-�A�Comparison�to�Competing�Software�Component�Models

151

 that aims to provide great component reuse capa-
bilities (Django, 2012). In theory, each component
developed using Django is an application that can be
easily reused alongside other applications – thus
forming a greater whole application. Django pro-
vides a very flexible and powerful ORM. When a
developer creates a model – Python class, the
framework is capable of creating the database sche-
ma, and even provide the administrator's user inter-
face to manipulate data that the model represents.

But reusability of all the Django applications
strongly depends on their implementation. The de-
veloper has to balance between creating applications
that are big and monolithic or too small to provide a
unique functionality. Only those well balanced can
be easily reused.

For example, a reusable application should pro-
vide signals for other applications' models and injec-
tion points in its views. This introduces complexity
because there exists no convention in which the re-
usable applications communicate inside the frame-
work, and this communication depends on imple-
mentation of each of the components and relies al-
most completely on the experience and effort of the
developer. Even then, models often have to be ex-
tended with properties that include references to
models of the reusable applications (Altman, 2011;
Django, 2012), which decreases reuse inefficiency.

3.4 PHP Symfony Framework

In Symfony (Symfony, 2012) components that pro-
vide some reusable application functionality are
called bundles. Each bundle is actually a separate
application that can be executed by the Symfony
framework. Symfony also uses a MVC pattern as its
architectural pattern for bundles, so each bundle
consists of models which are called entities, control-
lers and static files.

Other artifacts that can be packaged into a bundle
are static files like view templates, configuration
files, CSS and JavaScript files. So, reuse of a bundle
consists of installing its files, and writing a few lines
of configuration that tell the framework to use it.
Interaction between various bundles or their MVC
components can be achieved only if the components
themselves provide communication interfaces, In
many cases, the entities (models) also have to be
modified to reference each other across bundles,
which again introduces a level of inefficiency in
component (bundle) reuse.

3.5 Common Component Reuse
Failings

Consider a web application that provides news arti-
cle publishing through one of its components. Such a
component would define a database model to store
articles, a few classes to handle the data, user inter-
faces and a controller to handle user actions. If we
were to add commenting functionalities, we have a
few options, and this applies to all the component
models of the previously mentioned frameworks.

The first option is to create a commenting com-
ponent that integrates tightly with the news compo-
nent – at the database level, comments reference a
specific news article, and at the presentation level –
the news component simply invokes rendering of the
comments component for each article. This solution
is simple, but greatly hinders the commenting com-
ponent since it is practically implemented as a part
of the news component.

The second option is to create a generic com-
ments component that has a mechanism to provide
comments for more than just the news component.
The commenting component can thus provide a set
of required interfaces and handle the data abstraction
itself. This is inefficient because it involves imple-
menting functionalities as a part of the component
that should be a part of the framework. Additionally,
reusability is further hindered by the fact that the
component will only function inside a specific
framework or application that it was built for. Our
framework offers a solution to these problems, spec-
ified in the following section.

4 THE EXTENSIONS
FRAMEWORK,
COMPONENT MODEL

To compare how our framework and component
model improve component reusability to competing
approaches introduced in the previous chapter, we
found the following criteria to evaluate component
reusability (Broy et al., 1998; Jeffrey, 1994) to be
most applicable:

 existence of visual tools for component de-
sign-time assembly,

 existence of run-time visual component
composition tools,

 components are portable between frame-
works using the same programming lan-
guage,

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

152

 components are cross-platform or cross
programming language,

 functional completeness of a component,
 cohesion and low coupling,

In the following sections we explain the tech-
nical intricacies of our approach and compare it ac-
cording to applicable criteria.

4.1 Component Nesting and Communi-
cation

Using all the mentioned Web application frame-
works, nesting of components is possible, but the
frameworks don't support it directly, it has to be spe-
cifically implemented for each component pair to
make it possible. If a component wants to use an-
other, it has to manage each used component explic-
itly through a custom set of interfaces that the child
exposes. Additionally, integration points can be im-
plemented on different layers, and all these choices
are a subject to developer's whim. This introduces
complexity in the way components interact, which
has to be handled separately for each pair of interact-
ing components and forces a component developer
to implement component interoperability rather than
focus on developing a single component.

This also causes components' cohesion, a level in
which components work together to offer a compo-
site functionality to be lower, and coupling, meaning
interdependence between components higher, which
also makes probability of failure of the system high-
er if just one of the components fails (Eder, 1994).

Components, in general, are built to interface
with the framework using predefined required inter-
face(s) (Figure 1). These interface are defined by the
framework and provide data necessary for compo-
nent execution, but also provide a way for a compo-
nent to return execution results on framework re-
quest. Also, from Figure 1 we can see that a compo-
nent can define a set of provided interfaces. This is
fine, but those interfaces are not defined by any of
the frameworks, so components that connect through
them are implemented in a specific way. Obviously,
this is a problem and this approach introduces com-
plexity in both integration and future component
maintenance.

To solve this, our framework acts as a mediator
between components. Every component that wants
to interface with another can achieve this through
framework's IHookData interface (Figure 2), that is
translated into an IHook interface.

In this way, the framework as a component effec-
tively delegates interfaces between the two compo-
nents. As a consequence, component reuse and

Figure 1: Usual way frameworks interface components.

implementation in our framework has to be done
according to only two simple rules:

 components (extensions) must be used
through the IHookData interface of the
framework.

 extensions will always be provided a
IHhook, which is extensions' required inter-
face (Prstačić et al., 2011)

Pondering the basis of component integration,
we can conclude that these rules make it simpler and
predictable. Components have to exchange data in
order to provide a unified user experience or provide
a unified functionality. For all the previously men-
tioned frameworks, prerequisites are that a compo-
nent communicates with the framework, and always,
communication between components is left to be
defined and implemented by the component's devel-
oper.

Figure 2: Extensions framework component interface.

Our framework, through enforcement of the two
mentioned rules, provides component reuse and
nesting. This both makes functional completeness
easier to provide and also lowers coupling because
components only communicate with the framework.
Implicitly, it increases cohesion – if a component
communicates and works efficiently with one other
component, it will also work and communicate with
another that communicates using the same interfac-
es.

4.2 Technical Properties

There are four main properties that the component
model defined for our framework provides:

Nested�Web�Application�Components�Framework�-�A�Comparison�to�Competing�Software�Component�Models

153

 nested and composite components can be defined
by the user on run time, as well as developers on
design time

 components don't have to reference other compo-
nents' data directly, and they don't have to handle
the abstraction themselves

 the framework provides a way for components to
notify child components of parents' data changes

 user interfaces assembly, such as form nesting, is
handled by the framework

 component reuse and integration can be trivially
implemented in the higher layers of component
architecture, such as the presentation layer
In the following sections we explain these differ-

ences in more detail. We will also compare the bene-
fits of the component model used in our framework,
as opposed to competing models.

Let's once again consider the example introduced
in section 3.5. To use the commenting functionality
for the news component, we should have to write a
trivial one line of code. Ideally, this one line should
make reuse of additional components possible. As-
suming the integration of the framework as a com-
ponent into the host application is achieved as fur-
ther explained in (Prstačić et al., 2012), the host ap-
plication provides the execution context to the ex-
tensions framework through the integration interfac-
es (II), while the component of the host application
requests execution of a specific extensions frame-
work component through component interface (CI),
called the IHookData. Data provided by the host
application component through CI and the host ap-
plication execution context through II is combined
by the framework to provide the computed execution
context for the Extension (Figure 3).

In our case, extending the news article with
commenting capabilities can be achieved with one
simple line of code. The following is an example
usage of our framework's Smarty plug-in v2ext that

Parent component

Hook data

Unique id (hook)

Extension

Execution context

Computed execution context

CI II

Integration layer

Extensions
framework

Figure 3: Component and framework interfaces.

achieves extension reuse:

{v2ext _name="Comments"
id="comments`$mod_prefix`"
_content_name="news_article"
_content_id=$news.news_id
_handler="portlet_news"}

The v2ext plug-in is an encapsulation of the
IHookData interface. The extension must contextu-
alize all the data it saves so that it can provide mean-
ingful functionality and present expected data
throughout different instances. This contextualiza-
tion is implicitly done by the framework, which pro-
vides a hook – the only data an extension ever refer-
ences. All the required data to create a hook are pro-
vided by the component that uses the v2ext plug-in:

 _name – a name of the extension main con-
troller class;

 _id – a unique identifier of the extension
for the parent component

 _content_name – name of the content type
that the parent component wants the exten-
sion to hook onto

 _content_id – the id representing a single
data entity, ie. a news article

 _handler – the handler class for the content
type defined by the _content_name argu-
ment. This is optional and ie. used when the
framework wants to access a URL of a spe-
cific article.

Since there are no relational data connections be-
tween components, the framework provides an event
driven mechanism to handle data changes. The host
application, or an extension can raise a data change
event, giving it the same context it would when cre-
ating a hook. Consequently, if such a hook exists,
the framework will notify all the hooked compo-
nents that are expected to perform required actions
with their own data.

4.3 User Defined Component
Structure

The usual way Web application components can be
reused and made to interact, inside their native
frameworks, is by writing a few lines of configura-
tion and program code. This is true for all the com-
peting mentioned frameworks. More flexibility is
provided by content management systems (CMS)
that often enable users to arrange components, con-
tent and their locations in the application on runtime.
But if a user wants to extend functionality of a com-

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

154

ponent with an arbitrary component on runtime,
even a CMS will fall short.

Our framework solves this by providing empty
hooks. Extension developers can define these hooks
in the desired places of an extension's view, and the
user can choose which extension should run at these
places.

A hook can be defined as easily as we initiated
execution of a specific extension in the example
from the previous section, using the v2ext plug-in.
The difference is, we can omit the _name and _id
parameters:

{v2ext
_content_name="news_article"
_content_id=$news.news_id
_handler="portlet_news"}

4.4 Presentation Layer Integration and
Component Reuse

What defines Web applications from functionalities'
point of view, are the graphical user interfaces. So,
we wanted to make combining and constructing
functionality of multiple components at the presenta-
tion layer possible. Extending applications in this
way makes a lot of sense, but also, creates some
issues that have to be solved. In such composition,
data that one component is displaying should be
used as a reference for some functionality or data
provided by another component.

Our framework solves this by simplifying com-
ponent and data interaction by forcing each exten-
sion to define two main user interface states of a
component. The default state and a state in which an
extension is displaying a user interface to edit data.
We found this simplification good enough for most
test cases. For example, if we' re editing an article in
a content management application, and that article
has a photo gallery extension hooked onto it, we can
request the gallery extension to also enter edit mode
and provide controls to manipulate the images and
the gallery, which cascades to gallery's child exten-
sions. This doesn't imply extensions cannot provide
multitude of states that can be invoked by the parent
component, but for now, only the default and edit
states are handled by the framework.

5 CONCLUSIONS

To be able to provide functional completeness of
components, we had to forgo some performance and
data consistency that comes inherently with more

tightly coupled components, for example, acting on
data changes takes longer when dispatching events,
than letting the database act on relational rules and
data triggers, but the value provided is greater.

Our framework doesn't provide any kind of com-
ponent definition language which would enable pro-
gramming language translation of components, so in
the current state, it is only usable for PHP host ap-
plications. Although PHP works on all major operat-
ing systems and Web servers which makes it cross-
platform, this is a hindrance.

In comparison to other solutions, it does satisfy
most of the criteria:

 it provides run-time visual component
composition

 components are portable between frame-
works using the same programming lan-
guage and since PHP is cross-platform, it
also inherits cross-platform capabilities

 it does provide ways to create functionally
complete and independent a components

 and through these properties it does in-
crease cohesion and makes low coupling of
components possible

It does not provide design-time visual composi-
tion tools and isn't cross language, although it could
be easily implemented to work for other program-
ming languages.

Our framework, in contrast to other mentioned is
a software component by itself, an adapter between
components built on top of it (extensions), and also
between extensions and the host application. It is a
component that is easily used and whose rendering
output can be easily obtained. This property of our
framework is what makes it unique, and what makes
reuse of many components possible with the effort
of integrating only one.

Our future work will include analysis and appli-
cation of software complexity metrics to measure
component reusability efficiency increase that our
extensions framework provides.

ACKNOWLEDGEMENTS

This work is supported in part by the Croatian Min-
istry of Science, Education and Sports, under the
research project “Software Engineering in Ubiqui-
tous Computing”, project number 036-0361959-
1965.

Nested�Web�Application�Components�Framework�-�A�Comparison�to�Competing�Software�Component�Models

155

REFERENCES

Wallace, B., 2010. There is no such thing as a Component,
accessed 19 April 2012, <http://
existentialprogramming.blogspot.com/2010/05/hole-
for-every-component-and-every.html>.

Schmidt, D. C., 1999. Why Software Reuse has Failed and
How to Make It Work for You, C++ Report magazine.

Lau K, and Wang, Z., 2007. Software component models,
IEEE Transactions on software engineering, vol. 33,
no. 10.

Broy, M. et al, 1998. What characterizes a (software)
component?, Software – Concepts & Tools 19, pp. 49-
56, Springer – Verlag.

Prstačić, S., Voras, I. and Žagar, M., 2011, Nested compo-
nentization for advanced Web platform solutions,
Proc. ITI 2011, 33rd Int. Conf. Information Technology
Interfaces.

Poulin, J. S., 1994. Measuring Software Reusability. Pro-
ceedings of 3rd International Conference on Software
Reuse, Brazil.

Eder J., Kappel G., and Schrefl M., 1994. Coupling and
Cohesion in Object-Oriented Systems, Technical Re-
port, Univ. of Klagenfurt.

Bose, D., 2011. Component Based Development – appli-
cation in software engineering, Indian Statistical Insti-
tute.

Crnković, I. et al., 2011. A Classification Framework for
Software Component Models, IEEE Transactions on
Software Engineering: Volume 37, Issue 5.

MSDN, 2009. Layered application guidelines, accessed 20
July 2012, <http://msdn.microsoft.com/en-
us/library/ee658109.aspx>.

Prstačić, S., Kroflin K. and Žagar, M., 2012. Interfaces of
nested Web application framework as reusable soft-
ware component, MIPRO 2012: 35th Int. Convention
Proceedings, Croatian Society for Information and
Communication Technology, Electronics and Microe-
lectronics.

Bishop, J., 2007. C# 3.0 Design Patterns, O'Reilly Media
MSDN, 2003. Model – View – Controller, accessed 20

December 2012, <http://msdn.microsoft.com/en-
us/library/ff649643.aspx>.

Walker, S., DotNetNuke 4.0 Module Developers Guide,
accessed 20 April 2012 <http://
www.dotnetnuke.com/Resources/BooksandDocumenta
tion/ProjectandTechnicalDocumentation/
tabid/478/Default.aspx>.

Grails, 2012. Groovy on Grails documentation, accessed 5
May 2012., <http://grails.org/doc/latest/>.

Django, Django documentation, accessed 5 May 2012.,
<http://docs.djangoproject.com/en/1.3/>.

Symfony, 2012. The book, accessed 5 May 2012.,
<http://symfony.com/doc/current/book/index.htm>.

Joomla, 2012. Developing a MVC component,
http://docs.joomla.org/Component [1/10/2011].

MSDN, 2011. ASP.NET 4.0 Web Pages, accessed 20 April
2012, <http://msdn.microsoft.com/en-
us/library/fddycb06>.

Alpaev, S., 2005. Applied MVC Patterns, VikingPLoP

Smarty, 2012. Smarty documentation, accessed 20 De-
cember 2012, <http://www.smarty.net>.

Altman, P., 2011. How I write Django Reusable Apps,
accessed 5 May 2012., <http://paltman.com/
2011/12/31/how-i-write-django-reusable-apps>.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

156

