
An Application of Software Fault Injection for Assessment of Quality
of Test Sets for Business Processes Orchestrating Web-Services

Damian Grela, Krzysztof Sapiecha and Joanna Strug
Department of Computer Science, Cracow University of Technology, Cracow, Poland

Keywords: Test Sets Quality Assessment, Fault Injection, Mutation Testing, Web-Services, Business Processes, BPEL.

Abstract: The paper presents an experiment of the application of software fault injection to assess quality of test sets
for business processes orchestrating web-services. The mutation testing, usually used to this end, suffers
from high computational costs of generating and running mutants. In contrast to mutation testing, faults
injection can be performed at a run-time. Run-time changes are introduced by a Software Fault Injector for
BPEL Processes (SFIBP). SFIBP is implemented as a special service that manipulates invocations of web-
services and values of their internal variables. As for time requirements, the experiment proved high
superiority of the application of the SFIBP over the mutation testing.

1 INTRODUCTION

Recently, an application of WS-BPEL (Business
Process Execution Language for Web-services) has
become one of the most promising technologies for
developing IT systems. WS-BPEL is a high level
language that makes it possible to implement
business processes as an orchestration of pre-
existing web-services (Oasis, 2007). A developer of
an IT system should only select the most appropriate
web-services and coordinate them using WS-BPEL
language into business processes that cover
specification requirements for the system. This leads
to a very simple and structured architecture where
only a special element of the process called its
coordinator and communication links between the
coordinator and the services need to be tested.
Nevertheless, the testing should be performed with
the help of a high quality test set to provide a
confidence to system dependability. Thus, the
development of tests should be supported by
effective techniques for evaluating quality of test
sets.

Mutation testing (Offutt and Untch, 2000)
(Woodward, 1993) is currently the most effective
technique for quality evaluation of tests. In mutation
testing faulty versions of an implementation of the
object (so called its mutants) are generated, by
introducing small syntactic changes into the code,
and executed against a test set. Although the
technique is very efficient, it suffers from high

computational cost of generating and executing
mutants.

The paper presents a computational experiment
aiming at evaluation of a novel approach that uses
fault injection technique (Hsueh, Tsai and Iyer,
1997) to evaluate quality of tests for BPEL
processes orchestrating web-services. In contrast to
mutation testing, fault injection can be performed at
a run-time of the processes. Thus, an application of
this technique can significantly reduce the total cost
of testing, as there will be no need to create and
compile a large number of the mutants. An
experiment that compares results of applying tests
for mutants of a BPEL process with results of
applying the same tests for the process but modified
at a run-time by injecting faults is described.
Mutants are generated with the help of MuBPEL
(MuBPEL - WS-BPEL Testing Tools) and the faults
are introduced by Software Fault Injector for BPEL
Processes (SFIBP). The experiment shows to what
extent the fault injection-based approach can
evaluate quality of tests, and how much it costs.

The paper is organized as follows. Section 2
contains a brief description of the background and
related work. The problem is stated in section 3.
Section 4 describes the experiment, business
processes used in the experiment, procedures and
results of the experiment. The paper ends with
conclusions in section 5.

56 Grela D., Sapiecha K. and Strug J..
An Application of Software Fault Injection for Assessment of Quality of Test Sets for Business Processes Orchestrating Web-Services.
DOI: 10.5220/0004422000560062
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 56-62
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 BACKGROUND AND RELATED
WORK

A number of papers related to different aspects of
testing BPEL processes have already been published
(Dong, Yu and Zhang, 2006) (Yan et al., 2006)
(Yuan, Li and Sun, 2006). However, the papers do
not consider the testing of BPEL processes in which
the coordinator orchestrates web-services. A method
of generation of test scenarios for validation of the
coordinator of a BPEL process was given in
(Sapiecha and Grela, 2008a). Tests obtained by
means of the method cover all functional
requirements for the process and provide high
validation accuracy (Sapiecha and Grela, 2008b).
Hence, such tests could also be used as a starting set
of tests for the process.

Quality of generated test sets is an important
issue, as only tests of high quality (high ability to
detect faults) can help to provide dependable
products (Wagner and Gericke, 2008) (Farooq and
Lam, 2009). Several studies have proved validity of
the mutation testing as a powerful technique for
testing programs and for evaluation of the quality of
test sets (Farooq and Lam, 2009) (Estero-Botaro,
Palomo-Lozano and Medina-Bulo, 2008). A quality
of the test set is determined by a ratio of mutants
detected by the tests over all non-equivalent mutants
(a mutation score). The higher is the mutation score
the higher is the quality of tests. In the paper results
of mutation testing were used as the reference when
the results of fault injection were evaluated. The
mutation testing is a white box testing technique that
creates a large number of faulty programs (mutants)
by introducing simple flaws (faults) in the original
program. If a test case is able to detect the difference
between the original program and the mutant, it is
said that such test case kills the mutant. On the
contrary, if none of the test cases is able to detect a
difference, it is said that the mutant keeps alive for
all used test cases. The mutants are created by
applying so called mutation operators. Each of the
mutation operators corresponds to a certain category
of errors that the developer might commit. Such
operators for various programming languages,
including BPEL have already been designed (Offutt
and Untch, 2000) (Woodward, 1993) (Estero-
Botaro, Palomo-Lozano and Medina-Bulo, 2008).

Fault injection (Hsueh, Tsai and Iyer, 1997) is a
popular technique that is mainly used for evaluation
of fault-tolerance of computer systems. It consists in
injection of deliberate faults into a running system
and observation of its behaviour. So called fault
coverage (Hsueh, Tsai and Iyer, 1997) for a set of

tests is measured. The fault coverage is expressed as
a percentage of detected faults to all faults injected
into the system. Fault coverage is used as a metric of
quality of a set of tests and plays similar role as the
mutation score for mutation testing.

Originally fault injection was applied to
hardware systems, but currently it is also applied in
software and mixed ones. Software fault injection
(SFI) is implementation-oriented technique thus it
targets computer applications and operating systems.
SFI can be performed in near real-time, allowing for
a large number of experiments. The technique was
already applied for systems based on web services
orchestration to emulate SOA faults at different
levels (Reinecke and Wolter, 2008) (Juszczyk and
Dustdar, 2010). The approaches were built upon
existing fault injection mechanisms. However, these
solutions are still under development. It is not clear
which types of SOA faults are supported, and how
the faults are modelled and injected. Moreover, these
works do not concern quality of test sets.

3 PROBLEM STATEMENT

Quality of a test set impacts results of the testing, as
only such of the sets which detect all faults in a
system can answer the question whether the system
is fault free or not. For object systems tests are
usually evaluated via mutation testing, but this
technique is very expensive due to the number of
mutant that need to be generated, compiled and
executed against the test set.

A BPEL process uses web-services but the
process itself is a web-service, too. Thus it needs to
be deployed. So this concerns its mutants. The
deployment is very time consuming because an
application implementing the process and its related
files need to be uploaded to a server. Since then the
web application becomes available to the testing.
This treatment must be repeated for all of the
mutants. Thus, in contrast to other kinds of object
systems, here the mutation testing seems to be rather
complicated and expensive. In contrast to the
mutation testing, the software fault injection
generates faulty versions of the process at a run-
time. No the compilation and the deployment are
required. Hence, it seems that not the mutation
testing, but the fault injection should be used to
evaluate quality of test sets for BPEL processes.
An experiment aiming at providing this claim is
presented in the paper. During the experiment,
mutation testing and fault injection are applied to
evaluate quality of the same sets of tests derived for

An�Application�of�Software�Fault�Injection�for�Assessment�of�Quality�of�Test�Sets�for�Business�Processes�Orchestrating
Web-Services

57

ten example BPEL processes orchestrating web-
services.

4 COMPUTATIONAL
EXPERIMENT

The experiment consists of the following three
stages:

1. Application of traditional mutation testing to
example BPEL processes,

2. Application of software fault injection to the
BPEL processes.

3. Comparison of the results of mutation and fault
injection.

Figure 1: Flow diagram of the experiment.

BPEL processes under consideration are
described in Section 4.1, later on. Test sets, three for
each of the processes, were implemented as test
scripts that automate an application of single test
cases. Test scripts were prepared using BPELUnit
(Mayer and Lubke, 2006), which is an open-source
WS-BPEL unit testing framework for BPEL
processes. Mutants of a BPEL process were
generated (using MuBPEL) by applying mutation
operators (Section 4.2) and executed against the
tests. SFIBP was employed to inject faults into the
correct BPEL process (Section 4.3). The same test
sets were used to stimulate the process. Finally,
results from applying mutation testing and fault
injection were compared.

4.1 Processes and their Test Sets

The experiment was executed on ten example BPEL
processes (four our own and six taken from a public
repository shared by the University of Cadiz
(University of Cadiz WS-BPEL Composition
Repository)). For each of the processes, three test

sets were provided (first two randomly generated,
last one obtained by checking paths method
(Sapiecha and Grela, 2008). Table 1 contains the
details: identifiers (ID), names of the processes
(Name), the number of web-services used by the
processes (WS) and the number of test cases
provided in each of the test sets (TS). No fault
tolerance mechanisms were used.

Table 1: BPEL processes used in the experiment.

ID Name WS TS
PDO Planning Distribution of Orders

helps its users to distribute orders
among stores.

5 5/4/3

FRS Football Reservation System
allows its users to book tickets for
football games, hotels to stay during
the games and plane or train tickets to
arrive at the games.

5 7/5/3

OB Order Booking
receives orders placed by users, it
verifies the user and routes each order
to two suppliers to get quotes and
chooses the supplier that provided the
lower quote.

8 12/10/4

PES Project Evaluation System
allows its users, students and
teachers, to submit and received
projects for evaluation, it control the
evaluation sums the results.

6 9/14/8

LA Loan Approval
concludes whether a certain request
for a loan will be approved or not (it
was published within the
specification of the WS-BPEL 2.0
Standard.

2 6/9/5

SS Squares Sum
computes the value of sum (i=1 to n)
for a certain value of n.

0 3/3/2

TS Tac Service
inverts the order of the lines in a file.

0 4/6/4

MP Market Place
receives a price and offer from two
partners: buyer and seller, and
compares if the price offered by the
buyer is equal or higher that set for
the seller to sell.

2 9/12/8

TI Trade Income
models the behaviour of managing a
supermarket, controls the total profits
that were generated by the different
establishments that the supermarket
has, checks stock, etc.

7 12/6/6

MS Meta Search
implements a meta-search engine,
which queries mockups of the Google
and MSN search engines, interleaves
their results and removes duplicates.

2 7/9/7

4.2 Mutation Testing

Mutation testing was performed with a help of
MuBPEL. The MuBPEL is a mutation testing tool
for BPEL that automatically generates mutants of a
BPEL process, executes the mutants against
provided test set and finds the difference in output of
both (mutated and original) BPEL processes. The

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

58

MuBPEL generates mutants with exclusion of the
equivalent ones. A user only needs to prepare a
BPEL process and a set of its tests. The tests need to
be created as test scripts using BPELUnit.

Only 12 out of 26 operators defined in (Estero-
Botaro, Palomo-Lozano and Medina-Bulo, 2008)
were used in the experiment. The remaining 14 were
skipped, as they refer to features of BPEL processes
that are not supported by current version of SFIBP.
All 12 operators listed in Table 2 have been
implemented in the MuBPEL.

Table 2: Mutation operators used in the experiment.

Operator Description
Identifier replacement operators

ISV Replaces a variable identifier by another
of the same type

Expression operators
EAA Replaces an arithmetic operator (+,-,*,

div,mod) by another of the same type
EEU Removes the unary minus operator from

an expression
ERR Replaces a relational operator

(<,>,>=,<=,=,!=) by another of the same
type

ELL Replaces a logical operator (and,or) by
another of the same type

ECC Replaces a path operator (/,//) by another
of the same type

ECN Modifies a numerical constant
incrementing or decrementing its value in
one unit, adding or removing one digit

Activity operators (concurrent)

ASF
Replaces a sequence activity by a flow
activities

Activity operators (non-concurrent)
AEL Deletes an activity
AIE Deletes an elseif element of the else

element from an if activity
AWR Replaces a while activity by repeat-until

and vice versa
ASI Exchanges the order of throw sequence

child activities

Mutation testing was performed accordingly to
the following scenario:
1. Generation of mutants of the BPEL process by

applying the operators given in Table 2,
2. Execution of the mutants against both test sets

and comparison of results produced by the
mutants with values calculated by fault-free
process,

3. Calculation of the mutation score for each test
set,
Steps 2, 3 and 4 were repeated for every group of

mutation operators described in Table 2.

Tables 3 and 4 summarize the results of the
mutation testing. It gives the number of mutants
generated, mutants killed by each of the test sets
(Table 3) and the mutation scores (MS) for each of
the test sets (Table 4). A set of test cases is mutation
adequate if its MS is 100%.

 %100
MM

M
TMS

ET

K

 , where (1)

T - denotes a test set
MK – is the number of mutants killed by the test set
MT – is total number of generated mutants
ME – is the number of equivalent mutants

Table 3: Results of mutation testing.

BPEL
process

mutants
generated

mutants killed
TS1 TS2 TS3

PDO 229 184 186 190
FRS 219 193 182 191
OB 639 586 547 597
PES 687 492 552 596
LA 28 20 23 23
SS 45 42 41 43
TS 53 43 47 48
MP 29 25 27 27
TI 557 551 528 556

MS 525 411 471 479

Table 4: Mutation score.

BPEL
process

mutation score MS [%]
TS1 TS2 TS3 average

PDO 80,34 81,22 82,97 81,51
FRS 88,13 83,11 87,21 86,15
OB 91,70 85,60 93,43 90,24
PES 71,61 80,34 86,75 79,57
LA 71,43 82,14 82,14 78,57
SS 93,33 91,11 95,56 93,33
TS 81,13 88,67 90,56 86,79
MP 86,21 93,10 93,10 90,80
TI 98,92 94,79 99,82 97,85
MS 78,28 87,81 91,24 85,77

4.3 Fault Injection

Fault injection was executed with a help of a
Software Fault Injector for BPEL Processes
(SFIBP). The SFIBP is an execution-based injector
(Benso and Prinetto, 2003), that is able to inject
faults into the BPEL processes at a run-time, thus it
simulates effects of the faults. Such approach helps
to reduce costs of the experiment, as the faults are
injected without changing the implementation of a
process. The SFIBP is implemented as a special

An�Application�of�Software�Fault�Injection�for�Assessment�of�Quality�of�Test�Sets�for�Business�Processes�Orchestrating
Web-Services

59

local service that is invoked between or instead of
the proper web-service invocation.

The SFIBP generates the following four types of
faults:
 disturbances of web-service output parameters

(OP),
 disturbances of values of web-service input

parameters (IP),
 replacing requested web-service with another

one (WS),
 disturbances of a value of the variable (RV).

Fault injection was performed accordingly to the
following scenario:

1. configuration of the SFIBP,
2. execution of the BPEL process, run-time

injection of faults and comparison of results
(against values calculated by fault-free
process),

3. calculation of the fault coverage for each test
set.

Configuration of the SFIBP includes setting of
fault types, probability of their occurrence and of
predefined web-services and values which are used
when faults are injected. Information about the
injected faults is stored in a log file. Steps 2 and 3
were repeated for each type of the faults. The total
number of faults injected for a process always equals
the number of mutants generated in the previous
stage of the experiment.

Tables 5 and 6 summarize the results of the fault
injection. It reports, for each of the processes, total
numbers of faults injected, faults detected by each of
the test sets (Table 5) and fault coverage (FC) for
each of the test sets (Table 6). FC for a test set is
defined as a percentage of detected faults to all
injected faults. FC should be 100%.

 %100
F

F
TFC

I

D , where (2)

FD – is the number of faults detected by the test set,
FI – is total number of injected faults.

Table 5: Results of fault injection.

BPEL
process

faults
injected

faults detected
TS1 TS2 TS3

PDO 229 179 181 188
FRS 219 187 177 190
OB 639 582 541 595
PES 687 486 547 591
LA 28 20 22 23
SS 45 39 40 42
TS 53 42 45 48
MP 29 18 21 23
TI 557 546 521 553
MS 525 405 456 474

Table 6: Fault coverage.

BPEL
process

fault coverage FC [%]
TS1 TS2 TS3 average

PDO 78,16 79,04 82,09 79,77
FRS 85,39 80,82 86,76 84,32
OB 91,08 84,66 93,11 89,62
PES 70,74 79,62 86,03 78,80
LA 71,43 78,57 82,14 77,38
SS 86,67 88,89 93,33 89,63
TS 79,24 84,90 90,57 84,90
MP 64,28 75,00 82,14 73,81
TI 98,02 93,53 99,28 96,94
MS 77,14 86,86 90,29 84,76

4.4 Comparison

Results of the fault injection are close to the results
of the mutation testing for all evaluated test sets. As
it can be observe in Table 3 and 4 average fault
coverage differs from average mutation score from
0,62% (for OB) to 4,76% (for LA). Higher
consistency of results was observed in the case of
larger systems. For such systems (OB, TI or MS),
the difference did not exceed 2%

Each technique uses its own fault model, thus
changes made by mutation operators and faults
injected by SFIBP are completely different kind of
faults. Despite the lack of dependency between
mutants and the injected faults, the results of both
approaches are similar (the behaviour of a process
differs from the expected).

Another notable feature is the time overhead.
Tables 7, 8 and 9 present the total execution time of
mutation testing (Table 7) and fault injection (Table
8). All BPEL processes were executed on the same
hardware configuration (Intel Core2Duo 1.2GHz
processor, 2GB RAM).

Table 7: Execution time of mutation testing.

BPEL
process

Mutation Testing time MIt [s]
TS1 TS2 TS3

PDO 2311 1963 1444
FRS 1434 1176 918
OB 7517 6796 4049
PES 17193 25490 16554
LA 239 309 214
SS 241 245 169
TS 474 667 481
MP 1463 1995 1394
TI 59089 29128 29396
MS 11276 14418 11387

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

60

Table 8: Execution time of fault coverage.

BPEL
process

Fault Injection time FIt [s]
TS1 TS2 TS3

PDO 1652 1304 941
FRS 937 679 493
OB 4679 3959 2147
PES 9874 14939 9574
LA 194 245 175
SS 174 178 119
TS 359 548 364
MP 1238 1775 1174
TI 36932 16815 16932
MS 7583 9953 7606

Table 9: MT and FI execution time ratio.

BPEL
process

MTt / FIt
TS1 TS2 TS3 average

PDO 1,40 1,50 1,53 1,479
FRS 1,53 1,73 1,86 1,708
OB 1,61 1,72 1,88 1,736
PES 1,74 1,71 1,73 1,725
LA 1,23 1,26 1,22 1,239
SS 1,38 1,37 1,42 1,394
TS 1,32 1,22 1,32 1,286
MP 1,18 1,12 1,19 1,164
TI 1,59 1,73 1,74 1,689
MS 1,49 1,45 1,50 1,478

The results proved that the fault injection is
much faster than the mutation testing (Table 9) for
all the test sets (about 1,5 times faster). Fault
injection-based approach is particularly cost
effective for large systems (e.g. OB, TI) due to the
lack of deployment of huge number of mutants. For
smaller systems (e.g. MP, LA), the results are less
effective thus for such systems the selection of test
method is arbitrary.

5 CONCLUSIONS

Cost effective testing extensive software systems
requires specific approaches and different
technologies adjusted to specific architectures. The
experiment proved that testing based on SFI might
be attractive for service oriented architectures (SOA)
implemented with the help of BPEL. This is almost
as effective as mutation testing but does not need
elaboration of mutants. Moreover, it is much faster
because can be performed at a run-time of the
process. Hence, this might be much more cost
effective.

From the experiment it results that even random
testing enables detection a lot of faults in the
processes. Usually these faults are easy detectable

ones. Using validation test sets seems to be more
effective than random testing. The more complex is
the process the higher are benefits from the fault
injection and using validation test set, especially for
time requirements. This last one is derived at the
very beginning of the development of the system
running the process, and thus need not any extra
effort while testing. The results are promising.
However, other object oriented architectures have to
be taken into account to answer the question to what
extent and when the fault injection may be an
alternative for the mutation testing. In our future
research more experiments on various types of SOA
will be performed to strengthen the conclusions.

REFERENCES

OASIS, 2007, Web Services Business Process Execution
Language 2.0, http://docs.oasis-open.org/wsbpel/2.0/.
Organization for the Advancement of Structured
Information Standards.

W.-L. Dong, H. Yu, Y.-B. Zhang, 2006. Testing BPEL-
based web service composition using high-level Petri
nets. In EDOC 2006: Tenth IEEE International
Enterprise Distributed Object Computing Conference.
Hong Kong, China: IEEE Computer Society, 2006, pp.
441–444.

J. Yan, Z. Li, Y. Yuan, W. Sun, J. Zhang, 2006.
BPEL4WS unit testing: Test case generation using a
concurrent path analysis approach. In ISSRE 2006:
17th International Symposium on Software Reliability
Engineering. Raleigh, North Carolina, USA: IEEE
Computer Society, pp. 75–84.

Y. Yuan, Z. Li, W. Sun, 2006. A graph-search based
approach to BPEL4WS test generation. In ICSEA
2006: International Conference on Software
Engineering Advances. Papeete, Tahiti, French
Polynesia: IEEE Computer Society, p. 14.

K. Sapiecha, D. Grela, 2008a. Test scenarios generation
for certain class of processes defined in BPEL
language. In Annales UMCS - Informatica, vol.8,
number 2/2008, pp.75-87

K. Sapiecha, D. Grela, 2008b. Automating test case
generation for requirements specification for processes
orchestrating web services. In Information Systems
Analysis and Specification vol.1, 10th International
Conference on Enterprise Information Systems
(ICEIS), Barcelona, pp. 381-384.

S. Wagner, J. Gericke, M. Wiemann, 2008. Multi-
Dimensional Measures for Test Case Quality. In
ICSTW '08. IEEE International Conference on
Software Testing Verification and Validation
Workshop.

U. Farooq, C. P. Lam, 2009. Evolving the Quality of a
Model Based Test Suite. In ICSTW '09. International
Conference on Software Testing, Verification and
Validation Workshops.

An�Application�of�Software�Fault�Injection�for�Assessment�of�Quality�of�Test�Sets�for�Business�Processes�Orchestrating
Web-Services

61

A. J. Offutt, R. H. Untch, 2000. Mutation testing for the
new century. Norwell, Massachusetts, USA: Kluwer
Academic Publishers, 2001, ch. Mutation, Uniting the
Orthogonal, pp. 34–44.

M. R. Woodward, 1993. Mutation testing — its origin and
evolution. In Information and Software Technology,
vol. 35, no. 3, pp. 163–169

M. C. Hsueh, T. K. Tsai, R. K. Iyer, 1997. Fault Injection
Techniques and Tools. In IEEE Computer, vol. 30, no.
4, pp. 75-82.

P. Reinecke, K. Wolter, 2008. Towards a multi-level fault-
injection test-bed for service-oriented architectures -
requirements for parameterisations. In 27th
International Symposium on Reliable Distributed
Systems, Napoli, Italy.

L. Juszczyk, S. Dustdar, 2010. Programmable fault
injection testbeds for complex SOA. In 8th
International Conference on Service Oriented
Computing (ICSOC'10), San Francisco, USA.

A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo,
2008. Mutation operators for WS-BPEL 2.0. In
ICSSEA 2008: 21th International Conference on
Software & Systems Engineering and their
Applications, Paris, France.

P. Mayer, D.Lubke, 2006. Towards a BPEL unit testing
framework. In TAV-WEB’06: Proceedings of the
workshop on Testing, analysis, and verification of web
services and applications, pp. 33–42. ACM, New
York.

A. Benso, P. Prinetto, 2003. Fault injection techniques and
tools for embedded systems reliability evaluation.
Kluwer Academic Publishers, Holland.

MuBPEL - WS-BPEL Testing Tools, http://neptuno.
uca.es/redmine/projects/sources-fm/wiki/MuBPEL

University of Cadiz WS-BPEL Composition Repository.
http://neptuno.uca.es/redmine/projects/wsbpel-comp-
repo

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

62

