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Abstract: Time is pervasive of reality, and many relational database approaches have been developed to cope with it. 
However, in practical applications, temporal indeterminacy about the exact time of occurrence of facts and, 
possibly, about the number of occurrences, may arise. Coping with such phenomena requires an in-depth 
extension of current techniques. In this paper, we have introduced a new data model, and new definitions of 
relational algebraic operators coping with the above issues, and we have studied operator reducibility. 

1 INTRODUCTION 

Time is pervasive of our way of looking at reality. 
As a consequence, time is often modeled in 
databases. However, it is commonly agreed by the 
scientific community that time has a special status 
with respect to the other data, so that its treatment 
within a (relational) database context requires 
specific attention and dedicated techniques. <<Two 
decades of research into temporal databases have 
unequivocally shown that a time-varying table, 
containing certain kinds of DATE columns, is a 
completely different animal than its cousin, the table 
without such columns. Effectively designing, 
querying, and modifying time-varying tables 
requires a different set of approaches and 
techniques than the traditional ones taught in 
database courses and training seminars. Developers 
are naturally unaware of these research results (and 
researchers are often clueless as to the realities of 
real-world application development). As such, 
developers often reinvent concepts and techniques 
with little knowledge of the elegant conceptual 
framework that has evolved and recently 
consolidated…>> in (Snodgrass, 1999), Section 
“Preface”, Subsection: “A paradigm shift”, page 
XVIII). 

As a consequence, a plethora of dedicated 
approaches have been developed by the scientific 
community (see the cumulative bibliography in (Wu 
et al., 1997)). Most of the approaches in the 
literature focus on the case in which the exact valid 

time (Snodgrass, 1995) of facts is known. However, 
in real world applications, it is often the case that 
such an exact time is not known. In such a case, 
temporal indeterminacy (Dyreson, 2009) occurs. 
Temporal indeterminacy has various possible 
sources, including scale, dating techniques, future 
planning, unknown or imprecise event times, clock 
measurements (this list is not exhaustive, and is 
taken from TSQL2 book (Snodgrass, 1995; page 
327)). Given its relevance, “support for temporal 
indeterminacy” was already one of the eight explicit 
goals of the data types in TSQL2 consensus 
approach: <<… many applications require the 
storage of such “don’t know exactly when” 
information>> (Snodgrass, 1995). However, despite 
the importance of this phenomenon, relatively few 
approaches in the temporal relational database (TDB 
henceforth) area have faced it (consider, e.g., the 
approaches discussed in the survey in (Dyreson, 
2009) and the recent approach in (Anselma et al., 
2010; 2013)) and no general solution has been found 
yet (see the discussion in the Related Work Section). 

Indeed, it is worth stressing that “temporal 
indeterminacy” regards cases in which there is 
indeed some form of information about the valid 
time of facts, but such pieces of information are 
approximate, in that they do not exactly locate facts 
on the timeline. Therefore, different forms of 
temporal indeterminacy can be faced, depending on 
the form of approximate temporal information one 
wants to model (see, e.g., the family of different 
temporal database approaches identified in (Anselma 
et al., 2010; 2013)). A very common one is what we 
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call “frame time” temporal indeterminacy: the exact 
time of the occurrence of a fact is not known, and 
can only be approximated by a frame of time which 
contains it. For instance, in “On October 10th 2011 
John watched Cars 2 at the cimema” October 10th is 
clearly not the exact time of occurrence of the fact 
that John watched a film: John watched the film at 
some (not known/specified) time interval within the 
frame time October 10th.  

Frame time temporal indeterminacy is frequent 
and relevant. For instance, it naturally rises in all 
cases in which time is not perfectly monitored. For 
instance, when a person is asked to elicit her 
activities, and the time when she performed them, 
she usually provides only frame time 
approximations. It is actually quite unusual that a 
person can provide accurate temporal descriptions 
such as “On October 10th I watched Cars 2 (or: I 
had headache; or: I did his homework; or: I had the 
meeting) from 17:12 to 18:44”. Even the usual TDB 
example about employee promotions is indeed a 
case of temporal indeterminacy: we rarely have the 
exact time, so that it is usually approximated by the 
day in which the promotion occurred. It is worth 
noticing that the treatment of temporal granularities 
is a related phenomenon: for instance, whenever a 
data set expressed (with exact times of occurrences) 
at a given granularity is converted to a different, 
coarser granularity, frame time indeterminacy arises. 
For instance, switching the fact “On October 10th 
John watched Cars 2 from 17:12 to 18:44” to the 
granularity of days naturally rises temporal 
indeterminacy: “On October 10th John watched Cars 
2”. Additionally, also the case in which one knows 
the occurrence of a fact, but has no information at all 
concerning its time of occurrence can be seen as a 
degenerate case of frame time indeterminacy: in 
such a case the frame of time stretches from the 
origin of time (for the database) to the latest possible 
time. 

Despite the practical relevance of the frame time 
indeterminacy, and the fact that several approaches 
have faced it in other areas of Computer Science, 
such as, e.g., Artificial Intelligence, to the best of 
our knowledge no TDB approach has directly faced 
this phenomenon, providing both a 1NF data model 
and an algebra coping with it (see the Related Work 
Section). In this paper, we aim at overcoming such a 
limitation of the current literature. We provide (i) a 
data model to represent frame time indeterminacy, 
and (ii) a temporal relational algebra to query it, 
and (iii) we prove its reducibility to the conventional 
non-temporal algebra. Indeed, as in most DB 
approaches we know, we regard the development of 

a query language (we choose to operate at the 
algebraic level) as an essential contribution, and a 
fundamental desiderata for our approach (as well as 
for all the DB approaches we know) is that the data 
model must be expressive enough in order to 
represent the results of the queries (technically 
speaking, we aim at achieving the closure of the 
relational algebra with respect to the data model). 
As we will see in more detail in Section 2, such a 
goal leads to important implications about the data 
model we propose. Indeed, to be expressive enough 
to represent the output of the application of 
relational algebraic operators, our data model must 
also include the possibility of coping with an 
additional form of indeterminacy: the indeterminacy 
about the cardinality of the occurrences of facts 
within their frame time. As an example, consider 
“On October 10th 2011, John had two or three 
headache attacks”, where October 10th is the frame 
of time containing the intervals of occurrences of 
John’s headache, and the number of occurrences is 
only approximated by a minimum and maximum 
bound. The treatment of such a form of 
indeterminacy concerning the number of 
occurrences of facts is an additional contribution of 
our work, and has never been provided, to the best 
of our knowledge, by any approach in the literature. 

The paper is organized as follows. In Section 2 
we discuss the key problems and challenges we had 
to face, and informally sketch our solutions. Section 
3 formally introduces our data model, and Section 4 
describes our extended relational algebra. Section 5 
presents related works, and Section 6 contains 
conclusions. The Appendix contains proofs. 

2 PROBLEMS AND SOLUTIONS 

The treatment of temporal indeterminacy involves 
in-depth extensions to the standard TDB approaches. 
To substantiate this claim, we introduce an example. 

Example 1. On September 10th 2011, John had an 
headache episode. Frame time temporal 
indeterminacy occurs in Example 1, since the exact 
temporal location of the headache episode is not 
provided: we only know that the episode occurred in 
a time interval contained (properly or not) in 
September 10th 2011. First, let us suppose to deal 
with Example 1 using a typical TDB representation. 
As a representative, let us choose a TSQL2 
(Snodgrass, 1995) representation, shown in Table 1. 
In the example, we use the granularity of minutes. 
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Table 1: Relation PAT_HISTORY: an approximate 
representation of Example 1 in TSQL2. 

Patient Symptom Tstart Tend 

John headache 10/9/2011 0:00 10/9/2011 23:59

 

At a first glance this representation looks 
reasonable. However, we stress that, to cope with the 
exact content of Example 1, we cannot interpret the 
relation PAT_HISTORY above using the usual 
semantics adopted by TSQL2 and by most TDB 
approaches (such a semantics has been specified by 
the BCDM model (Jensen & Snodgrass, 1996)). In 
such a semantics, the so-called snapshot semantics, 
the meaning of the tuple in Table 1 would be the 
following: 

t 10/9/2011 0:00 ≤ t ≤ 10/9/2011 23:59 

Holds_at(<John,headache>,t) 
(1)

where Holds_at(<a1,…,an>,ti) is a predicate (that we 
have imported from (Galton, 1990)) stating that the 
fact <a1,…,an> occurs (is true) at the time ti. In other 
word, in TSQL2, the tuple in Table 1 would mean 
that John had headache continuously, in all the time 
granules (temporal snapshots) in September 10th. On 
the other hand, the intended semantics of Example 1 
is different, as shown below: 

tstart tend (tstart≤tend) t tstar≤ t ≤ tend 
Holds_at(<John,headache>,t) (2)

 

Intuitively, Example 1 means that there is an interval 
of time (starting at tstart and ending at tend) during 
September 10th in which John had (continuously) 
headache. Adopting such a new semantics has a deep 
impact in the definition of relational algebraic 
operators. Indeed, since we demand that a data 
model must be expressive enough to cope with the 
results of the application of algebraic operators, and 
since we want to enforce the above semantics, the 
TSQL2 data model is inadequate here. As a simple 
example, let us consider intersection. Let us suppose 
to have another relation, PAT_HISTORY’, which is 
identical to PAT_HISTORY in Table 1, and to 
perform the intersection PAT_HISTORY  
PAT_HISTORY’. Trivially, the non-temporal 
component of the two tuples is equal. But what 
about the intersection of their temporal components? 
Remember that the underlying semantics of our 
representation is not (1), but is the one shown at 
point (2) above. Thus, the tuple <John, headache| 
10/9/2011 0:00, 10/9/2011 23:59> in 
PAT_HYSTORY states that there is a (convex) time 
interval in which John had headache, which is 
located somewhere in September 10th, and the tuple 

in PAT_HISTORY’ behaves in the same way. There 
is no support for the conclusion that the time 
intervals of the two tuples are the same, or 
temporally intersect. Indeed, they may intersect (or 
even be the same), but may also be disjoint! Stated 
in other words, the two relations may denote two 
different episodes of John’s headache, or the same 
episode. Due to the intrinsic indeterminacy of the 
inputs, both cases are possible. As a consequence, 
the output of intersection may be empty, in case the 
two episodes are disjoint, or contain an episode 
occurring on September 10th otherwise. 

However, as stressed already in the introduction, 
we aim at providing a data model in which the 
output of algebraic queries can be expressed. We 
must thus move towards a different representation 
with respect to the one in Table 1, since it cannot 
capture the indeterminacy about the output of 
intersection described above. Our idea is simple, and 
starts from the consideration that the above 
indeterminacy can be interpreted as an 
indeterminacy about the number of occurrences 
(zero or one, in the example) of the described 
episode. Thus, we propose to extend the data model 
in order to explicitly model the minimum and 
maximum number of occurrences of facts. 

It is worth emphasizing that such a number of 
occurrences cannot be coped with as a “standard” 
numeric attribute, to be managed directly by 
users/developers. We will show soon that relational 
algebraic operators have to be carefully re-defined to 
correctly deal with such numbers. Such a definition 
must be provided once-and-for-all, and cannot be 
demanded to users/developers (analogous 
motivations have been provided in Section 1 of the 
TSQL2 book (Snodgrass, 1995) for the specialized 
treatment of valid time in temporal relational 
databases).  

Also, the cases in which the exact number of 
occurrences of facts is known (see, e.g., example 1 
in the introduction) can be easily modeled, and 
constitute a specific case (in which the minimum 
and maximum cardinality are set to be equal) of our 
general model. Indeed, example 1 above shows that, 
even in case the exact input cardinalities are known, 
the cardinalities obtained by the application of 
relational operators may only be bounded by a 
minimum and a maximum value. It is worth 
stressing that such a behavior is not due to our 
choice of the data model, but is an intrinsic feature 
of the phenomena we want to model.  

Finally, we stress that our approach is even more 
expressive with respect to the initial requirements 
discussed in the introduction, since it copes with 
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basic relations (i.e., primitive relations, not obtained 
as a result of any query) both in the case when the 
number of occurrences of facts is known, and in the 
case when it can only be approximated by a 
minimum and maximum bound. For instance, it can 
cope with Example 2 in the following. 

Example 2. On September 10th 2011, John had two 
or three headache episodes. In the rest of the paper, 
the above solutions are detailed. 

3 DATA MODEL 

In our data model, tuples are associated with valid 
time (transaction time (Snodgrass, 1995) is not 
considered in this paper). The timeline is partitioned 
into granules of a chosen basic granularity. As is 
BCDM (Jensen and Snodgrass, 1996) and TSQL2 
(Snodgrass, 1995), our time domain is totally 
ordered and is isomorphic to the subsets of the 
domain of natural numbers. The domain of valid 
times DVT is given as a set DVT={t1,t2,…,tk} of 
granules. The number of repetitions of a fact in a 
frame time is encoded by two cardinality attributes 
N and M, defined on the domains of natural numbers 
and of positive natural numbers respectively, with 
the constraint that the minimal cardinality is less or 
equal that the maximum cardinality. We propose a 
1-NF representation of facts. The schema of an 
indeterminate temporal relation 
R=(A1,...,An|N,M,Tstart,Tend) consists of an arbitrary 
number of non-temporal attributes A1,…,An, 
encoding some fact, of a minimal cardinality 
attribute N, of a maximal cardinality attribute M, 
and of two timestamp attributes Tstart and Tend, with 
domain DVT. Thus, a tuple x=<a1,…,an|n1,n2,t1,t2> 
(where n1n2, n2>0, and t1t2) in a relation r(R) on 
the schema R consists of a n-tuple of values for the 
non-temporal attributes, associated with a minimum 
cardinality n1, a maximum cardinality n2, and two 
timestamps t1,t2DVT, and represents the fact that 
there are between n1 and n2 occurrences of the fact 
a1,…,an during the time interval starting at t1 and 
ending at t2. For instance, Table 2 shows the relation 
modeling Example 2 in our data model. 

Table 2: Relation PAT_HISTORY_INDET: representation 
of Example 2 in our model. 

Pat. symptom N M Tstart Tend 

John headache 2 3 10/9/2011 0:00 10/9/2011 23:59 

 

Notation 1. Given a tuple x defined on the schema 

R=(A1,...,An|N,M,Tstart,Tend), we denote by A the set 
of attributes A1,...,An. Then x[A] denotes the values 
in x of the attributes in A, x[T] denotes the time 
interval of x, x[Tstart] and x[Tend] its starting and 
ending time respectively, and x[N] and x[M] denote 
the minimum and maximum cardinality respectively.  

Our data model is a consistent extension of the 
TSQL2 data model, as specified by Property 1 
below. This fact grants that we can cope with the 
same content than TSQL2 (and BCDM) valid time 
relations, which are, indeed, a restriction of our 
relations, in which both minimum and maximum 
cardinalities of tuples must be set to the value ‘one’. 

Property 1. TSQL2 valid-time relations can be 
modeled by indeterminate temporal relations in our 
approach.  

4 RELATIONAL ALGEBRA 

Codd designated as complete any query language 
that is as expressive as his set of five relational 
algebraic operators: relational union (),difference 
(–), selection (σP), projection (πA), and Cartesian 
Product () (Codd, 1972). We propose an extension 
of Codd's operators to query the data model we 
introduced in Section 3. Several temporal extensions 
have been provided to Codd's operators in the TDB 
literature (McKenzie et al., 1991); (Snodgrass, 
1995). In many cases, such extensions behave as 
standard non-temporal operators on the non-
temporal attributes, and may involve the application 
of set operators on the temporal attributes. This 
approach ensures that the temporal algebraic 
operators are a consistent extension of Codd's 
operators and are reducible to them when the 
temporal dimension is removed. For instance, in 
TSQL2, temporal Cartesian Product involves 
pairwise concatenation of the values of non-
temporal attributes and pairwise intersection of their 
temporal values. Analogously, in TSQL2, relational 
difference, union, and projection behave in a 
standard way on non-temporal attributes, and 
difference performs the difference on the temporal 
component of value-equivalent tuples.  

4.1 Relational Algebra for Frame Time 
Indeterminacy 

We ground our approach on such a “consensus” 
background, extending the algebraic operators to 
cope with the new implicit attributes.  
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Def. 1: Temporal Algebraic Operators. Let r and s 
denote relations having the proper schema. 

r I s = { < v|n,m,ts,te> |  
n1,m1,t1s,t1e (<v|n1, m1, t1s,t1e>  r  n=n1  
m=m1  ts= t1s  te= t1e)   
n2,m2,t2s,t2e (<v|n2,m2, t2s,t2e> s  n=n2  
m=m2  ts= t2s  te= t2e) } 

r -I s = { <v| n,m,ts,te> |  
(n1,m1,t1s,t1e (<v|n1,m1,t1s,t1e>r  
 n2,m2,t2s,t2e (<v|n2,m2,t2s,t2e>s   
[t1s,t1e][t2s,t2e])   
n=n1  m=m1  ts= t1s  te= t1e) )   
(n1,m1,t1s,t1e (<v|n1,m1,t1s,t1e> r   
n2,m2,t2s,t2e (<v|n2,m2, t2s,t2e >s   
[t1s,t1e][t2s,t2e])   
n=0  m=m1  ts= t1s  te= t1e)} 

r I s = { <v1 · v2|n,m,ts,te> |  
n1,m1,t1s,t1e (<v1|n1,m1,t1s,t1e>r   
n2,m2,t2s,t2e (<v2|n2,m2,t2s,t2e>s)   
[ts,te]= [t1s,t1e][t2s,t2e]  [ts,te]  n=0  
m=min(m1,m2))} 

πI
A (r) = { <v|n,m,ts,te> |  
v1,n1,m1,t1s,t1e (<v1 |n1, m1,t1s,t1e >  r   
v = πA(v1)  ts= t1s  te= t1e  n=n1  m=m1} 

σI
P (r) = {(<v|n1,m1,ts,te> | (<v|n1, m1,ts,te>r   

P(v)}  

For the sake of brevity, in the definition of 
difference [ts,te]=[t1s,t1e]-[t2s,t2e]  [ts,te] may 
denote one or two (in case [t2s,t2e] is properly 
contained into [t1s,t1e]) time intervals. 

As motivated above, our algebraic relational 
operators operate in the standard way on the non-
temporal attributes. As in TSQL2, union, projection 
and selection operate in a standard way. On the other 
hand, Cartesian Product involves temporal 
intersection (as demanded by the snapshot 
semantics; see, e.g., the BCDM model). The starting 
(ts) and ending (te) times of the resulting tuples are 
obtained through the intersection of the intervals on 
the two input tuples (i.e., [ts,te] =[t1s,t1e][t2s,t2e]), 
and tuples are present in the output only when such 
an intersection exists (i.e., when [ts,te]). The 
minimum output cardinality is zero, to represent the 
fact that it is possible that there is no intersection 
between the valid times of the input tuples. The 
maximum cardinality is the minimum of the input 
maximum cardinalities. This models the fact that, 
supposing, e.g., that min(m1,m2)=m1, all the 
occurrences of the first input tuple intersect with one 
occurrence of the second input tuple (or viceversa, if 
min(m1,m2)=m2). For instance, given a relation 

PAT_2 having the same schema of 
PAT_HISTORY_INDET, and containing the tuple 
<Ann, headache|1,1, 10/9/2011 12:01, 10/9/2011 
23:59> (i.e., Ann had a headache episode on 
September 10th, after 12 o’clock), we have 
PAT_HISTORY_INDET I PAT_2= {<John, 
headache, Ann, headache |0,1, 10/9/2011 12:01, 
10/9/2011 23:59>}. 

In the operation of difference two cases must be 
distinguished. In case we perform r -I s and we have 
one tuple t=<v|n1,m1,t1s,t1e> in r which has no 
value-equivalent tuple in s (a temporal tuple t’ is 
value-equivalent to t if it is equal to t as regard its 
non-temporal component (Snodgrass, 1995)), or 
such that value equivalent tuples in s hold in time 
intervals that do not intersect [t1s,t1e], t must be 
reported in output unchanged. On the other hand, if a 
value-equivalent tuple t’=<v|n2,m2,t2s,t2e> exists in 
s, such that [t1s,t1e]  [t2s,t2e] , then the 
minimum number of occurrences is 0 (to represent 
the fact that all the occurrences in t may be fully 
contained into one or more occurrences in t’), and 
the maximum number of occurrences is m1 (to 
represent the case when none of the occurrences in t 
is contained into the occurrences in t’). 

For instance, given a relation PAT_3 having the 
same schema of PAT_HISTORY_INDET, and 
containing the tuple <John, headache|1,4, 9/9/2011 
0:00, 10/9/2011 23:59>, we have 
PAT_HISTORY_INDET -I PAT_3= {<John, 
headache, |0,3, 10/9/2011 0:00, 10/9/2011 23:59>}. 

Finally, it is worth comparing the computational 
complexity of our algebraic operators with that of 
temporal operators already in the literature, e.g., 
with TSQL2’s ones. As discussed and motivated at 
the beginning of Section 4, we follow a “consensus” 
approach in the TDB literature (followed also, e.g., 
by TSQL2). Thus, our definitions of temporal union, 
temporal projection, nontemporal selection and 
temporal selection are similar to TSQL2’s ones 
(performing intersection and difference between 
valid times of tuples), except for the fact that, to 
cope with temporal indeterminacy, we also operate 
on minimum and maximum cardinality. As a 
consequence, only a constant (and limited) overhead 
is added with respect to TSQL2 (and many other 
TDB approaches). 

4.2 Reducibility of the Algebra 

Reducibility is fundamental, to grant that the 
semantics of extended operators reduces to that of 
non-temporal algebraic operators when time is 
disregarded (McKenzie et al., 1991); (Snodgrass, 
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1995). To prove it for our algebra, we define a 
family of slicing operators:  

 I
,t(r)= {z | xr z[A]=x[A]  (x[N],x[M])  

x[Tstart]≤t≤ x[Tend]} 

where tDVT is a temporal granule, and  is a 
predicate on the minimum and maximum 
cardinalities (e.g., : x[N]>0). The result of slicing 
is a non-temporal relation defined over the schema 
A. Different slicing operations can be obtained using 
different instantiations of the  predicate. For 
instance: 

: x[M]>0 requires that the maximum cardinality 
is at least one. This condition is always satisfied by 
definition, and, intuitively speaking, corresponds to 
the case in which the fact described by the tuple is 
‘possible’ at time t. 

: x[N]>0 requires that the minimum cardinality 
is at least one. Intuitively speaking, this condition 
correspond to the case in which at least one instance 
of the fact described by the tuple ‘necessarily’ 
occurred at time t. 

Reducibility does not hold for any definition of 
. E.g., it does not hold for : x[N]>0, while it holds 
for : x[M]>0 (the proof is in the Appendix). 

Property 2. Reducibility. Our algebra reduces to 
the standard (non-temporal) algebra, i.e., for each 
algebraic unary operator OpI in our model, and 
indicating with Op the corresponding Codd operator, 
for each relation r, and for any granule t, and for : 
x[M]>0, the following holds (the analogous holds 
for binary operators):  

I
,t(OpI(r)) = Op(I

,t(r)) 

5 RELATED WORK 

In many applications, the exact temporal location of 
facts cannot be determined, so that some form of 
temporal indeterminacy must be managed. As a 
consequence, many approaches to temporal 
indeterminacy have been devised, e.g., within the 
Artificial Intelligence (AI) field. Many different 
forms of temporal indeterminacy have been 
considered in AI, including qualitative and 
quantitative constraints between events (see, e.g., the 
survey (Allen, 1991)). As concerns specifically 
“frame time” indeterminacy, it can be coped with, 
e.g., in the STP framework (Decther et al., 1991). In 
STP, bounds on differences of the form c1≤X-Y≤c2 
are used in order to state that the distance between 
two points Y and X is between c1 and c2 time units. 
In STP, frame time indeterminacy can be 

represented. For instance, Example 1 can be 
represented as f(10/9/2011 0:00)≤JHAs-X0  JHAe-
X0≤f(10/9/2011 23:59)  0≤ JHAe -JHAs, where 
JHAs and JHAe represent the starting and ending 
points of the episode of John’s headache, and X0 
represents the chosen origin of time, and f(d) is a 
function that evaluates the number of time units 
occurring from X0 to the timestamp d. In STP, 
constraint propagation mechanisms are provided in 
order to perform temporal reasoning of a set 
(conjunction) of constraints. Moving to the area of 
AI temporal logics, Galton (Galton, 1990), in his 
reified temporal logic, has introduced a specific 
predicate to model frame time indeterminacy. 
Specifically, the predicate HOLDS-IN(f,t), where f 
represents a fact, and t is a time period, models the 
situation in which the fact f occurred somewhere in 
the time interval t.  

On the other hand, when moving to the area of 
(relational) databases, the number of approaches 
coping with temporal indeterminacy becomes more 
restricted. A survey of TDB approaches to temporal 
indeterminacy has recently been provided in 
(Dyreson, 2009). In the earliest TDB work on 
temporal indeterminacy, an indeterminate instant 
was modeled with a set of possible chronons 
(Snodgrass, 1982). A fuzzy set approach was 
introduced by Dutta (1989). Gadia et al. have 
proposed a model to support value and temporal 
incompleteness (Gadia et al., 1992). In particular, 
Gadia et al. also cope with values that are known if 
they occurred, thus considering a limited form of 
indeterminacy about the number (zero or one) of 
occurrences. 

Dyreson and Snodgrass (1998) and Dekhtyar et 
al., (2001) have proposed probabilistic approaches 
coping with different forms of temporal 
indeterminacy. Dekhtyar et al. introduce temporal 
probabilistic tuples to cope with data such as “data 
tuple d is in relation r at some point of time in the 
interval [ti,tj] with probability between p and p’ ”. 
They also provide algebraic relational operators for 
their data model. However, they restrict their 
attention to facts that are instantaneous, while our 
approach also considers facts with duration. In 
Dyreson’s and Snodgrass’ paper (1998), valid-time 
indeterminacy is coped with by associating a period 
of indeterminacy with a tuple. A period of 
indeterminacy is a period between two indeterminate 
instants, each one consisting of a range of granules 
and of a probability distribution over it. 
Additionally, they impose the constraint that the 
ranges of granules defining the starting and ending 
points of a period cannot overlap, so that each tuple 
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has a “necessary” period of existence. Even 
disregarding probabilities, one may notice that frame 
time indeterminacy cannot be coped with by periods 
of indeterminacy, since they require additional 
pieces of information about the maximum possible 
starting time and the minimum possible ending time, 
which are not available if only the frame time is 
known. Additionally, it is worth noticing that in 
(Dyreson and Snodgrass, 1998) no relational algebra 
is proposed (and, indeed, it is easy to show that their 
‘periods of indeterminacy’ formalism cannot be 
closed with respect to the relational operator of 
difference). 

On the other hand, Brusoni et al., (1999) have 
faced indeterminacy in the context of dealing with 
temporal constraints between tuples. In (Brusoni et 
al., 1999), bounds on differences are used in order to 
represent temporal constraints between tuples. The 
notion of conditional interval is introduced, to cope 
with the indeterminacy involved by temporal 
constraints in the relational context. Also, a 
relational algebra has been devised to cope with 
conditional intervals.  

Recently, Anselma et al., (2010, 2013) have 
introduced and compared a family of algebraic 
approaches to cope with different forms of temporal 
indeterminacy. Each approach is characterized by 
the possibility of expressing some form of temporal 
indeterminacy in a compact way. Indeed, though 
some of the approaches in (Anselma et al., 2010; 
2013) can model frame time indeterminacy, none of 
them can do that in 1NF and in a compact way (as 
we do in this paper): the only way they can cope 
with it is by explicitly listing all the possibilities 
(i.e., all the possible locations for all the time 
intervals contained in a frame time). 

6 DISCUSSION AND 
CONCLUSIONS 

In this paper, we consider the problems of (1) frame 
time temporal indeterminacy, and of (2) 
indeterminacy about the number of occurrences of 
facts. To the best of our knowledge, only the 
approaches in (Brusoni et al., 1999) and (Anselma et 
al., 2010; 2013) have proposed both a relational data 
model and algebra which might (although not 
directly) support frame time indeterminacy. 
However, the data models of both approaches are 
not in 1NF, and, more interestingly, both approaches 
do not support cardinality indeterminacy. Indeed, to 
the best of our knowledge, cardinality indeterminacy 

has not been faced by any approach in the Artificial 
Intelligence and Temporal Database areas.  

To deal with both frame time and cardinality 
indeterminacy, we have introduced a new data 
model, an a new definition of relational algebraic 
operators, and we have studied their properties. In 
particular, we have proved that our data model is a 
consistent extension of the TSQL2 data model 
(Property 1; in turn, TSQL2 data model is a 
consistent extension of standard (non-temporal) data 
model) and that our algebra reduces to the standard 
algebra (Property 2). Such properties are important, 
since they are the basis to grant for the 
implementabilty and the interoperability of our 
approach. Specifically, the above properties 
guarantee that (1) our approach can be implemented 
on top of standard relational databases (or of 
TSQL2) as a support to cope with frame time 
indeterminacy, and (2) the interoperability of our 
approach with pre-existent TSQL2 and standard 
relational data. 

We are currently developing a prototypical 
implementation of our approach. Experimental 
evaluations will follow, to analyse the overhead we 
added with respect to temporal database approaches 
not managing temporal and cardinality 
indeterminacy. However, we conjecture that such an 
overhead will be almost negligible, due to the 
reasons discussed at the end of section 4.1. 

Finally, even if in this paper we have only 
discussed valid time, our approach also supports 
transaction time. Indeed no indeterminacy is 
possible on transaction time, so that we manage it as 
proposed in the “consensus” TSQL2 approach. 
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APPENDIX 

Property 1. Proof. TSQL2 (valid-time) valid time 
relations contain tuples of the form <a1,…,an|t1,t2>. 

The same content can be mapped in a tuple 
<a1,…,an|1,1,t1,t2> in our approach.  

  
Property 2. Reducibility. Proof. We prove the 
property considering Cartesian Product (the proof of 
other operators is similar). Let r and s be event 
relations of schema (A|N,M,Tstart,Tend) and 
(B|N,M,Tstart,Tend) where A and B stand for the non-
temporal attributes {A1,…,An} and {B1,…,Bm}, let  
be the standard (non-temporal) Cartesian Product 
and I be our temporal Cartesian Product, and I

,t 
the slicing operator (defined in Section 4.2), with : 
x[M]>0. Then, 

I
,t(rI s) = I

,t(r)  I
,t(s) 

We show the equivalence by proving two inclusions 
separately, i.e., we prove (1) that if a tuple belongs 
to I

,t(rI s) it also belongs to (I
,t(r)  I

,t(s)), and 
viceversa (2).  

(1). Let x’’ I
,t(rI s). Then, by the definition of 

I
,t, there exists a tuple x’(rIs) such that 

x’=x’’[A,B] and t x’[Tstart,Tend] and x’[M]>0. By 
the definition of I, there exist tuples x1r and x2s 
such that x1[A]=x’[A] and x2[B]=x’[B] and 
tx1[Tstart,Tend] and tx2[Tstart,Tend] (since 
tx’[Tstart,Tend] and x’[Tstart,Tend]= 
x1[Tstart,Tend]x2[Tstart,Tend]) and x1[M]>0 and 
x2[M]>0 (since x’[M]=min(x1[M]=x2[M]) and 
x’[M]0). Then, by the definition of I

,t, there 
exists a tuple x1’I

,t(r) such that 
x1’[A]=x1[A]=x’[A], and there exists a tuple 
x2’I

,t(s) such that x2’[B]=x2[B]=x’[B]. Thus, by 
the definition of , there exists x12’’(I

,t(r)  
I

,t(s)) such that 
x12’’[A]=x1’[A]=x1[A]=x’[A]=x’’[A], and 
x12’’[B]=x2’[B]=x1[B]=x’[B]=x’’[B]. 

(2). Assume x’’ (I
,t(r)  I

,t(s)). Then, by 
definition of , there exist tuples x1’I

,t(r) and 
x2’I

,t(s) such that x1’[A]=x’’[A] and 
x2’[B]=x’’[B]. By the definition of I

,t, there exists 
a tuple x1r such that x1[A]=x1’[A], tx1[Tstart,Tend] 
and x1[M]>0, and there exists a tuple x2s such that 
x2[B]=x2’[B], tx2[Tstart,Tend] and x2[M]>0. Then, by 
definition of I, there is a tuple x’(rIs) such that 
x’[A]=x1[A], x’[B]=x2[B], tx’[Tstart,Tend] and 
x’[M]>0. Thus, by definition of I

,t, there exists a 
tuple x12’’I

,t(rIs) such that x12’’[A,B]=x’[A,B]. 
By construction, x12’’=x’’.  
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