
Composing Classes
 Roles Vs Traits

Fernando Barbosa1 and Ademar Aguiar2
1Escola Superior de Tecnologia, Instituto Politécnico de Castelo Branco, Av. do Empresário, Castelo Branco, Portugal

2 INESC TEC and Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, Porto, Portugal

Keywords: Roles, Traits, Code Reuse, Modularity, Composition, Inheritance.

Abstract: Code replication has significant drawbacks in system maintenance. Code replication can have its origins in
the composition limitations of the language. Several proposals have tried to overcome these limitations. A
popular one is traits. However, traits do not support state or visibility control. Static roles are also a way of
composing classes that has the benefits of traits and offers state, visibility control and other advantages as
block renaming. We compare both approaches on how they are used to compose classes, and how they can
be used to reduce code replication caused by composition limitations. As a case study we will compare how
both approaches can reduce code replication by detecting and removing code clones within the JHotDraw
framework. Results show that roles are capable of reducing a larger amount of replicated code than traits.

1 INTRODUCTION

Code clones, identical blocks of code, are a hint that
the system needs to be refactored (Fowler, 1999).
However code clones appear in most systems,
specially in large ones (Mayrand et al., 1996)
(Baxter et al., 1998). Code clones impair
maintenance and evolution of a system (Baxter et
al., 1998). One problem is the inconsistence in
updating, where a bug in a code block is propagated
to all its clones, and is fixed in most but not all
occurrences. Code clones also have negative effects
in program evolution, comprehensibility and cost
(Roy and Cordy, 2007).

One origin of clones is the lack of composition
mechanisms (Mayrand et al., 1996; Baxter et al.,
1998; Roy and Cordy, 2007). This makes it harder to
deal with crosscutting concerns - concerns that a
class must deal with but are not its main concern.
When dealing with the same concern classes tend to
use similar code. This is more frequent in languages
without multiple inheritance, but multiple
inheritance has so many practical problems that it
has been left out of recent languages, like Java and
C#.

Some clones could be avoided if a language had
other composition mechanisms. Several proposals
are available, like multiple inheritance, mixins
(Bracha and Cook, 1990), traits (Ducasse et al.,

2004; Scharli et al., 2003), features (Apel and
Kästner, 2009) and aspects (Kiczales et al., 2001).

Traits can be seen as a set of methods that
provide common behaviour. When a class uses a
trait its methods are added to the class. The class
also provides glue code to compose the several
traits. Traits cannot store state. State is maintained
by the class that uses the trait.

When a class plays a role the role methods are
added to the class interface. Thus an object’s
behaviour is defined by the composition of all roles
its class declares to play. A class can configure the
role to its needs by configuring types and methods
names. Roles support state and visibility control.

Composing classes using traits or roles can
minimize the code replication due to limitations of
the composition mechanism. To assess this we
conducted an experiment to account how both
approaches could be used to remove the replicated
code found in the JHotDraw Framework. We briefly
present the two approaches then compare them
showing how they deal with conflict resolution,
composition order, etc.

We identified code clones using a clone
detecting tool, and grouped them according to their
concerns. We then tried to develop a role and a trait
for each concern, thus removing the clones. We
developed roles for nearly all detected concerns, but
couldn’t do the same for traits.

63Barbosa F. and Aguiar A..
Composing Classes - Roles Vs Traits.
DOI: 10.5220/0004424000630073
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 63-73
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

We can summarize our paper contributions as: a
comparison of roles and traits features, ways of
reducing replicated code using traits and roles; a
comparison of how roles and traits tackle the
problem of reducing duplicated code and identifying
which clones they can eliminate; a case study
showing how each approach reduces replicated code
in an open source system.

This paper is organized as follows. Section 2
presents Traits and Section 3 presents roles. In
Section 4 we compare the two approaches. Section 5
shows how to remove clones using roles and using
traits and section 6 presents the JHotDraw
framework case study. Related work is presented in
section 7 and section 8 concludes the paper.

2 TRAITS IN A NUTSHELL

Traits are units of code reuse and a class can be
constructed using several traits (Ducasse et al., 2004;
Scharli et al., 2003). Traits have a flattening
property: a class can be seen indifferently as a
collection of methods or as composed by traits. The
fact that the class can be seen as a whole promotes
understanding and the fact that it can be composed
promotes reuse.

In Traits a class can be constructed by using
inheritance and by adding traits. The class must
supply all state variables and glue code. The glue
code is the set of methods that the trait requires the
class to provide (for example, accessor methods for
the state variables). Thus a class can be decomposed
into a set of coherent features and the glue code
connects the various features together.

According to (Ducasse et al., 2004), Traits have
the following properties:
– A trait provides methods that implement behaviour

– A trait requires a set of methods that serve as
parameters for the provided behaviour.
– Traits do not specify state variables, and methods
provided by traits never access state variables.
– Classes and traits can be composed from traits.
– The composition order of traits is irrelevant.
– Conflicting methods must be explicitly resolved.
– Trait composition does not affect the semantics of
a class: the meaning of the class is the same as it
would be if all of the methods obtained from the
trait(s) were defined directly in the class.
– Similarly, trait composition does not affect the
semantics of a trait.

A class can redefine its superclass’s and its trait’s
methods. Conflicts arise when unrelated traits have
methods with the same signature. The conflict must
be solved explicitly by redefining the conflicting
method in the class. The conflict is thus resolved
locally. To access the conflicting methods Traits
support aliases. It works by giving an alias to a
method so it can be used in the class without trouble.
To prevent conflicts from occurring in the first place
traits also support the exclusion of methods.

Some attempts to bring traits into Java-like
languages have been made (Quitslund and Black,
2004; Smith and Drossopoulou, 2005). To compare
the Trait approach to the Role approach we used
Chai (Smith and Drossopoulou, 2005). Since Chai is
an extension to the Java language and we intend to
use our JavaStage language, that is also an Java
extension, we can argue that the differences between
the final code is due integrally to each approach and
not to the underlying language. The traits examples
in this paper are presented using the Chai syntax and
derive from the example shown in (Smith and
Drossopoulou, 2005).

Figure 1 shows trait declaration in Chai and its
use by classes. We can see requirement of methods

class Circle {
 int radius;
 int getRadius() { ... }
}
trait TEmptyCircle {
 requires { void drawPoint(int x, int y);
 int getRadius(); }
 void draw() { ... }
}
trait TFilledCircle {
 requires { void drawPoint(int x, int y);
 int getRadius(); }
 void draw() { ... }
}

trait TScreenShape {
 void drawPoint(int x, int y) {...}
}
trait TPrintedShape {
 void printPoint(int x, int y){...}
}
class ScreenEmptyCircle extends Circle

 uses TEmptyCircle,TScreenShape { }
class PrintedFilledCircle extends Circle
 uses TFilledCircle,TPrintedShape {
 alias { void printPoint(int x, int y)
 from TPrintedShape as
 void drawPoint(int x, int y) }
}

Figure 1: Trait example (adapted from (Smith and Drossopoulou, 2005).

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

64

in the TEmptyCircle: it offers a draw method and
requires the class to provide the drawPoint and
getRadius, with the specified signature. The same
methods are also required by TFilledCircle. The
code also shows a Circle class, representing a circle,
and two subclasses composed by traits and that
inherit from Circle. The ScreenEmptyCircle class is
an empty circle that can be drawn in the Screen, so it
uses TEmptyCircle and TScreenShape. The methods
required by TEmptyCircle are supplied by Circle
and TScreenShape, so ScreenEmptyCircle does not
need to provide them itself. PrintedFilledCircle is a
filled circle than can be printed in a printer, so it
inherits from Circle and uses TFilledCircle and
TPrintedShape. TFilledCircle required methods are
supplied by Circle and TPrintedShape. In the
TPrintedShaped case the class needed to alias the
trait method for the required name.

For more information on Traits we refer to
(Ducasse et al., 2004; Scharli et al., 2003) and for
the Chai language syntax we refer to (Smith and
Drossopoulou, 2005).

3 ROLES IN A NUTSHELL

We use roles as a basic construct from which we can
compose classes. Roles provide the basic behaviour
for concerns that the classes must deal with but are
not their main concern. Thus we can better
modularize the construction of classes. We must
mention that we use roles statically as defined by
Riehle in (Riehle, 2000) where he uses them as static
entities for modelling purposes. We do not use roles
as dynamic entities that can be attached or detached
from an object at runtime. Since there is much work
on the use of dynamic roles (Steimann, 2000; Tamai

et al., 2007; Herrmann, 2005) this must be
mentioned to avoid confusion.

To program with roles we use JavaStage, an
extension to Java (Barbosa and Aguiar, 2013).
Examples in this paper use the JavaStage syntax.
Figure 2 shows the role version of the trait example
of Figure 1.

A role may define methods and fields including
access levels. A class can play any number of roles,
and can even play the same role more than once. A
class playing a role is a player of that role. When a
class plays a role all the non private methods of the
role are added to the class. To play a role the class
uses a plays directive and gives the role an identity.
To refer to the role the class uses its identity. Roles
can inherit from roles and can also play other roles.

A role may require the player to have specific
methods. Those methods are stated in a requirement
list, which indicates who must supply the method
and the method signature. The Performer keyword
indicates that the supplier is the player. Performer is
used within a role as a place-holder for the player’s
type. This enables roles to declare fields and
parameters of the type of the player.

JavaStage has a method renaming mechanism
that allows the renaming of methods with a simple
configuration. Each name may have three parts: a
configurable one and two fixed. Both fixed parts are
optional. The configurable part is bounded by #, like
in the example: fixed#configurable#fixed

The name configuration is done by the class
playing the role in the plays clause. To play the role
the class must define all configurable methods.
It’s possible to declare several versions of a method
using multiple definitions of the configurable name.
This way, methods with the same structure are
defined once.

class Circle {
 int radius;
 int getRadius() { ... }
}
role EmptyCircle {

requires Performer implements
 void #draw#(int x, int y);

 requires Performer implements int getRadius();
 void draw() { ... }
}
role FilledCircle {

requires Performer implements
 void #draw#(int x, int y);

 requires Performer implements int getRadius();
 void draw() { ... }
}

role ScreenShape {
 void drawPoint(int x,int y){ ... }
}
role PrintedShape {
 void printPoint(int x,int y){ ...}
}
class ScreenEmptyCircle extends Circle {
 plays EmptyCircle(
 draw = drawPoint) emptyCircle;
 plays ScreenShape screenShp:
}
class PrintedFilledCircle extends Circle {
 plays FilledCircle(
 draw = printPoint) fillCircle;
 plays PrintedShape;
}

Figure 2: Role example, equivalent to the traits’ example in Figure 1.

Composing�Classes�-�Roles�Vs�Traits

65

Role members have all the visibility control
available to classes and a protected role member is
accessible to its players and subroles. A protected
class member is also accessible to roles. A class can
reduce the visibility of the role members. If a class
uses protected in the plays clause then all the public
role methods are imported to the class as protected.

Class defined methods always take precedence
over role methods and role methods take precedence
over inherited methods. Conflicts may arise when a
class plays roles that have methods with the same
signature. When conflicts arise the compiler issues a
warning. Developers can handle the conflict by
redefining that method and calling the intended
method. This is not mandatory because the compiler
uses, by default, the method of the first role in the
plays clause order.

JavaStage supports role constructors but does not
allow direct role instantiation. For more information
on roles and JavaStage we refer to (Barbosa and
Aguiar, 2013)

4 A COMPARISON BETWEEN
ROLES AND TRAITS

For comparing roles and traits we follow a few key
points that both approaches must deal with and
describe how each handled the situation.

Unit of Composition. In roles the unit of
composition is the role while in traits it is the trait.

Inheritance. Roles and traits are targeted for
single inheritance languages so there is no multiple
inheritance support. Roles can play other roles and
traits can use other traits. Both approaches also
support a class using the same unit several times. In
a class, to access the features of the superclass both
approaches use the super keyword. In a role,
however, the super keyword refers to the super role,
as roles can inherit from other roles. In a trait it
refers to the superclass of the composing class.

State Support. Roles can have state and it does
not cause any conflict because to access role state
the class must use the role identity thus no conflicts
arise. Traits do not support state. Proposals to solve
this introduced a significant complexity to the trait
model and encapsulation problems (Cutsem et al.,
2009). When modelling a concept we, often, need to
express state. For example, to model a container we
need a structure for storage. Forcing the composing
class to supply that structure is rather breaking the
container’s encapsulation.

Conflict Resolution. Both approaches follow

 the same rules for method overriding. The class
overrides methods from roles/traits and roles/traits
override the class inherited methods. Conflicts may
arise when methods with the same signature are
provided by more than one unit. In traits the conflict
must be resolved explicitly while in roles the method
of the first played role is used (there is a compiler
warning). In both cases it is the class composer that
decides which method to use. In traits he can choose
to exclude some methods so there is no conflict or
he can redefine the method and use aliases to refer to
each of the conflicting methods. In roles there is no
exclusion and the class composer must redefine the
conflicting method if he wishes to override the rule
of using the method of the first role.

Composition Order. The order in which traits
are composed is symmetric so order of composition
is irrelevant. The same applies for the roles when
there are no conflicting methods. When there are
conflicting methods the order of the plays will
dictate which method is used. This, however, is not
mandatory as discussed in the previous topic.

Method Renaming vs Aliases. There is a
fundamental difference between aliases in traits and
method renaming in the roles. The traits aliases are
used only by the class for distinguishing conflicting
methods, the class interface is not affected. In roles
the renaming affects the class interface. This means
that a class may be able to tailor its interface to suit
its needs and not be limited by the role interface.
The renaming mechanism of the roles also allows
renaming several methods in one go, while aliases in
traits are made one by one. Roles renaming scheme
can provide multiple versions of a method. Traits
aliases can be applied to any method, while on roles
only the configurable methods can be configured.

Flat and Composite View. Both approaches
support a flat view of the class as well as a
composite view. Thus a class can be seen as a set of
methods, the flat view, or as being composed by
several units of composition, the composite view.
The class interface in both views is exactly the same.
The main difference between the two is that a trait
method is seen just like a class method, and a role
method is always a role method and each reference
to other methods will always refer to role methods.
For example, suppose a trait that defines the
methods foo and bar, where bar calls foo. If the class
overrides the foo method then the trait bar method
will call the foo method on the class not on the trait.
The same situation is handled differently by roles. If
the method bar of the role is called then it will call
the foo method on the role and not on the class. For
a role method to call a class method it must do it

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

66

 explicitly using the perfomer keyword.
Visibility control. Traits have no visibility control.
Freezable traits (Ducasse et al., 2007) compensate
this by allowing classes to freeze/unfreeze methods,
i.e., declare a method as private (freeze) or making it
public (defrost). But there is no way to express
access constraints between class and trait. For
example, fields should be accessed directly only by
the owner’s code. Traits do no support this. Roles on
the other hand support all Java access levels, so a
specific interface between role and class is possible.

Stating Requirements. The use of generic types
is a useful feature in most languages, especially for
dealing with object collections. Traits can require
methods from the class that uses them, but cannot
impose restriction on generic types it interacts with.
The requires statement of roles indicates the method
signature and which type it is required from. This
allows roles not only to require methods from the
class but also from other collaborators types.

5 REMOVING CLONES

We want to assess if the extra units of composition
roles and traits provide are capable of reducing code
clones. To remove code clones refactorings (Fowler,
1999) are normally used. The ones most used for
removing code clones are: Extract Method; Pull Up
Method, Pull Up Field, Extract Superclass, Extract
class and Form Template Method (Fanta and
Rajlich, 1999; Komondoor and Horwitz, 2000)
(Higo et al., 2004).

We identified three clone types where roles or

 traits can be applied to remove code clones that fall
outside the scope of these refactorings or produce
better results. The clone types all have method
granularity, so if actual clones do not have method
granularity other refactorings must be used. Clone
types are: Clones with identical code; Clones with
similar code but using different types; Clones with
similar code but using different method names with
or without different types

Clones with Identical Code. These clones have
identical methods and/or fields. This could be
handled by the Extract Class refactory, but we argue
that this is one situation where roles/traits produce
better results. Extract Class forces the original class
to provide delegate methods to the newly created
class. With roles and traits those methods are not
required. We put the code in the role/trait and then
compose the class using it.

The application of roles and traits is shown in
Figure 3. The figure represents two classes with
replicated code. Both classes have different,
unrelated, superclasses so Pull Up Method and
Extract Superclass cannot be used. The replicated
code was placed in a trait and a role.

Both solutions are similar, the difference is that
roles support state so they do not require the getX
and setX methods and can even provide them. Traits
require the class to supply those methods.

Clones with Similar Code but using Different
Types. These could be handled by Extract Class,
using type parameters. For example we can build a
Company class that manages workers and we can
build a PolyLine that stores points. Both classes will
have code for adding and removing workers/points,
so there will be replicated code between them, only

class A extends SuperA {
 private int x;
 int getX() { return x; }
 void setX(int x){this.x=x;}
 void foo() { // more code
 x += 14;
 }
 void bar() { ... }
}
class B extends SuperB {
 private int x;
 int getX() { return x; }
 void setX(int x){this.x=x;}
 void foo() { // more code
 x += 14;
 }
 void bar() { ... }
}

trait TOne {
 requires{ int getX();
 void setX(int x);}
 void foo() { // more code
 setX(getX() + 14);
 }
 void bar() { ... }
}
class A extends SuperA uses TOne{
 private int x;
 int getX() { return x; }
 void setX(int x){this.x = x;}
}
class B extends SuperB uses TOne{
 private int x;
 int getX() { return x; }
 void setX(int x){this.x = x;}
}

role ROne {
 private int x;
 int getX() { return x; }
 void setX(int x){this.x=x;}
 void foo(){ // more code
 x += 14;
 }
 void bar() { ... }
}
class A extends SuperA {
 plays ROne r1;
}
class B extends SuperB {
 plays ROne r1;
}

Figure 3: Removing identical clones using roles and traits.

Composing�Classes�-�Roles�Vs�Traits

67

the stored type is different. We can create a unit
responsible for this management. We show this
example in Figure 4. For simplicity and space we
used arrays and do not show the management code.

There is a limitation in traits that may render a
solution impossible: traits cannot require methods
from other sources other than the class that uses
them. A possible example is the Observer pattern
(Gamma et al., 1995), where subjects maintain a list
of observers and notify them when changes occur
using an update method. The observer management
is similar to the container problem just described, so
the same solution can be applied. The problem lies
in calling the update method. For calling this method
the Trait must specify the type of the observer
otherwise it cannot call a method on it. Roles can
solve this by requiring the Observer type to
implement an update method, as shown in Figure 5,
where a Figure class notifies FigureObservers
whenever it is changed. The solution reuses the
container role and just adds the notify method.

Clones with Similar Code but Using Different
Method Names with or without different Types.
These clones have identical code but the names of
the methods are not identical. The used types may
also be different. For example we could change the
Company and Polyline example and change them so
that each had different names. The company would
have addWorker and removeWorker methods while
PolyLine would have addPoint and removePoint.

Traits aliases do not cope with these changes as
they only affect the methods internally. With traits
we would have to uniform the methods names and
then apply the previous topic solution. We show
how this situation is handled by roles in Figure 6.
The Company class also shows how we can use the
multiple method version to produce an addWorker
and an addEmployee method.

6 CASE STUDY

To compare how roles and traits are capable of
reducing code replication we applied both to the
JHotDraw framework. The framework defines the
basic structure for a GUI based editor with tools,
different views, user-defined graphical figures, etc.

6.1 Case Study Setup

We searched for replicated code with CCFinderX
(Kamiya et al., 2002), an established clone detection
tool used in aspect mining works (Ceccato et al.,
2005).

We filtered clones inside the same file (same
class), thus eliminating clones that could use Extract

trait TContainer<T>{
requires {
 T[] getAll();
}
void add(T t){...}
void remove(T t){
 ...
}

}
class Company uses
 TContainer<Worker>{
 Worker arr[];

Worker[] getAll(){
 return arr;
}

}
class PolyLine uses
 TContainer<Point>{
 Point arr[];

Point[] getAll() {
 return arr;
}

}

role Container<T> {
 private T arr[];

void add(T t){...}
void remove(T t){...}
T[] getAll() {
 return arr;
}

}

class Company {
 plays Container<Worker>

cWorker;
}

class PolyLine {

plays Container<Point>
 cPoint;

}

Figure 4: Removing identical clones with different types
using roles and traits.

role Subject<T> extends Container<T>{
 requires T implements void update();
 void notify() {
 for(T t : getAll())
 t.update();

}
}
class Figure {
 plays Subject<FigureObserver> figSubject;
}

Figure 5: Defining requirements on collaborators types.

role Container<T> {
 private T arr[];
 void add#Thing#(T t) { ... }
 void remove#Thing#(T t) {...}
}
class Company {

plays Container<Worker>(Thing = Worker,
 Thing = Employee) cWorker;

}
class PolyLine {

plays Container<Point>(Thing = Point
) cPoint;

}

Figure 6: Removing identical clones with different
methods and types using roles.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

68

Method or similar. We want to assess traits and roles
capability to reduce the code clones derived from
compositional limitations, so we only want clones
that are not removable with traditional refactorings.

The first result included 271 clones, reduced to
146 after filtering. These were manually inspected.
41 false clones were removed leaving a final 105
sets. Some clones only had similar structures, but as
they focused on the same concern we did consider
them. This will explain some unresolved concerns.

We grouped clones according to their concerns.
This helped us decide which role/trait to develop.
We identified 42 concerns, but 5 were removed (2
could be easily refactored, 1 was deprecated code
and 2 were classes pending substitution).

We’ve decided not to change any class interface
or any concern implementation, so the framework is
unchanged. This can restrict roles/traits development
but we want to assess how we can reduce code
replication, not redesign the framework. Roles were
developed and compiled with JavaStage (Barbosa
and Aguiar, 2013) and traits developed with Chai
(Smith and Drossopoulou, 2005).

Results are shown on table 1. For each concern it
shows how many clones were associated and how
many classes were affected. It also shows the
number of lines of code (LOC) that the clone had,
the lines of code that were used by Roles and Traits,
and the ratio between the various solutions.

LOC are a good measure on the effort that each
approach requires, because both use Java as the
underlying language, the syntax of both solutions is
analogous and we made an effort to uniform the
LOC count. We counted as LOC the requirements
statements that traits and roles use. We also counted
as LOC the roles’ plays directive and the traits’ uses
directive. This overhead can lead a small clone to
have more LOC in the solution than in the original
form but the fact that there is no clone gives the
system a great modularity advantage.

In the cases where roles removed clones and
traits did not, the table shows the roles features that
allowed them to remove the clone. For the concerns
that neither technique worked it states the reason
why they failed.

6.2 Results Analysis

Table 1 shows that from the 38 concerns only 8
(21%) concerns were not resolved with roles. Traits
failed to resolve 15 (39%) concerns. It also shows
that traits were not able to resolve the clones that
roles could not. The final outcome is better than
these numbers indicate as we will discuss.

We can see from table 1 that roles never had worst
results than traits, succeeding in 7 concerns where
traits failed and fared better in 13 more concerns.
This indicates that roles are, at least, as good as traits
in reducing replicated code.

Concerns resolved with Roles and Traits.
Comparing the LOC ratio of both approaches, in
those concerns both resolved, one finds that in
average roles only have 83% of the traits code and
68% of the original code, so the effort of developing
the role system seems smaller.

In 6 concerns we were able to reuse roles from
the role library developed in (Barbosa and Aguiar,
2012). From those, 3 are solvable with traits but we
had to develop a special trait for each concern and
could not reuse them from a library. This explains
the great difference in LOC in these concerns.

Supporting state is the role feature responsible
for the fewer code used in roles. The class instead of
having to declare each field and provide getters and
setters would have the field and methods defined in
the role. This is no small advantage not only in LOC
but also in terms of abstraction and encapsulation.

The multiple method version also enabled roles
to have less code, because a single method definition
can provide several methods.

Concerns resolved by Roles Only. Roles were
able to resolve 7 concerns that traits did not. From
these, 3 used roles from the library. Requiring and
renaming methods from other participants is the
feature that enables roles to solve more clones.

From all the concerns roles resolved, two exhibit
a higher LOC than the original implementation:
“Handle creation” and the “Polygon locator”.

The “Handle creation” concern deals with the
creation of handles for each figure. We placed the
creation of the handles in a handle creator class that
has a method for the handle creation for each class.
That and the role overhead lead to more lines of
code than the original implementation. But the role
has an advantage over the original code: it can
dynamically change the handle creator.

The “Polygon Locator” uses an anonymous
class. In JavaStage roles cannot be applied to
anonymous classes so we had to develop an inner
class to play that role and then use it.

Unresolved concerns. A surprising result is that
for the 2 concerns with the most clone sets and class
involved neither technique works. This is because
they are clones in the structure and not on the code
itself. The ”Creating undo activity” creates an
UndoActivity object for each tool and command.
Each has an UndoActivity inner class. Because inner
class constructors have different parameters in

Composing�Classes�-�Roles�Vs�Traits

69

Table 1: Identified concerns with the number of associated clones and affected classes. It also shows the LOC for each
approach and respective ratios.

*= reused role from library, br= block renaming, g= generics, mv= multiple versions, rp= requires from participant, s= state

clone class Original Roles Roles/ Traits Roles/ Traits/
LOC LOC Original LOC Traits Original

Drawing Handles 8 15 64 40 63% 40 100% 63%

Setting up the undo activity before
executing a Command

2 8 56 44 79% 44 100% 79%

BringToFront/SendToBack Commands 1 2 20 12 60% 12 100% 60%

Handle creation 11 20 70 87 124% 87 100% 124%

Drawing polygons 1 2 12 11 92% 11 100% 92%

Palette Listener 1 2 20 17 85% 17 100% 85%

DisplayBox persistence 2 5 35 12 34% 12 100% 34%

DisplayBox handling 6 8 58 29 50% 60 48% 103%

DesktopListener Subject 2 3 63 45 71% 55 82% 87%

Changing connections 3 3 98 53 54% 65 82% 66%

Finding connectable figure 1 3 98 53 54% 65 82% 66%

Testing command executability 5 7 14 14 100% 15 93% 107%

Floating text holder 2 2 47 36 77% 47 77% 100%

DrawingViewListener Subject 2 4 63 26* 41% 47 55% 75%

Setting text in a text Figure 2 2 36 22 61% 32 69% 89%

Enumerator 1 3 33 11* 33% 37 30% 112%

Figure Listener that resends notifications 2 3 35 23* 66% 37 62% 106%

Menu enabling 1 2 20 14 70% 14 100% 70%

Version control 1 2 12 9 75% 9 100% 75%

Selected button manager 1 2 18 12 67% 16 75% 89%

Text attributes management 2 2 206 120 58% 149 81% 72%

Updating DrawingView Strategy 1 2 29 26 90% 32 81% 110%

Connection insets computing 1 3 10 7 70% 7 100% 70%

Undo/Redo Commands 1 2 32 31 97%

Changing connection handles 1 2 20 19 95%

Polygon and PolyLine Handles 3 2 32 28 88%

Tools and Commands Dispatchers 6 4 89 32* 36%

Figure/Handle and Enumerator 1 2 33 2* 6%

Polygon locator 1 2 13 20 154%

Drawing editor 1 3 54 28* 52%

Reason

Desktop initial configurations 1 2 required too much configuration

Persistence (read/write) 3 6 similar but not quite identical code

UndoActivity 13 24 Undoactivity inner classes constructors

Creating UndoActivity 14 18 after other roles was just a line of code

Handle manipulation starting action 3 5 required too much configuration

Point is inside Figure 3 6 code too small

DrawingView Listener 1 2 perfomance issues

Mouse motion handling 1 2 code too small

br rp g

R
es

ol
ve

d
by

 R
ol

es
 a

nd
 T

ra
its

Concern

U
nr

es
ol

ve
d

br rp g

rp

br rp

br rp

rp

mv br rp

R
es

ol
ve

d
on

ly
 b

y
R

ol
es

Roles features

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

70

number and types, roles and traits could not resolve
this concern. Another example is the “Handle
manipulation starting action”: code is similar but not
identical: methods have different parameters.

Another example is “Persistence”: because
figures must be streamed they have a write and read
methods with similar, but not identical, structures.

Another unresolved concern is “DrawingView
listener”. The replicated code is redefining the
original method for performance issues.

The unresolved “Desktop Initial configuration”
deals with a Desktop’s panel initialization. Each
initialization is similar so we could configure a
role/trait for each. But it would be easier to know
how to configure the scroll pane.

Other unresolved concern was a single line like
getSomeObject().doSomething(). The first method
returns different objects that call different methods,
so role configuration would take more LOC.

We would count only 4 unresolved concerns if
we had not considered some concerns as clones.

6.3 Threats to Validity

We only considered a single system. However, the
discussion in section 5 hints that results from other
systems would also have roles performing better
than traits. We need to do the same test with more
systems to fully assess this.

The clone detection settings can affect the clones
detected which would lead to different concerns. But
we needed to reduce the amount of clone sets to a
manageable number or there would be a greater
number of false clones. We even used less than the
limit of 30 tokens recommended in (Kamiya et al.,
2002) to limit false clones. So we believe that our
settings provided a good number of clones/concerns
that make this case study results valid.

There could be biased results from having the
same developers doing the role and traits approach.
After all the authors are more experienced in roles
than in traits. This could bias the results towards
roles. To prevent this, we opted to base the study on
clone detection and not on developing an alternate
system from scratch.

The effort used to develop each approach was
not taken into account. For that we would need to
assess how teams of developers, each using a
different approach, tackled the same problem. While
the LOC number gives a hint on the effort required,
and here roles have an advantage, it does not tell the
entire story as already mentioned. However it does
give some insights. One insight is that the use of
state reduces the effort to develop roles by reducing

the amount of glue code one must write to use traits.
This also gives roles a better modelling capability
because a role can model a concept that has state and
behaviour as opposed to the traits’ behaviour only
modelling. We also reused roles from our role
library, but traits equivalent could not be placed in a
traits library, which means that the effort of
developing roles was less than that of traits.

7 RELATED WORK

There are a number of dynamic role approaches like
Object Teams (Herrmann, 2005), EpsilonJ (Tamai et
al., 2007) and PowerJava (Baldoni et al., 2007).
These are known for their capability to attach and
detach roles from objects at runtime, something that
(Cutsem et al., 2009) also supports for traits.
ObjectTeams introduces the notion of team. A team
represents a context in which several classes
collaborate to achieve a common goal. Even though
roles are first class entities they are implemented as
inner classes of a team and are not reusable outside
that team. Roles are also limited to be played by a
specific type. PowerJava has a similar concept – the
institution. When an object wants to interact with an
institution it must assume one of the roles the
institution offers. In EpsilonJ roles are also defined
as inner classes of a context. Roles are assigned to
an object via a bind directive. It uses a requires
directive similar to roles and traits. It also offers a
replacing directive to rename methods names.

Feature Oriented Programming (FOP) (Apel and
Kästner, 2009) decomposes the system into features.
FOP relies on a step-wise refinement of applications
by adding new features or refining existing ones. To
compose a system we just state which features it has.
The composition is made automatically with tool
support, like AHEAD (Batory et al., 2004). This is a
more powerful technique than roles or traits.
AHEAD uses several tools for composing the code
and extra files for configuring the composition step.
Roles/Traits are programming languages that
statically compose classes using only source code.
AHEAD can be used to compose classes. For
example, we can develop a class that defines the
basic behaviour of a class, undistinguishable from a
normal Java class, except that it has a feature
keyword indicating to which feature it is associated
to. We can then construct several refinements to that
class. Each refinement indicates the added feature
and the class it refines.

Package Templates (PT) (Krogdahl et al., 2005)
use traditional java packages with a twist. Classes

Composing�Classes�-�Roles�Vs�Traits

71

defined in these packages are only directly available
when the package is instantiated. When instantiated
the classes can be tailored to the context of use by:
getting additions; elements can be renamed; type
parameters are given actual types. This tailoring is
similar to roles as roles also support renaming and
type parameters. PT may also impose restrictions on
the various types via a constraints declaration that
resembles roles requirement list. Classes in a PT can
be merged with classes from other PT and can be
used more than once in the same merging (like
roles/traits can be used multiple times). The main
difference between PT and roles is that PT, like
traits, rely on inheritance to do the merging and roles
rely on inner classes. Name clashes are resolved via
renaming, which can be applied to fields and
methods. The renaming cannot be used on the
constraints. JavaStage on the other hand allows the
renaming of required methods

Aspect-Oriented Programming is an approach
that tries to modularize crosscutting concerns
(Kiczales et al., 2001). AOP defines pointcuts to
identify points in the executing program that may
trigger a different execution path and advices that
indicate the new execution path. While the
modularization of crosscutting concerns is the
flagship of AOP several authors disagree (Steimann,
2000; Przybyłek,v2011). The effects of pointcuts
and advices, especially when several aspects have
similar pointcuts, may be unpredictable. Thus simple
changes in the class code can have unsought effects
(Kästner et al., 2007).

The obliviousness feature of AOP means that a
class is aspect unaware so aspects can be plugged or
unplugged as needed. But it introduces problems in
comprehensibility (Griswold et al., 2006). To
understand the system we must know the classes and
which aspects affect each class. This is a major
drawback when maintaining a system, since the
dependencies aren’t always explicit and there isn’t
an explicit interface between both parts.

With roles/traits all dependencies are explicit and
the system comprehensibility is increased (Riehle,
2000). Roles do not have the obliviousness of AOP
because the class is aware of the roles it plays.

Caesar (Mezini and Ostermann, 2003) uses
aspect technology to modularize crosscutting
concerns and enhance reuse of aspects leading to a
greater reduction of repeated code. Caesar uses an
Aspect Collaboration Interface that decouples
aspects binding and implementations by defining
them in a separated module. Caesar does not allow
method renaming.

Jiazzi (McDirmid et al., 2001) is based on Units
(Flatt, 1998) and aims at building systems out of
reusable components integrated with the language.
Jiazzi has two types of units: Atoms (composed by
java classes) and Compounds (composed by atoms
or other compounds). Jiazzi supports the addition of
features to classes without editing their source code.
Roles/Traits could be used within Jiazzi to specify
these new features. A trait/role could be used to add
the same behaviour for different classes in the same
unit, or for the same class but in different units.

8 CONCLUSIONS

We compared how the role and traits approaches
deal with the composition problems that they aim to
diminish by doing a study on how each can reduce
replicated code, especially the replicated code that
derives from lack of compositional mechanisms in
single inheritance languages.

The outcome of the study showed that roles are
more reusable than traits, because roles support
state, have a renaming mechanism that tunes them to
the class purpose and can even provide several
versions of a method in a simple way. We validated
our approach developing roles for the JHotDraw
framework and eliminated nearly all duplicated
code. Doing the same test for traits showed that they
cannot eliminate all the clones roles were capable of.
We even reused some roles from our role library
showing that they are really reusable.

REFERENCES

Apel, S., Kästner, C. (2009): An Overview of Feature-
Oriented Software Development, in Journal of Object
Technology, vol. 8, no. 5, July–August 2009.

Baldoni, M., Boella, G. van der Torre, L., (2007):
Interaction between Objects in powerJava, journal of
Object Technologies 6, 7 - 12.

Barbosa, F. and Aguiar, A. (2012). Roles as Modular
Units of Composition. In 7th International Conference
on Evaluation of Novel Approaches to Software
Engineering, June, 29-30, Wroclaw, Poland.

Barbosa, F. and Aguiar, A. (2013). Using Roles to Model
Crosscutting Concerns. In Aspect Oriented Software
Devlopment (AOSD3), March 24–29, Fukuoka, Japan.

Batory, D., Sarvela, J. N. and Rauschmayer, A., Scaling
Step-Wise Refinement. IEEE TSE, 30(6), 2004.

Baxter, I., Yahin, A. Moura, L., Sant’Anna, M. and Bier.
L. (1998). Clone Detection Using Abstract Syntax
Trees. In Proc. of Int. Conf. on Software Maintenance.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

72

Bracha, G. and Cook, W. (1990): Mixin-Based
Inheritance. In Proceedings of the OOPSLA/ECOOP,
pages 303–311, Ottawa, Canada. ACM Press.

Ceccato, M., Marin, M., Mens, K., Moonen, L, Tonella, P.
and Tourwe, T (2005). A qualitative comparison of
three aspect mining techniques, Proc. of the Inter.
Workshop on Program Comprehension, Washington.

Cutsem, T., Bergel, A., Ducasse, S. and Meuter, W.
(2009): Adding State and Visibility Control to Traits
Using Lexical Nesting, Proc. of ECOOP 2009, Italy.

Ducasse, S., Schaerli, N., Nierstrasz, O., Wuyts, R. and
Black, A. (2004): Traits: A mechanism for fine-
grained reuse. In Transactions on Programming
Languages and Systems.

Ducasse, S., Wuyts, R., Bergel, A., and Nierstrasz, O.
(2007): User-changeable visibility: Resolving
unanticipated name clashes in traits. In Proceedings
OOPSLA, New York, NY.

Fanta, R., Rajlich, V. (1999): Removing Clones from the
Code. Journal of Software Maintenance: Research and
Practice, Volume 11(4):223-243.

Flatt, M. and Felleisen, M. (1998) Units: Cool modules for
HOT languages. In Proc. of PLDI, May 1998.

Fowler, M., (1999), Refactoring: Improving the design of
existing code, Addison-Wesley, Boston, MA, USA.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.,
(1995): Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

Griswold, W.G., Sullivan, K., Song, Y., Shonle, M.,
Tewari, N., Cai, Y., Rajan, H., 2006: Modular
Software Design with Crosscutting Interfaces. IEEE
Software 23(1), 51–60 (2006).

Herrmann, S., (2005): Programming with Roles in
ObjectTeams/Java. AAAI Fall Symposium: "Roles, An
Interdisciplinary Perspective".

Higo, Y., Kamiya, T., Kusumoto, S., Inoue. K. (2004):
Refactoring Support Based on Code Clone Analysis.
In Proceedings of the 5th International Conference on
Product Focused Software Process Improvement
(PROFES'04), Kansai Science City, Japan.

Kamiya, T., Kusumoto, S. and Inoue, K. (2002), Ccfinder:
a multilinguistic tokenbased code clone detection
system for large scale source code, IEEE Trans. Softw.
Eng. 28, no. 7.

Kästner, C., Apel, S., Batory, D., 2007: A Case Study
Implementing Features using AspectJ. In: 11th Inter.
Conference of Software Product Line, Kyoto, Japan.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., Griswold. W. G., (2001): An overview of AspectJ.
In proceedings of ECOOP 2001, Budapest, Hungary.

Komondoor, R. and Horwitz SS. (2000): Semantics-
Preserving Procedure Extraction. In Proceedings of
the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL'00), pp.
155-169, Boston, MA, USA.

Krogdahl, S., Møller-Pedersen, B., Sørensen, F. (2005):
Exploring the use of Package Templates for flexible
reuse of Collections of related Classes, in Journal of
Object Technology, vol. 8, no. 7.

Mayrand, J., Leblanc, C. and Merlo, E. Experiment on the
Automatic Detection of Function Clones in a Software
System Using Metrics. In Proc. of the International
Conference on Software Maintenance, 1996.

McDirmid, S., Flatt, M. and Hsieh, W.C. Jiazzi: new-Age
Components for Old-Fashioned Java”, OOPSLA 2001.

Mezini, M. and Ostermann, K. 2003. Conquering Aspects
with Caesar. In Proc. of AOSD 2003, pages 90 – 99.

Przybyłek, A. /2011). Systems Evolution and Software
Reuse in Object-Oriented Programming and Aspect-
Oriented Programming , TOOLS 2011, LNCS 6705.

Quitslund, P. and Black, A. (2004): Java with traits -
improving opportunities for reuse. In Proceedings of
the 3rd International Workshop on Mechanisms for
Specialization, Generalization and inheritance.

Riehle, D. 2000. Framework Design: A Role Modeling
Approach, Ph. D. Thesis, Swiss Federal Institute of
technology, Zurich.

Roy, C. and Cordy, J. (2007) A Survey on Software Clone
Detection Research. Tech. Report 2007-451, School of
Computing, Queen’s University at Kingston.

Scharli, N., Ducasse, S., Nierstrasz, O. and Black, A.
(2003): Traits: Composable units of behavior. In
Proceedings of ECOOP 2003, volume 2743 of Lecture
Notes in Computer Science. Springer.

Smith, C. and Drossopoulou, S. (2005): Chai: Traits for
Java-like languages. In Proceedings of ECOOP 2005.

Steimann, F., (2000): On the representation of roles in
object-oriented and conceptual modeling. Data &
Knowledge Engineering 35(1):83–106.

Tamai, T., Ubayashi, N., and Ichiyama, R., (2007):
Objects as Actors Assuming Roles in the
Environment, in Software Engineering For Multi-
Agent Systems V, Lecture Notes In Computer
Science, vol. 4408. Springer-Verlag, Berlin.

Composing�Classes�-�Roles�Vs�Traits

73

