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Abstract: In this paper we introduce a new robust visual scheme intended to 2D visual servoing robotic tasks. The 
main object is to direct the robot to its desired position. To be able to carry out such a task robustly the 
tough and major step is primarily the image processing procedure.  We should find good selections of visual 
data in order to be correctly matched and interpreted by the visual control law regardless of the different 
sorts of errors. The new proposed design combines the speed up robust features (SURF) algorithm and 
progressive sample consensus (PROSAC) algorithm to accomplish a good feature extraction and to rapidly 
resist the environment constraints while removing the erroneous matches. 

1 INTRODUCTION 

Vision-based robotic tasks termed visual servoing by 
(Hutchinson et al., 1996) has known a prominent 
advancement and has been employed in many fields: 
from military and medical applications to 
automotive areas. The idea of using visual data as an 
entry promotes the autonomy of the system. 
However many accuracy problems may occur 
because of camera calibration errors and 
environment uncertainties.  

In order to build a stable and a robust control 
law, the visual feedback should be the result of a 
robust, efficient and real time data processing. Thus, 
robust techniques have to be utilized in order to 
determine the system references.  

Related works in this field have shown the 
presence of two sorts of vision description in visual 
servoing: global and local description (Abidi et al., 
2012). The global descriptors principle is to consider 
the entire image as input for the system. Global 
features could be for example the image luminance 
(Collewet et al., 2010) or the selection of random 
pixel luminance sets (Hammouda et al., 2012) also 
the mutual information between a current and a 
desired image (Viola and Wells, 1997). Despite their 
advantage of discarding the tracking and matching 
steps they still suffer from a high computation time 
and a definite divergence when considering large 
initial displacements. In the other hand local 
descriptors came to deal with global techniques 
issues.   

Lowe, 2004, developed a scale and rotation 
invariant algorithm (SIFT) which targets the 
characterization of the image interest points by 
gathering both a detector and a descriptor. This 
algorithm has proved highly-efficient and 
outperforming the current state of art in visual 
control schemes. The (SIFT) moments (Nierobisch 
et al., 2007) have also been used and tested on a 6 
DOF KATANA manipulator with an eye-in-hand 
camera. The visual servoing scheme relies on 
robustly-matched geometric moments which could 
resist occlusions and view point changes. Another 
derivative of (SIFT) called (PCA-SIFT) (Ke and 
Sukthankar, 2004) which seems to be faster than its 
predecessor but more sensitive to registration 
problems. 

The complexity of these techniques has entailed 
a high computational time and therefore they seem 
to be very slow. SURF algorithm developed by Bay, 
2006, came to fill this gap with a greatly- reduced 
computing time. This algorithm contains basically a 
detector to extract interest points and a descriptor of 
64 dimensions to depict each single point.  It is also 
invariant to image scale and rotation transformations 
and deal with many sorts of environment changes.  

Melting speed and robustness, (SURF) could 
lead to a successful recognition task nevertheless 
when talking about robotic tasks with real life issues 
like blur, high illumination changes, and occlusions 
the mismatching probability increases which may 
generate the failure of the visual servoing task. 
Therefore, we need a method that guarantees a stable 
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and correct matching that can be ensured with 
PROSAC (Chum and Matas, 2005). This technique 
allows the extraction of good correspondences by 
ordering the matched points according to a similarity 
function and not randomly in order to show up 
features from progressively larger sets. This method 
is not so far from the random sample consensus 
RANSAC algorithm (Fischler and Bolles, 1981) 
considered as a robust matching technique; the only 
difference is that RANSAC handles the samples 
uniformly and randomly. The progressive behavior 
beginning with high ranked matches makes 
PROSAC more efficient and a hundred times as fast 
as RANSAC. 

The contribution of this paper consists on a 
robust design to avoid the system failure which is 
originally due to the closed loop injected outliers. 
Therefore, in this paper we will stress the utility of 
SURF in the extraction stage and PROSAC to cope 
with the infiltrated matching errors nay in presence 
of complex environment constraints. The design 
experimented and implemented on a mobile robot 
model can provide robust entries to the visual 
servoing system and lead to joining successfully and 
accurately the desired position.  

This paper is organized as follows: section II 
provides an explanation of the major constraints 
opposing the 2D visual servoing robotic tasks. Due 
to the limitation of existing feature extraction 
techniques, a robust visual servoing design is 
proposed in section III based on a combination of an 
efficient image processing and statistics techniques. 
As to section IV, it demonstrates the simulation 
experiments applied on a 3 DOF eye-in-hand mobile 
robot model. 

2 THE SYSTEM CONSTRAINTS 

A visual servoing task is based at first on a 
recognition system to provide useful data for the 
control law such as points, lines or more complex 
structures. Figure 2 shows the basic steps of 
recognition. After being matched, features 
considered as inliers are going to be used as input 
for the visual servoing system. The control law aims 
to reduce a minimization criterion:  

eሺtሻ = f൫p, rሺtሻ൯- f
*
 (1)

Where e is the error between a set of visual features 
fሺrሻ captured at each camera pose ′r′ and their 
desired position f*. p presents the system parameters 
like the intrinsic camera or the object model 
parameters. Since f depends on the time variation we 

can write: 

∂f

∂t
=
∂f

∂x

∂x

∂t
 (2)

fሶ=LfV (3)

V=(v,w) is the camera velocity (v is the linear 
velocity and w is the angular velocity).  Lf is the 
interaction matrix attached to f that links the time 
variation of a set of current features to the camera 
motion. 

If we consider that the desired position is fixed, 
we obtain: 

eሶ=LeV (4) 

For an exponential decoupling decrease of the error 
(Comport, 2006):  

eሶ=-λe (5)

Using (4) and (5), we deduce that the control law 
can be defined as follows: 

V=-λLe
+෢ e (6)

Le
+෢  is the estimation of the pseudo-inverse of the 

interaction matrix.  
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Z is an estimation of the depth relative to the camera 
frame and V is the robot controller entry.  
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Where (X, Y, Z) are the world coordinates of a point 
expressed in the camera frame and (x,y) are the 
projected image plan coordinates. (u,v)  are the point 
coordinates expressed in pixel, (pu,pv) are the 
coordinates of the perspective image plan central 
point, F is the focal length and γ is the ratio of a 
pixel size. 

We can see the important number of parameters 
that should be estimated at each camera pose. 
Besides, we note the projection in the image plane 
yielding a significant loss of accuracy. Furthermore, 
we should mention the presence of noise, occlusion 
(static and dynamic), and natural phenomena such as 
shadows, reflections, darkness and illumination 
changes. 

According to the control law expression, we can 
see that the error value could be easily influenced by 
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Figure 1: A flowchart of a robust visual design for visual servoing robotic tasks. 

 

Figure 2: Description of the principle stages related to a 
recognition process. 

these anomalies, that’s why we are trying in this 
paper to show how to cope with these problems and 
robustly extract our system entries. 

3 ROBUST FEATURE 
PROCESSING 

The proposed architecture is based firstly on fast and 
efficient interest cues detection by using SURF 
detectors and descriptors. Secondly, a robust 
matching verification and outlier elimination is 
established through the PROSAC algorithm. A 
homography matrix is estimated so that good 
matches could be selected in every camera motion. 
Afterwards, an interaction matrix called image 
Jacobian, is built to create the robot control 

translational and angular velocities (Figure 1 
illustrates the different steps of the proposed design). 

3.1 Feature Extraction with SURF 

A study done by (Juan and Gwun, 2009) has proved 
the efficiency of the SURF algorithm compared with 
other robust algorithms like SIFT and PCA-SIFT. 
This algorithm is mainly known for its calculation 
speed and its robustness to illumination changes.  
SURF has two main steps; the first one is to detect 
the image interest points and the second one is to 
describe these points. To save time, the captured 
image is transformed into an integral image (Viola 
and Jones, 2001) because of its fastness to deal with 
convolution computations. Next, we seek for the 
areas that have high pixel intensity changes. Interest 
points are, therefore, located where we find a 
maximal Hessian matrix determinant. Since the 
Hessian matrix is based on second order partial 
derivatives which are going to be computed by a 
convolution with Gaussians, an approximation with 
a function called the “box filter” seems useful to 
guarantee more rapidity for the system. 

The Hessian matrix is calculated as follows: 

Hሺx,σሻ= ቈ
Lxxሺx,σሻ  Lxyሺx,σሻ
Lyxሺx,σሻ  Lyyሺx,σሻ

቉ (9)

Where Lxxሺx,σሻ	, Lyyሺx,σሻ and Lxyሺx,σሻ  are a 
convolution of the Laplacian of Gaussian  with the 
integral image in x.   

A representation to a lower scale levels is 
obtained by raising the size of the Gaussian filters. 
Eventually, the points with a positive Hessian matrix 
determinant, and which are local maxima in a 
neighborhood 3 x 3 x 3 (representing x, y and scale) 
are kept. Once the interest points are extracted, 
descriptors should be assigned.  
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The SURF descriptor describes the intensity of 
pixels in a neighborhood around each point. The 
response for x and y Haar wavelets (dx and	dy) is 
calculated in a neighborhood of 6 scales at which an 
interest point was found. From these values, the 
dominant orientation of each interest point is 
calculated by sliding an orientation window. A 
descriptor is obtained by extracting a square of size 
20 scales directed along the dominant orientation. 
This area is also divided into 4x4 squares. For each 
of these sub-areas, the Haar wavelets are computed 
for 5x5 points. 

Finally four values are calculated for each sub-
region (∑dx,	∑ dy,	∑|dy|,	∑|dy|) and each extracted 
point is described by a 4x4x4 vector (length 64). In 
Figure 4, we found an example of feature extraction 
using SURF. 

3.2 Matching with PROSAC 

In practice, the erroneous matching induces the 
divergence of the controlled system. Thus, we can’t 
rely only on good descriptors. A powerful outlier 
elimination method is necessary so that we can 
succeed in moving the robot to its desired position. 
In the proposed design (Figure 1) we are looking for 
more accuracy by applying a derivative of RANSAC 
called PROSAC which is a much more efficient and 
rapid. The fact that all matches are not necessarily 
equaled, PROSAC gradually progresses toward a 
uniform sampling. A thresholding of a similarity 
function allows to pick out the ordered samples. The 
PROSAC technique is based on progressively larger 
subsets of top-ranked correspondences leading to 
computational savings (Chum and Matas, 2005).  

To outline, PROSAC assesses samples to follow 
a quality decreasing order. The lowest quality sets 
are treated in a second place. The algorithm can be 
summarized in the following steps: 
step1/ In order to estimate a geometric model, 
PROSAC does not select randomly a set of samples 
but an order of magnitude is rather considered. 
step2/ It searches for elements called inliers that 

may validate the model. 
step3/ If there is not enough inliers, the algorithm 

returns to 1/, else the model is validated. 
step4/ After a fixed number of testing, the algorithm 

stops. 
According to the proposed design, PROSAC 

would estimate the homography matrix using robust 
matches in every captured image. 
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pୢ is the coordinate of an interest point in the 
desired position and pୡ depicts the current position 
coordinates: 

p'= ൥
γxc
γyc
γ
൩=H pd (12)

A good model estimation could guarantee an 
efficient matching for the entered samples. In Figure 
3, we found a more detailed representation of the 
new matching system. 

3.3 Comparison to other Robust 
Techniques 

It is obvious that researches dealing with visual 
servoing robustness problems head predominately 
the powerful algorithms in vision, control and 
planning fields. As we are focusing to solve visual 
issues, we found in (Marquez-Neila et al, 2008) a 
method to locate planar landmarks involving 
RANSAC to eliminate outliers. 

This technique targets mobile robots navigation. 
Also in (Song et al., 2010) RANSAC was  

 

Figure 3: Robust outliers remove technique. 

Figure 4: Example of feature extraction using SURF. 
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(a)Affine 
transformation 

 

(b)Scale 
changes 

 

(c)Illumination 
changes 

 

(d)Rotation 
changes 

Figure 5: Evaluation images taken from INRIA database 
(Juan, 2009): the first sample (a) presents the affine 
transformation of the image, the second one (b) indicates 
the scale changes, the third sample (c) is about 
illumination changes and the final one (d) points out the 
rotation changes. 

 

Figure 6: Matching efficiency percentage of some robust 
feature detection techniques. 

used to upgrade SIFT visual cues for grasping tasks. 
Furthermore, SIFT features mixed with geometric 
3D lines were used in (Lee, Kim and Park, 2006) to 
enhance certainty in 3D recognition. 

After being established, SURF came to defeat 
these techniques notably when talking about the 
huge computational cost and high illumination 
changes. We have used different images sweeping 
different environment phenomena (Figure 5). As 
seen in Figure 6, we can’t make conclusions about 
the entire efficiency of one technique but we can 
infer that SURF+PROSAC show a stable behavior 
by making a balance between the most visual 
constraints with 84% of matching efficiency in 
presence of scale changes, 97% when having 

changes in illumination and a fast processing speed 
with an efficiency percentage of 98%. We notice 
that computational time has been improved in all the 
cases due to PROSAC. SIFT+RANSAC or 
SIFT+PROSAC show also a good performance 
especially for rotation changes with 86% and scale 
changes with 93% but they still suffer  from a very 
low computational time ranging between 40 and 
53%. 

4 EXPERIMENTS AND RESULTS 

In this section experiments were applied on a two 
wheel eye-in-hand “Koala” mobile robot model with 
a CCD camera. In each test case the robot has as 
entry a desired pose defined as follows: 

൥
∗ݔ

∗ݖ

௬ߠ
∗
൩ (13)

According to this position desired visual cues are 
extracted using our visual design from the 
corresponding captured image I∗. When a 
displacement is applied the robot is conducted to a 
random position and respectively the new current 
features must be defined. Primarily we begin with a 
robust identification and description using SURF 
algorithm. Second we try to compute similitude 
between desired and current references using 
Euclidian distance. When correspondences are found 
PROSAC establishes a descending matching order 
starting with sets of most confident cues. The 
considered order yields to a fast successful 
matching. To control the robot motion velocities 
should be calculated using the control law described 
previously in (6). In this case the computed 
interaction matrix for each interest point is: 

Le= ൤
௫ܮ
௬ܮ
൨ (14)

=௫ܮ ቈ-
1

Z

x

Z
	 -ሺ1+x2ሻ቉ (15)

௬ൌܮ ቂ0
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െ ቃ (16)					ݕݔ

The elements of ܮ௫ and ܮ௬ correspond to the 
translation along x and z axis and the rotation 
according to y	axis. 

Simulations have been tested with virtual reality 
modeling language (VRML). For the first 
experiment we took as initial positioning error: 
Δr=ሺ 11 cm, 13	cm,  0.12 rad ሻ in presence of 40% 
of illumination changes.  
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Figure 7(a) and Figure 7(b) show the current and 
desired positions captured by the camera. Figure 
7(c) presents the initial difference between the two 
images. Curves in Figure 7(d) and 7(e) depict a 
smooth decreasing to zero of ∆்௫  , ∆்௭  and ∆஀௬ even  
when illumination conditions were changed. Figures 
7(f), 7(g) and 7(h) show that the translational robot 
velocities Vx and Vz and the rotational velocity Θ୷ 
applied to the robot reach zero within only 70 
iterations. 

The same experiment was remade using  
RANSAC instead of PROSAC. Simulation results in 
Figure 8(a) and Figure 8(b) show that the 
positioning error reached zero in a much longer 
time. 
 

 
(a)                         (b)                          (c) 

 
(d)                                        (e) 

 ሻ࢙/ࢊࢇሺ࢘࢟ࢨ                   (mm/s) ࢠࢂ                         (mm/s) ࢞ࢂ

 
(f)                           (g)                        (h) 

Figure 7: The positioning error variation using our robust 
visual servoing design (the abscissa axis indicates the 
iteration number): (a) the current camera pose and (b) the 
desired camera pose. (d) The translational error (∆Tx and 
∆Tz) expressed in meter (m). (e) The rotational error ∆Θy  
expressed in radian (rad). (f, g and h) The robot velocities. 

    
(a)                                        (b) 

Figure 8: The positioning error variation using 
SURF+RANSAC during the same experimental 
conditions. (a) The translational error ∆Tx and ∆Tz in meter 
(m). (b) The rotational error ∆Θy in radian (rad). 

The system takes 400 iterations to converge 
toward its desired position. Figure 9 emphasizes the 
presence of two mismatches during the visual 
servoing task when RANSAC has been applied 
hereas in this case PROSAC proved a correct match 
for the same camera displacements. 

In the second experiment we have tested scenes 
with different textures and in presence of 
illumination, rotation and scale changes. Table 1 
presents the variation of the positioning errors 
relative to the frame number. We can see that the 
translational and rotational errors tend to zero for all 
the cases which means that the system converges 
robustly to its desired position. 

The curve (2.c) of the second case when a 
rotation change has been applied shows that the 
system takes 700 frames to attain a global error 
norm equal to zero. In case of scale variation with a 
depth error of 50 cm, 350 frames were needed to 
reach the desired position however in the first case 
only 80 frames have been captured before 
convergence. Thus we notice the efficiency of the 
proposed system against many significant changes in 
scale, rotation and especially illumination. 

 
(a) 

 
(b) 

Figure 9: Example of matching between a current and 
desired pose. (a) Matching using RANSAC (presence of 
two mismatches in yellow lines). (b) Matching using  
PROSAC for the same camera pose. 

5 CONCLUSIONS 

The melting of the Speed up robust features and 
progressive sample consensus algorithms in a visual 
servoing design reflected a satisfying behavior. A 
notably improvement of the system performance 
was obvious with a smooth decreasing of positioning 
errors in presence of constraints like illumination, 
rotation and scale changes. Experiments with virtual 
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reality modeling environment confirm the 
convergence of the control law in many cases and 
with diverse image textures.  The new proposed 
design is able to guide the robot successfully and 
robustly to its desired position and ensure an 

important time saving. A future work aims to 
enhance the existing system in order to defeat all the 
external environment constraints and strengthen the 
robotic task convergence. 
 

Table 1: Experimental results with different image textures: ((1.a) and (1.b)) translational (cm) and rotational (rad) 
positioning errors corresponding to brightness changes. ((2.a)  and (2.b)) Translational (cm) and rotational (rad) positioning 
errors corresponding to rotation changes. ((3.a)  and (3.b)) Translational (cm) and rotational (rad) positioning errors 
corresponding to scale changes. ((1, 2 and 3.c) The global error norm. 

 
 
 

 
Case 1: Brightness change 

(Positioning error : ∆Tx=23 cm, ∆Tz=17 cm)  

               
 
                             
 
 
 
 
 

(1.a) 

(1.b)                                       (1.c) 

 
 

 
Case 2: Rotaion change 
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