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Abstract: Business requirements are essential for developing any information system, including a data warehouse. 
However, requirements written in natural language may be imprecise. This paper offers a model for 
business requirement formalization according to certain peculiarities of elements of multidimensional 
models, e.g. the distinction between quantifying and qualifying data. We also propose an algorithm that 
generates candidate data warehouse schemas and is based on distinguishing data warehouse schema 
elements in formal requirements. Then, resulting schemas are processed by a semi-automated procedure in 
order to obtain a data warehouse schema that matches business requirements best of all. 

1 INTRODUCTION 

Companies should use performance measurement 
systems, if they want to succeed in competition with 
others. During the performance measurement, its 
results should be compared with the target values to 
understand, whether goals are achieved or not. For 
implementation of a performance measurement 
system a data warehouse could be used. 

"A data warehouse is a subject-oriented, 
integrated, non-volatile, and time-variant collection 
of data in support of management decisions" 
(Inmon, 2002). Developing a data warehouse that 
fits all requirements of potential users is not the 
easiest task. There is no common understanding 
about the best method for conceptual modeling of 
data warehouses and the most expressive modeling 
language for that purpose. Conceptual models of 
data warehouses can be classified according to their 
origination (Rizzi et al., 2006): E/R model based, 
UML based, and independent conceptual models, 
e.g. Dimensional Fact Model (Golfarelli et al., 
1998). The necessity to develop special conceptual 
models for data warehouses is founded on existence 
of two types of data that should be modeled – 
quantifying and qualifying data, and elements of 
multidimensional paradigm, e.g. dimensions, 
hierarchies, cubes, whose semantics can’t be 
modeled properly with standard modeling 
languages. Besides the specialized conceptual 

models for data warehouses, developers also need 
formal methods to construct these models (Rizzi, 
2009). All methods can be classified as supply- or 
demand-driven according to the way how the data 
warehouse requirements are determined. The 
requirements for data warehouses differ from those 
applied to other types of systems – here we can 
speak about the information requirements (Winter 
and Strauch, 2003). In supply-driven methods the 
existing models of data sources are investigated to 
understand what data is used in an enterprise. In 
demand-driven approaches the required data for 
analysis needs is established mostly by interviewing 
users. However, more new approaches, e.g. 
ontology-based (Romero and Abello, 2010), pattern-
based (Jones and Song, 2005), are proposed to gain 
the most suitable conceptual model of a data 
warehouse for the implementation of the strategy of 
an organization and to avoid the limitations of 
existing methods. In the supply-driven approach the 
constructed conceptual model may not reflect all 
analysis needs, because it reflects the operational 
needs of data source systems. In the requirement-
driven approach the data warehouse model depends 
on interviewed users, their understanding about the 
enterprise, and ability to precisely express their 
analysis needs. 

We propose a method for transforming 
information requirements to conceptual model of a 
data warehouse. In this case, requirements are 
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performance indicators of an organization that are 
gathered by interviewing users and formalized in 
accordance with the indicators model.  

The rest of the paper is organized as follows. 
Section 2 describes related work. Section 3 
introduces formal model for indicator definition. 
Section 4 presents the algorithm that transforms 
requirements. Section 5 describes the post-
processing of schemas produced by algorithm. 
Section 6 ends the paper with conclusions. 

2 RELATED WORK 

Demand-driven methods can be divided more 
precisely according to the way of identifying 
requirements, e.g. user-driven (Westerman, 2001), 
(Poe, 1996) process-driven (Kaldeich and Oliveira, 
2004), and goal-driven (Giorgini et al., 2005), (List 
and Machaczek, 2004) where users are interviewed 
and processes, goals, or indicators are modeled and 
analyzed to gain precise understanding of analysis 
needs of users and the organization.  For example, 
(Poe, 1996) proposes a catalogue for storage of 
users’ interviews to collect end-users’ requirements, 
recommends to interview different groups of users 
to understand a business completely. In case of the 
process-driven approach, a business process is 
analyzed, e. g., in (Kaldeich and Oliveira, 2004) the 
“AS IS” and “TO BE” process models are 
constructed including the analyzed processes, as 
well as the corresponding data models. In case of 
the goal-driven approach, goals of an enterprise, 
goals of analyzed business processes are analyzed 
and data that should be analyzed to achieve these 
goals is identified.  For example, in (Giorgini et al., 
2005) the decisional modeling is performed, facts 
are identified and mapped onto entities or relations 
of data sources, but hierarchies of each fact are later 
constructed by applying supply-driven approach 
(Golfarelli et al., 1998). 

In information supply-driven approach we can 
speak about methods e.g. (Inmon, 2002), (Golfarelli 
et al., 1998) that utilize the existing data models of 
transaction systems. A data warehouse model is 
obtained by transforming models of data sources. 
For example, (Golfarelli et al., 1998) analyze many-
to-one associations in the data source models to 
construct an attribute tree that is used later to form 
dimensions, hierarchies, and other elements of 
multidimensional paradigm. 

 

3 THE FORMAL MODEL 
FOR INDICATOR DEFINITION 

Data warehouses have specific features when they 
are used for implementation of performance 
measurement systems: new data sources, e.g. 
workflow logs, specific data analysis approaches, 
e.g. process monitoring based on performance 
indicators, and data warehouse model that reflects 
the previous two aspects, which may determine the 
data items to be included into the data warehouse 
model.  

Indicators are the focus of data analysis in the 
performance measurement process. The definition 
of indicators can be expressed on various levels of 
formality. We proposed a formal specification of 
indicators in our previous work (Niedritis et al., 
2011). At the same time, the data warehousing 
models are built to represent the information needs 
for data analysis. So, we could perceive indicators 
as an information requirement for a data warehouse 
system. Therefore, the formalization of indicators 
could be based on the nature of elements of 
multidimensional models, e.g. the distinction 
between quantifying and qualifying data. 

The type of an information system to be 
developed has some impact on the way of 
formulating sentences that express requirements. 
Before starting our study, we assumed that 
information requirements for data warehouses used 
for performance measurement have similar 
structure. This assumption was based on our 
observations on how the information needs were 
described in real life projects. We based the 
proposed model also on the structure evaluation of 
the sentences that formulate performance indicators 
taken from the performance measures database 
(Parmenter, 2010). 

3.1 Concepts of the Formal Model 
of Requirements 

The requirement formalization is represented as a 
UML class diagram by (Niedritis et al., 2011). 
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Figure 1: Requirement formalization example (Niedritis et 
al., 2011). 
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In this paper we use an implementation model of 
the requirements formalization for the algorithm 
described in Section 4.2, but for better 
understanding we give a short description of main 
concepts in this section.  

Let’s see an indicator example: “Average 
number of contacts made with key customers per 
month”. Using our proposed requirement model it is 
reformulated as follows: “show month, average 
(contact occurrence) where customer type is ‘key 
customer’ ”. Figure 1 demonstrates the application 
of the model. The left column is filled with parts of 
the requirement statement and all the rest columns 
(left to right) contain names of the model levels.  

In the proposed model a requirement can be 
classified as Simple or Complex Requirement. A 
complex requirement is composed of two or more 
simple requirements with an Arithmetical Operator. 
A simple requirement consists of a verb (Operation) 
that denotes a command, which refers to an Object, 
and zero or one Typified Condition. There are two 
kinds of data in data warehousing: Quantifying 
(measurements) and Qualifying (properties of 
measurements). An object is either an instance of 
quantifying or qualifying data depending on the 
requirement.  

A Complex Operation consists of two or more 
Actions. There are two possible types of action: 
Aggregation (used for calculation and grouping, 
“roll-up”) and Refinement (used for information 
selection, “drill-down”, as an opposite to an 
aggregation). Information refinement is either 
showing details, i.e., selecting information about 
one or more objects, or slicing, i.e., showing details, 
according to a certain constraint (Typified 
Condition). Conditions can be simple or complex. 
Complex condition joins two or more simple 
conditions by Logical Operators (AND, OR, NOT). 
Simple condition consists of a Comparison of two 
Expressions, for example, “time is greater than 
last_access_time – 1 second”. An expression too 
may be either a Simple or a Complex Expression. A 
complex expression contains two or more simple 
expressions with an arithmetical operator between 
the simple expressions. A simple expression belongs 
either to qualifying data (e.g. “last_access_time”) or 
to Constants (e.g. “1 second”). 

3.2 The Implementation Model 
of Formal Requirements 

Formal requirement metadata is implemented using 
relational database tables depicted in Figure 2. 

Requirements are stored in tables Requirement and 
SimpleRequirement. Each business requirement 
refers to some theme (Theme), e.g. Finance, 
Customer Focus, etc. Simple requirements are 
defined by Operation, Object and 
TypifiedCondition. An operation is either an 
aggregate function (isAggr=1) or a refinement 
operation (isAggr=0). An operation can consist of 
multiple suboperations, e.g. SUM(AVG(Income)). 
To indicate the sequence of them, an attribute 
Operation.Index is employed. The value of 
Object.Type is either ‘qualifying’ or ‘quantifying’.  

A simple condition involves two expressions and 
the value of a comparison. The expression type is 
defined by Expression.isSimple. A simple 
expression consists of either a qualifying data 
object, or a constant, and the type of an expression 
(Expression.Type) respectively. Otherwise, an 
expression is composed of multiple expressions and 
an arithmetical (Expression.ArithmeticalOperator) 
operator between them. A complex condition 
involves conditions and a logical operator. 
 

Requirement

PK ID

 isSimple
FK1 Requirement1ID
FK2 Requirement2ID
 ArithmeticalOperator
 Index
FK3 SimpleReqID
FK4 ThemeID

SimpleRequirement

PK ID

FK1 ObjectID
FK2 TypifiedConditionID
FK3 OperationID

Object

PK ID

 Name
 Type
 isTime

Operation

PK ID

 isAggr
 Value
 Index
 SuboperationID

TypifiedCondition

PK ID

 Value
FK1 ConditionID

Condition

PK ID

 isSimple
FK1 Condition1ID
FK2 Condition2ID
 LogicalOperator
 Comparison
FK3 Expression1ID
FK4 Expression2ID

Expression

PK ID

 isSimple
 Type
 Constant
FK1 Expression1ID
FK2 Expression2ID
 ArithmeticalOperator
FK3 ObjectID

Theme

PK ID

 Name

 

Figure 2: The implementation model of formal 
requirements. 

4 FROM REQUIREMENTS 
TO PRE-SCHEMAS 

In this paper we propose a method for transforming 
information requirements to the conceptual model of 
a data warehouse (see Figure 3). The method uses 
requirements from formal requirements database 
and generates a simplified data warehouse schema 
(pre-schema or candidate schema) by an algorithm 
that analyses the structure of requirements. The next 
stage of the method is semi-automated candidate 
schemas are processed and restructured to remove 
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duplicates and build dimension hierarchies. Finally, 
the improved schemas can be used as data 
warehouse schema metadata. 
 

Formal requirements 
implementation 

model

Pre-schema
Pre-schema Generation 

Algorithm

Semi-automated execution
Data warehouse 

model

Copy restructured 
pre-schema

Pre-schema restructuring component  

Figure 3: Pre-schema generation and restructuring. 

4.1 A Pre-Schema and its Components 

When exploring formal requirements, measures 
(C_Measure) that characterize business processes 
are determined and so do attributes (C_Attribute) 
that describe measures. PreSchema is a candidate 
schema of a data warehouse that includes measures 
and attributes derived from requirements. In Figure 
4 an implementation model for storing candidate 
schemas and its elements is depicted. 
 

PreSchema

PK ID

FK1 ThemeID
 Index
 isAccepted

C_Measure

PK ID

FK1 PreSchemaID
 Name
 DataType
 isAccepted

Theme

PK ID

 Name

C_Attribute

PK ID

 Name
FK1 PreSchemaID
 isTime
 isAccepted

C_Aggregation

PK ID

FK1 MeasureID
 Value
 isAccepted
 Index

C_Level

 ID

FK1 AttributeID
 Name

C_Hierarchy

PK ID

 Name

C_LevelHierarchy

 ID

FK1 HierarchyID
FK2 LevelID
 Index

C_AcceptableAggregation

PK ID

FK1 AttributeID
FK2 AggregationID
 isAccepted  

Figure 4: A candidate schema (PreSchema) and its 
components. 

PreSchema.Index represents a link to a simple 
requirement in requirement model. If in a formal 
requirement a measure has an aggregate function 
applied to it, then it is stored in C_Aggregation. 
Tables C_Level, C_Hierarchy and 
C_LevelHierarchy are employed to define attribute 
hierarchies. C_LevelHierarchy.Index is some level’s 
sequence number in a hierarchy. The meaning of an 
attribute isAccepted in PreSchema, C_Measure, 
C_Attribute, C_Aggregation, and 
C_AcceptableAggregation is described in Section 5. 

4.2 PGA: The Pre-Schema Generation 
Algorithm 

We propose a pre-schema generation algorithm 
(PGA) for distinguishing data warehouse pre-

schema elements in formal requirements stored in an 
implementation model (see Figure 2).  

In Procedure 1 (MakePreSchema) requirements 
are reviewed in a context of the business 
requirement theme (lines 1-3). All simple 
requirements of a certain theme are processed (lines 
4-22). Complex requirements are not reviewed, 
because objects, operations, and conditions are 
defined in simple requirements only. 

If the type of an object is Quantifying, then it is a 
measure – C_Measure (lines 11-13). To find 
aggregate functions (C_Aggregation) associated 
with the measure and to set its order, operations are 
checked by Function 1 (ProcessOperations; line 14, 
and 23-40). If the type of an object is Qualifying, 
then it is processed as an attribute – C_Attribute 
(lines 15-18). Finally, simple conditions are handled 
by Procedure 2 (ProcessSimpleConditions; line 22, 
and 41-54). If an expression in a simple condition 
has the type Qualifying, then the appropriate object 
is an attribute (lines 46-51). Expressions with the 
type Constant are ignored. 

5 THE PROCESSING 
OF A PRE-SCHEMA 

Before discussing the process model of handling 
pre-schemas generated by PGA, the following 
assumptions should be considered: 
 Two measures in a set of pre-schemas have the 

same name, iff their semantic meaning is the same. 
For instance, if two measures are named “total 
number”, however, semantically one of them 
corresponds to “total number of students” and the 
other one – to “total number of teachers”, then 
these two measures should be renamed 
respectively. 

 Two attributes in a set of pre-schemas have the 
same name, iff their semantic meaning is the same. 
The explanation is equivalent to the above-
mentioned, but is related to attributes. 

 Names of the measures in pre-schemas coincide 
with those in the data source. 

First of all, an administrator picks up a certain 
theme to which a set of pre-schemas gained from 
requirements refers. Then, a pre-schema with the 
maximum number of attributes is selected. Let us 
call such pre-schema PMA. If there are multiple PMA-
like pre-schemas with different sets of attributes, 
their processing goes independently and is just the 
same as the one of PMA pre-schema. In Figure  5 we 
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PGA Procedure 1: MakePreSchema, Input: CurrentTheme:Theme 
1: IF NOT EXIST Theme WHERE Theme.Name = CurrentTheme.Name  
2: THEN (CREATE Theme; Theme.Name:=CurrentTheme.Name;)  
3: ELSE FIND Theme WHERE Theme.Name = CurrentTheme.Name; 
4: FOR EACH Requirement WHERE Requirement.isSimple = 1  
5: AND Requirement.ThemeID = CurrentTheme.ID DO: 
6:       CREATE PreSchema; PreSchema.Index:=Requirement.Index;  
7:       PreSchema.ThemeID:=Theme.ID; 
8:       FIND SimpleRequirement  
9:       WHERE SimpleRequirement.ID = Requirement.SimpleReqID; 
10:      FIND Object WHERE Object.ID = SimpleRequirement.ObjectID; 
11:      IF Object.type = 'Quantifying' THEN ( 
12:          CREATE C_Measure; C_Measure.PreSchema:=PreSchema.ID; 
13:          C_Measure.Name:=Object.Name; 
14:          ProcessOperations(SimpleRequirement.OperationID, C_Measure.ID);) 
15:      ELSE (       
16:          CREATE C_Attribute; C_Attribute.PreSchemaID:=PreSchema.ID; 
17:          C_Attribute.Name:=Object.Name;  
18:          C_Attribute.isTime:=Object.isTime;) 
19:      FIND TypifiedCondition WHERE  
20:      TypifiedCondition.ID = SimpleRequirement.TypifiedConditionID; 
21:     FIND Condition WHERE Condition.ID = TypifiedCondition.ConditionID; 
22:     RUN ProcessSimpleConditions(Condition.ID, PreSchema); END. 

PGA Function 1: ProcessOperations, Input: CurrID:number, CurrMeasureID:number 
23: FIND Operation WHERE Operation.ID = CurrID; 
24:   IF Operation.SuboperationID != NULL  
25:   THEN (OperationIndex:=ProcessOperations(Operation.SuboperationID, CurrMeasure);        
26:     IF Operation isAggr = 1 THEN (CREATE C_Aggregation; 
27:       FIND C_Measure WHERE Measure.ID = CurrMeasure; 
28:       C_Aggregation.MeasureID:=C_Measure.ID; 
29:       C_Aggregation.Value:=Operation.Value; 
30:       C_Aggregation.Index:=(OperationIndex + 1); 
31:       RETURN OperationIndex + 1.) 
32:     ELSE  
33:       RETURN OperationIndex.) 
34:   ELSE ( 
35:     IF Operation isAggr = 1 THEN (CREATE C_Aggregation; 
36:       FIND C_Measure WHERE Measure.ID = CurrMeasure; 
37:       C_Aggregation.MeasureID:=C_Measure.ID; 
38:       C_Aggregation.Value:=Operation.Value; 
39:       C_Aggregation.Index:=1; 
40:       RETURN 1.)) 

PGA Procedure 2: ProcessSimpleConditions, Input: CurrentConditionID:number, CurrentPreSchema:PreSchema 
41: FIND Condition WHERE Condition.ID = CurrentConditionID; 
42: IF Condition.isSimple = 1 THEN ( 
43:   FOR EACH Expression   
44:   WHERE Expression.ID = Condition.Expression1ID  
45:   OR Expression.ID = Condition.Expression2ID DO: 
46:   IF Expression.Type = 'Qualifying' THEN ( 
47:     FIND Object WHERE Object.ID = Expression.ObjectID; 
48:     CREATE C_Attribute;  
49:     C_Attribute.PreSchemaID:=CurrentPreSchema.ID; 
50:     C_Attribute.Name:=Object.Name; 
51:     C_Attribute.isTime:=Object.isTime;) END. 
52: ELSE ( 
53:   ProcessSimpleConditions(CurrentCondition.Condition1ID, CurrentPreSchema); 
54:   ProcessSimpleConditions(CurrentCondition.Condition2ID, CurrentPreSchema);) END. 
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ignored the case of multiple pre-schemas with the 
same maximum number of attributes on purpose for 
better understanding.  

A pre-schema may contain a set of measures 
(M1, M2 …, Mn). Further manipulations with the 
pre-schema depend on the number of measures that 
it contains. Having more than one measure, certain 
rules take place: 
1. If there is at least one pre-schema with a set of 

measures that in any way intersects with a 
measure or a set of measure of another pre-
schema (e.g. (M1, M2) ∩ (M2, M3, M4) = M2; 
(M1, M2) ∩ M1 = M1, etc.), then all pre-schemas 
with intersecting measures should be 
decomposed, because the meaning and 
granularity of fact measures are determined by 
the finest level attributes. 

2. If the set of all pre-schemas contains different 
sets of measures (e.g. (M1, M2); (M3, M4, M5); 
M6; M7; etc.) that do not have overlapping 
elements, then there is no need to decompose the 
pre-schemas. 

3. If a set of measures is the same for all pre-
schemas assigned to a certain theme, then none of 
the pre-schemas should be decomposed. 
In case of (1), a pre-schema PMA is being 

decomposed into pre-schemas each of which 
contains only one measure, and a set of attributes is 
equal to that of PMA. An example of decomposing a 
pre-schema with two measures is depicted in Figure 
6a. Let’s call each of the newly acquired pre-
schemas in Figure 6a P'D and P''D. 

Pre-schemas that contain the same measure as 
PMA (or at least one of the decomposed pre-
schemas) are of interest. Let’s call a set of filtered 

pre-schemas P. Examples of such pre-schemas are 
illustrated in Figure 6 (b – pre-schema P', and c – 
pre-schema P'') containing two different measures: 
M1 as in P'D, M2 as in P''D.  

PP'D and PP''D are new pre-schemas that consist 
of measures and attributes from P'D and P''D 
respectively, and attributes that exist in each of pre-
schemas of set P but are missing in the pre-schema 
P'D (in Figure 6b – attribute A6) and P''D (in Figure 
6c – attributes A7, A8, and A9). However, before 
the attributes are actually added to either PP'D or 
PP''D, they should be arranged in hierarchies, so that 
measures would be described by the finest level 
attributes only. In Figure 6d PP'D is an example of 
arranging distinct attributes from P'D and P', whereas 
in Figure 6e PP''D is the example of arranging those 
from P''D and P''. 

To order attributes of pre-schemas in hierarchies, 
we follow some data-driven algorithm (e.g. 
(Golfarelli et al., 1998)). First, an arbitrary attribute 
(let’s denote it as A) from a set of distinct attributes 
of, say, P'D and P' is selected. Then, in the data 
source a certain entity attribute (let’s denote it as 
ME) that corresponds to the measure of a pre-
schema P'D is determined. 

Next, we move from ME to all attributes that 
have a many-to-one relationship with ME. We 
traverse in such way the attributes in data source 
until an attribute that corresponds to A is found 
(AE). When found, A is classified either as a finest 
hierarchy level (if ME is connected to AE directly) or 
a coarser hierarchy level (if ME is connected to AE 
through two or more M:1 associations) of a certain 
hierarchy of the pre-schema PP'D. 

 

Figure 5: The process model of handling pre-schemas generated by PGA. 
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All attributes that can be reached from AE by 
M:1 association and do exist in pre-schema PP'D are 
ordered in hierarchy the same way as they have 
been traversed in the data source – from finest to 
coarsest level. Finally, the property isAccepted of all 
processed attributes and measures in the pre-schema 
PP'D that have a matching entity attribute in the data 
source are updated to 1. 
 

(a)     PMA                                           P'D 

 

A1 A2

A3

A4

A5

M1

M2

A1 A2

A3

A4A5

M1

A1 A2

A3

A4A5

M2

       P''D 

(b)       P' 

          A1

A5 A6
M1

 

(c)       P''    

          A7

A8 A2
M2

A9    

(d)       PP'D                        

A1

A2

A3

A4

A5M1 A6

(e)       PP''D      

A1

A2

A3

A4

A5M2

A8 A7A9

 
 

Figure 6 a: A pre-schema with maximum attribute count 
(PMA) is being decomposed into two pre-schemas (P'D and 
P''D); b, c: two pre-schemas (P' and P''); d, e: PP'D and 
PP''D: pre-schemas P'D and P''D supplemented with 
attributes from P' and P'' respectively, ordered in 
hierarchies. 

If an attribute or a measure exists only in 
requirements (i.e., in pre-schemas), then the 
property isAccepted of the attribute or measure is 
updated to 0. Also, it may happen that AE cannot be 
reached from ME by M:1 associations. Then A has 
the property isAccepted updated to 0 too. Such 
attributes or measures will be reviewed by 
administrator later on. Also, an administrator should 
review all aggregate functions that are applied to 
additive, semi-additive or non-additive measures to 
either accept an aggregation if its application to a 
certain measure is allowed, or decline if its 
application to the measure is inappropriate. The 
property isAccepted of the C_Aggregation and 
C_AcceptableAggregation is modified in obedience 
to the measure type. By that we indicate that certain 
elements of the modified PMA (or P'MA) pre-schema 
are ready for further analysis.  

If there are any pre-schemas with measures that 
differ from those in already processed pre-schemas, 
then the algorithm is being iteratively executed from 
the step where a pre-schema with the maximum 
attribute count is found. 

The next step of the process is aimed at making 
a union of two or more pre-schemas on condition 
that all finest hierarchy level attributes coincide. If 
this condition isn’t satisfied, then this step should be 
skipped.  
 

(a) 
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A4 A12A5
M

A8

A7

A9
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A5 A4 A11
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(c)  

                 

A2

A5 A4 A11

A1

A6M A10

A8 A9

A12
A7

 

Figure 7 a, b: An example of hierarchies in two different 
pre-schemas with the same finest hierarchy level 
attributes and same measures; c: an example of the union 
of two pre-schemas. 

Consider an example in Figure 7: there are two pre-
schemas with the same finest hierarchy level 
attributes and same measures, however, coarser 
hierarchy level attributes might differ. Hierarchies 
in Figure 7a are: H1a: A5A7; H2a: A1A8A9; 
H3a: A2; H4a: A4A12. Hierarchies in in Figure 
7b are: H1b: A5; H2b: A2; H3b: A1A8A9; 
H4b: A4A6A10A11. It is possible to unite 
two (or more) pre-schemas, taking into an account 
several rules: 
 If two hierarchies are equivalent (H2a ≡ H3b, H3a 
≡ H2b), then one of the equivalent hierarchies will 
be added with no changes to the united pre-
schema.  

 If finest hierarchy level attributes are similar, but 
coarser hierarchy level attributes differ, then all 
alternative hierarchies will be included in the 
united pre-schema (both H4a and H4b).  

 If finest hierarchy level attributes are similar, but 
in some hierarchies coarser level attributes are 
absent, then the hierarchy with the largest number 
of levels will be added to the united pre-schema 
(only H1a).  

As a result, there is a pre-schema with the 
following hierarchies: A5A7; A1A8A9; A2; 
A4A12; A4A6A10A11 (see Figure 7c). 

Data source attributes may be divided into two 
groups: the ones that are equivalent to the attributes 
in pre-schemas gained from requirements, and the 
ones that aren’t. Let’s call the latter descriptive 
attributes as they might provide additional 
information on the attributes in pre-schemas. An 
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administrator may add descriptive attributes to pre-
schemas, if it is necessary.  

The last step but one is an interview with the 
client during which all generated pre-schemas are 
being shown. The client should make a decision and 
choose one pre-schema that would meet the 
requirements for a new schema best of all.  

Finally, to indicate that one of the pre-schemas 
is selected, an administrator updates the isAccepted 
property of a pre-schema to 1, and the pre-schema is 
being copied to the data warehouse metadata 
repository that mostly complies with CWM 
(Solodovnikova, 2008). 

6 CONCLUSIONS 

In this paper we set forth an approach of building a 
candidate schema (pre-schema) of a data warehouse 
that complies with the business requirements stated 
by the client. We consider requirements as 
performance indicators of an organization that are 
gathered during the interview and formalized in 
accordance with the indicators model described in 
detail in (Niedritis et al., 2011).  

The contribution of this paper is the pre-schema 
generation algorithm (PGA) that employs 
indicators, and the description of the semi-
automated pre-schema post-processing. We believe 
that pre-schemas acquired this way will be more apt 
then schemas gained by applying other demand-
driven methods. During the post-processing, pre-
schema hierarchies are defined by a data-driven 
algorithm. However, there certainly are some 
presumptions that should be fulfilled first to enable 
the usage of PGA; for instance, (i) requirements 
have to be formalized in a specific way, (ii) 
measures or attributes with the same name but 
different semantic meaning should be renamed to be 
distinguishable from one another.  

Our future work would include the 
implementation of the PGA, its testing on a large set 
of indicators of an existing data warehouse schemas 
followed by its evaluation. Also, quality attributes 
for evaluations of accepted pre-schemas should be 
introduced. Afterwards, the pre-schemas defined by 
PGA would be processed and the resulting pre-
schema(s) would be compared with the existing data 
warehouse schemas. 
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