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Abstract: In the last decade, literature on strategic planning of a supply chain network grew rapidly. In this paper we 
address a classical three-layer remanufacturing supply chain network design problem that covers sourcing, 
reprocessing and remanufacturing activities, in which strategic decisions regarding the number, location of 
reprocessing units and the flow of returns through the logistics network are made. First, we propose an 
alternative mixed-integer mathematical programming (MILP) formulation for this problem and provide 
theoretical proof of equivalence between the classical and the proposed mathematical formulation. Second, 
the goodness of both formulations is compared by means of a computational study, and the results for large 
instances of the problem are discussed. We empirically prove that the proposed formulation provides tighter 
linear relaxation lower bounds and obtains the integer solutions several times faster than the classical 
formulation. 

1 INTRODUCTION 

Many authors have studied the relationship that 
exists between Supply Chain Management (SCM) 
and Advanced Planning and Scheduling (APS) 
systems (see for example Stadtler and Kilger, 2005). 
For some authors, one of the advantages of an APS 
approach is that it makes possible to include 
suppliers and customers in the planning process and 
thereby optimise the entire supply chain on a real-
time basis. As a consequence it enables “to extract 
real-time information from that chain, with which to 
calculate a feasible schedule, resulting in a fast, 
reliable response to the customer” (Amstel, 1998). 
The planning of supply chain is considered a 
strategic issue. On this regards, “the strategic level 
deals with decisions that have a long-lasting effect 
on the firm. These include decisions regarding the 
number, location and capacities of warehouses and 
manufacturing plants, or the flow of material 
through the logistics network.” (Simchi-Levi et al., 
2007). 

This paper addresses a class of planning 
problems that arise in the design of a 
remanufacturing supply chain network. We study a 

classical three-layer facility location model for 
designing a reverse supply chain that covers the 
sourcing, processing and remanufacturing activities. 
The management of return products and waste 
stewardship has become major concerns for 
companies and organisations that are interested in 
sustainable practices. In this context, 
remanufacturing activities are recognised as a main 
option of recovery in terms of their feasibility and 
benefits. 

The problem is an NP-hard combinatorial 
optimisation problem and it has been previously 
modeled as a mixed integer linear programming 
(MILP) problem (Jayaraman et al., 2003). 

This paper makes three main contributions. First, 
it is proposed a novel MILP formulation for the 
problem. Second, we provide theoretical proof that 
the proposed MILP formulation is stronger than the 
existing classical weak and strong formulation of the 
problem. Third, we conclude that the proposed 
MILP formulation outperforms the classical 
formulation in terms of the quality of the linear 
relaxation lower bound and the computing times. 

The remainder of this paper is organized as 
follows: In the second section, we provide a 
literature review with a brief introduction to 
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sustainable and reverse supply chains and with a 
special emphasis on the remanufacturing case. In the 
third section, we propose a new mathematical model 
and prove that the convex-hull associated with the 
linear relaxation of this formulation is contained in 
the convex-hull of the classical formulation. In the 
fourth section, we present experimental results for 
large sets of data that were generated randomly. The 
last section contains conclusions and directions for 
future research. 

2 LITERATURE REVIEW 

In the last few years, mathematical modeling and 
solution methods for the efficient management of 
return flows (and/or integrated with forward flows) 
has been studied in the context of reverse logistics, 
closed-loop supply chains, and sustainable supply 
chains. The problem of locating facilities and 
allocating customers is not new to the operations 
research community and covers the key aspects of 
supply chain design (Daskin et al., 2005). This 
problem is one of “the most comprehensive strategic 
decision problems that need to be optimized for 
long-term efficient operation of the whole supply 
chain” (Altiparmak et al., 2006).  

Mathematical models proposed in the literature 
for planning reverse logistics networks have been 
reviewed by Fleischmann et al., (2000). Fleischmann 
et al., (2001) proposed a generic recovery network 
model based on the elementary characteristics of 
return networks identified in Fleischmann et al. 
(2000). Zhou and Wang (2008) proposed a generic 
mixed integer model for the design of a reverse 
distribution network including repairing and 
remanufacturing options simultaneously.  

Models for reverse logistics networks in 
connection with location problems have been 
discussed by Bloemhof-Ruwaard, Salomon, and Van 
Wassenhove (1996) and Barros, Dekker, and 
Scholten (1998). For example, the last authors 
described a network for recycling sand from 
construction waste and proposed a two-level 
location model to solve the location problem of two 
types of intermediate facility. 

Regarding remanufacturing location models, 
Krikke et al., (1999) described a small reverse 
logistics network for the returns, processing, and 
recovery of discarded copiers. They presented a 
MILP model based on a multi-level uncapacitated 
warehouse location model. The model was used to 
determine the locations and capacities of the 
recovery facilities as well as the transportation links 

connecting various locations. In Jayaraman et al., 
(2003), a 0-1 MILP model for a product recall 
distribution problem is proposed. They analysed a 
particular case in which the customer returns the 
product to a retail store and the product is sent to a 
refurbishing site which will rework the product or 
dispose it properly. The reverse supply chain is 
composed of origination, collection, and 
refurbishing sites. With the objective to minimize 
fixed and distribution costs, the model has to decide 
which collection sites and which refurbishing sites to 
open, subject to a limit on the number of collection 
sites and refurbishing sites that can be opened.  

Several authors have studied different aspects of 
closed-loop supply chain design problems. See, for 
example, Jayaraman et al., (1999), Fleischmann 
(2003), Barbosa-povoa et al., (2007); Guide and Van 
Wassenhove (2009), and Neto et al., (2010). For 
example, Sahyouni et al., (2007) presented three 
generic facility location MIP models for the 
integrated decision making in the design of forward 
and reverse logistics networks. The formulations are 
based on the well-known uncapacitated fixed-charge 
location model, and they include the location of used 
product collection centers and the assignment of 
product return flows to these centers. Lu and Bostel 
(2007) presented a two-level location problem with 
three types of facilities to be located in a reverse 
logistics system. They proposed a 0–1 MILP model 
which simultaneously considers “forward” and 
“reverse” flows and their mutual interactions. The 
model has to decide the number and locations of 
three different types of facilities: producers, 
remanufacturing centers, and intermediate centers. 

Reverse logistics models are recently discussed 
by Salema et al., (2010); Gomes et al., (2011) and 
Alumur et al., (2012). Almost all this research 
proposed MILP models. The majority of solution 
methods are based on standard commercial 
packages. 

3 MATHEMATICAL MODEL 

In this section a new MILP model for the problem of 
designing a remanufacturing and sustainable supply 
chain network is proposed. This problem is a single 
product, static, three-layer, capacitated location 
model with known demands. The remanufacturing 
supply chain network consists of three types of 
members: sourcing facilities (origination sites such 
as a retail store), collection sites (reprocessing 
facilities) and remanufacturing facilities. At the 
customer layer, there are product demands and used 
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products that are ready to be recovered. It is 
assumed that customers return the products to 
origination sites such as a retail store. In the second 
layer of the supply chain network, there are 
reprocessing sites that are used only in the reverse 
channel, and they are responsible for activities such 
as cleaning, disassembly, checking and sorting 
before the returned products are sent back to the 
remanufacturing facilities. In the third layer, 
remanufacturing facilities accept the checked returns 
from reprocessing facilities, and they are responsible 
for the process of remanufacturing. A classical 
MILP model was proposed by Jayaraman et al., 
(2003). In such a supply chain network, the reverse 
flow, from customers through collection sites to 
remanufacturing facilities, is formed by used 
products, while the other flow (the “forward” flow) 
is from remanufacturing facilities directly to the 
point of sales for the “new” products. The number 
and location of reprocessing and remanufacturing 
facilities must be decided to minimise the 
transportation, distribution and fixed costs. As noted 
by Jayaraman et al. (2003), the type of 
remanufacturing problem that is addressed in this 
paper is more like the type called product recalls, 
whereby customers return products that have 
reached the end their useful life or are defective. 

3.1 Classical Model 

This is a MILP model proposed by Jayaraman et al., 
(2003). It is assumed that the product demands (new 
products) and the available quantities of used 
products from the customers are known and 
deterministic. All of the returned products are first 
shipped back to collection facilities, where some of 
them will be disposed of for various reasons, such as 
poor quality. The checked return-products will then 
be sent back to remanufacturing facilities, where 
some of them could still be disposed of. The product 
demands from the customers can be met by point of 
sale facilities, which receive products from the 
remanufacturing facilities. In this problem, 
remanufactured products are considered to be the 
same as the new products coming from “traditional” 
producers in terms of satisfying the customer 
demands. 

The model proposed by Jayaraman et al., (2003) 
introduces the triply subscripted flow variable ௝ܺ௞௟	to 
represent a fraction of the unit demand at location j 
that is shipped to l through a reprocessing facility 
located at k. We introduce a constant M, which 
represents the cardinality of set J. 

We introduce the following inputs and sets: 

J = the set of sourcing facilities in the first layer, 
indexed by j 
L = the set of candidate remanufacturing facility 
locations in the third layer, indexed by l 
K = the set of candidate reprocessing facility 
locations in the middle layer, indexed by k 
aj = the supply quantity at the source location j ϵ J 
bl = the demand quantity at the remanufacturing 
location l ϵ L 
fk = the fixed cost of locating a mid-layer 
reprocessing facility at candidate site k ϵ K 
gl = the fixed cost of locating a remanufacturing 
facility at candidate site l ϵ L 
cikl = the unit cost of delivering products at l ϵ L 
from a source facility located in j ϵ J through facility 
k ϵ K 
mk = the capacity at reprocessing facility location k ϵ 
K  
We consider the following decision variables: 
wk= 1 if we locate a reprocessing facility at 
candidate site k ϵ K; 0 otherwise 
yl = 1 if we locate a remanufacturing facility at 
candidate site l ϵ L; 0 otherwise 
Xjkl = fraction of the unit flow from the source 
facility j ϵ J to the remanufacturing facility located at 
l ϵ L through facility k ϵ K 

RSCLP: 
 = v(RSCLP) ݁ݖ݅݉݅݊݅ܯ

෍ ௞݂ݓ௞ ൅ ෍ ௟݃ݕ௟ ൅ ෍ ෍ ෍ ௝ܿ௞௟ ௝ܽܺ௝௞௟	
௟	ఢ	௅௞ ఢ	௄

	
௝ ఢ ௃

			
௟ ఢ ௅௞ ఢ ௄

 (1)

෍ ෍ ௝ܺ௞௟

௟ ఢ ௅௞ ఢ ௄

ൌ 1 (2) ܬ	߳	݆	∀													

෍ ෍ ௝ܽܺ௝௞௟
௞ ఢ ௄௝ ఢ ௃

൑ ܾ௟ (3) ܮ	߳	݈	∀												

෍෍ ௝ܽܺ௝௞௟
௟ ఢ ௅௝ ఢ ௃

൑ ݉௞ (4) ܭ	߳	݇	∀												

෍෍ ௝ܺ௞௟

௟ ఢ ௅௝ ఢ ௃

൑ ௞ݓܯ (5) ܭ	߳	݇	∀												

෍෍ܺݔ௝௞௟
௟ ఢ ௄௝ ఢ ௃

൑ ௟ݕܯ (6) ܮ	߳	݈	∀													

௝ܺ௞௟ ൒ ௞ݓ,0 , ௟߳ݕ ሼ0,1ሽ ∀ ݆ ,ܬ	߳ ,ܭ	߳	݇	∀ (7) ܮ	߳	݈	∀
 

In this formulation, constraint (2) ensures that all of 
the products from the sourcing facility j are 
transported to remanufacturing facilities l through 
collection sites k. Constraint (3) ensures that all of 
the products that arrive at site l must be less than its 
demand. Constraint (4) ensures that all of the 
products that arrive to and ship from collection site k 
must be less than its capacity. Constraint (5) ensures 
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that the products that arrive to and ship from a 
collection site have already been opened at site k. 
Constraint (6) warrants that all of the products that 
arrive at the remanufacturing facilities have already 
been opened at site l. Constraint (7) is a positive and 
binary constraint. 

This model has O(n3) positive variables, where 
n=max{|J|, |K|, |L|} and {|K|+|L|} are binary 
variables. The number of constraints is O(n). In fact, 
this model has (nqm+q+m) variables and 
(n+2q+2m) constraints, where |J| = n, |K| = q and 
|L| = m. 

Following the results from the well-known 
uncapacitated facility location problem (UFLP), this 
is a weak formulation for the problem because of 
constraints (5) and (6). A stronger formulation 
(RSCLP-T) is obtained by replacing constraints (5) 
and (6), respectively, by the following constraints: 

௝ܺ௞௟ 		൑ ߳	݆	∀												௞ݓ	 ,ܬ ,ܭ	߳	݇	∀ (8) ܮ	߳	݈	∀

௝ܺ௞௟ 		൑ 	 ߳	݆	∀														௟ݕ ,ܬ ,ܭ	߳	݇	∀ (9) ܮ	߳	݈	∀
 

By limiting the number of reprocessing and 
remanufacturing facilities to open, the following two 
sets of constraints must be added to the RSCLP 
model: 

௠௜௡݌ 		൑ 	 ෍ ௞ݓ
௞	ఢ	௄

൑ 	௠௔௫݌	 (10)

௠௜௡ݍ 		൑ 	෍ ௟ݕ
௟	ఢ	௅

൑ 	 	௠௔௫ݍ (11)

Parameters pmin and pmax limit the minimum and 
maximum quantity of reprocessing facilities to open. 
The same reasoning applies for parameters qmin and 
qmax on the remanufacturing facilities. 

Jayaraman et al., (2003) solved model RSCLP 
and RSCLP-T using AMPL and CPLEX to optimally 
solve for instances of networks of up to 100 sourcing 
facilities, 40 candidate sites for locating reprocessing 
facilities (pmax =8) and 30 candidate sites for locating 
remanufacturing facilities (qmax = 6), using a 
maximum of 50,028.6 seconds of computing time. 
They also developed some heuristics for solving the 
problem, but it is not the objective of this paper to 
discuss them. 

3.2 Proposed Model 

In this proposed model, we introduce two new 
variables, xjk and zkj, to break down the flows of 
return products from the sourcing site j to the facility 
l into two parts, i.e., the flow that goes from j to k 
and the flow that goes from k to l. The remaining 

variables and parameters retain the same values as in 
the above RSCLP model. We also eliminated some 
constraints, and other constraints are included, as 
described in the following: 

We consider the following parameters and 
decision variables: 

cjk = the unit cost of delivering products at k ∈ K 
from a source facility located at j ∈ J  

dkl = the unit cost of delivering products at l ∈ L 
from a reprocessing facility located at k ∈ K  

xjk = the flow from source facility j ∈ J to the 
reprocessing facility located at k ∈ K 

zkl = the flow from the reprocessing facility located 
at k∈ K to the remanufacturing facility l ∈ L 

Note that models such as the RSCLP-P do not 
account for the origin of the products that arrive at 
the remanufacturing facilities; we lose track of the 
origins of those products. In some real applications, 
for example, biomedical waste, we would like to 
control the origin of the products that arrive at the 
remanufacturing facilities.  

RSCLP-P: 
 v(RSCLP-P)	݁ݖ݅݉݅݊݅ܯ

෍ ௞݂ݓ௞ ൅෍ ௟݃ݕ௟ ൅
௟ ఢ ௅

෍ ෍ ௝ܿ௞ݔ௝௞	
௞ ఢ ௄

൅	 ෍ ෍݀௞௟ݖ௞௟
௟	ఢ	௅௞	ఢ	௄௝ ఢ ௃௞ ఢ ௄

(1a)

෍ ௝௞ݔ ൌ ௝ܽ ܬ	߳	݆	∀															
௞ ఢ ௄

 (2a)

෍ݔ௝௞ ൑ ݉௞ݓ௞ ܭ	߳	݇	∀														
௝ ఢ ௃

 (3a)

෍ ௞௟ݖ ൑ ܾ௟ݕ௟ ܮ	߳	݈	∀															
௞ ఢ ௅

 (4a)

෍ ௝௞ݔ ൌ ෍ݖ௞௟
௟ ఢ ௅

ܭ	߳	݇	∀														
௝ ఢ ௄

	 (5a)

,௝௞ݔ ௞௟ݖ ൒ 0, ௞ݓ , ௟ݕ ߳ ሼ0,1ሽ ∀ ,ܫ	߳	݅ ,ܬ	߳	݆	∀ ܭ	߳	݇	∀ (7)

In this formulation, the first two terms of the 
objective function (1a) sum up the installation costs, 
and its two second terms sum up the transportation 
and delivery costs. Constraint (2a) guarantees that 
all of the return products available at the origination 
site j must be shipped. Constraint (3a) ensures that 
all of the products that arrive at reprocessing site k 
must be lesser than its capacity and that this facility 
must be opened. Constraint (4a) guarantees that all 
of the products that are delivered at the 
remanufacturing facility l must be less than its 
capacity and that this facility must be opened. 
Constraint (5a) is a type of flow conservation, which 
ensures that all of the products that arrive at 
reprocessing facility k must also leave it. Note that 
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in this model, the number of positive variables is 
O(n2), in contrast to O(n3) of the classical model. 
The number of integer variables remains the same 
for both models. Compared with the weak 
formulation, both of the models have O(n) number 
of constraints. However, this RSCLP-P model has 
O(n) compared with O(n3) constraints of the strong 
formulation of RSCLP. In fact, this model has 
(2nq+q+m) variables and (n+2q+m) constraints 
versus (nqm+q+m) variables and (n+2q+2m) 
constraints in the weak formulation of RSCLP. 

3.3 Proof of Equivalency and Strength 
between the MILP Models 

For space reasons, theoretical proof of equivalency 
between the proposed RSCLP-P model and the weak 
and strong classical models are not presented here. 
For the same reason, it is only summarized the proof 
of strength between the proposed RSCLP-P model 
and weak classical model. 

Lemma 1: RSCP-P Model is stronger than RSCP 
Model. Let SRSCP = {(X,w,y) ϵ R|J|x|K|x|L|+|k|+|L| | Xjkl, 
wk and yl satisfy (2)-(7), (10)-(11)} be the set of 
feasible solutions of RSCLP, SRSCP-P = {(x,z,w,y) ϵ 
R|J|x|K|+|K|x|L|+|k|+|L| | xjk, zkl, wk and yl satisfy (2a)-(5a), 
(7), (10)-(11)} the set of feasible solutions of 
RSCLP-P, ࡿഥRSCP = {(X,w,y) ϵ R|J|x|K|x|L|+|k|+|L| | Xjkl ≥0, 
0≤wk ≤1, 0≤yl ≤1 and satisfying (2)-(6), (10)-(11)} 
the set of solutions to the LP relaxation of RSCLP, 
and ࡿഥRSCP-P = {(x,z,w,y) ϵ R|J|x|K|+|K|x|L|+|k|+|L| |xjk ≥0, zkl 
≥0, 0≤wk ≤1, 0≤yl ≤1 and satisfying (2a)-(5a), (10)-
(11)} the set of solutions to the LP relaxation of 

RSCLP-P. Then, ࡿഥRSCP-P ⊆	ࡿഥRSCP. 

Proof: Consider an instance of RSCP with 
J={1,2,3}, K={1,2}, L={1,2}; Cjkl=1, ∀ j ϵ J, k ϵ K, l 
ϵ L; fk=1, ∀ k ϵ K; gl =1, ∀ l ϵ L; aj=1, ∀ j ϵ J; uk =2, 
∀ k ϵ K; bl=3, ∀ l ϵ L; pmin=qmin=0; pmax=qmax=2. 

Let (X,w,y) ϵ 	ഥܵRSCP with 
X111 = X121 = 0.5 and X211 = X321 = 1; w1 = w2 = 

0.5; y1 = 1 and y2 = 0, and the remaining values 
equal to zero. 

We can verify that (X,w,y) satisfy (1)-(7), (10) 
and (11). 

From (12) and (13), we obtain for (x,z) 
x11 = x12 = 0.5; x21 = x32 = 1; z11 = z21 = 1.5 and,  
w1 = w2 = 0.5; y1 = 1 and y2 = 0. All of the other 

values are equal to zero. 
However, constraint (3a) is violated ∀ j ϵ {1,2,3} 

and ∀ k ϵ {1,2}.  
Thus model, RSCLP-P provides a tighter 

formulation than model RSCLP for the same 
problem. 

4 COMPUTATIONAL 
EXPERIMENTS 

The goodness of both formulations is compared by 
means of a computational study, and the results for 
large instances of the problem are discussed here. 
Our interest was to benchmark the computation 
times and the quality of the lower bound provided by 
the linear programming relaxation. The models were 
implemented in GAMS, and it was used CPLEX 
(version 12.2) with default settings to solve all of the 
test instances that are presented in this section. All 
of the computational tests were performed on a PC 
with 1 GB of RAM memory and a 2.3 GHz 
processor. 

We randomly generated 10 test problems 
following similar methodologies used for well-
known related supply chain problems (for example: 
(Fleischmann et al., 2001); (Lu and Bostel, 2007)). 
These test problems correspond to networks of up to 
600 origination sites, 100 candidate sites for locating 
reprocessing facilities and 40 candidate sites for 
locating remanufacturing facilities. The data sets for 
the test problems are given in Table 1, and they are 
available from the authors; because of the restriction 
on the size of papers, the authors have not provided 
the full data in this paper. All of the transportation 
costs were generated randomly using a uniform 
distribution with parameters [1,40]. The fixed costs 
for the remanufacturing facilities were obtained by 
multiplying by 5 the fixed costs of the reprocessing 
facilities, following Jayaraman et al., (2003). 
Sourcing units (aj), the capacity of reprocessing 
facilities (mk) and the capacity of remanufacturing 
facilities (bl) are shown in Table 1. 

Table 1: Data set. 

# J K L 
Fixed 

costs fk 

Fixed 
costs gl 

aj mk bl 

1 40 20 15 3000 15000 150 400 2000 

2 70 30 20 5000 25000 150 500 2500 

3 100 40 20 5000 25000 150 500 2500 

4 150 40 20 10000 50000 200 800 4000 

5 200 80 20 10000 50000 300 800 4000 

6 300 80 40 20000 100000 200 800 4000 

7 350 100 40 20000 100000 200 800 4000 

8 400 100 40 20000 100000 200 1500 7500 

9 500 100 40 20000 100000 200 1500 7500 

10 600 100 40 25000 125000 300 3000 15000 

Table 2 illustrates for some instances, the size 
differences between the RSCLP model and proposed 
formulation. For example, for instance #7 the total 
number of continuous variables is 1,400,000 and 
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39,000 for the weak classical and proposed model 
respectively. For instance #10 the number of 
continuous variables is 2,400,000 and 64,000 for the 
weak classical and proposed model respectively. 
Although they share the same number of integer 
variables, the classical model has up to 50 times the 
number of continuous variables. 

Table 2: Size differences between the classical model and 
the proposed formulation. 

 Classical (weak) model Proposed formulation 
# Xjkl yl; 

wk 
No.  
cstr 

xjk; zkl yl; wk No.  
cstr 

7 1,400,000 140 632 39,000 140 592 
8 1,600,000 140 682 44,000 140 642 
9 2,000,000 140 782 54,000 140 742 
10 2,400,000 140 882 64,000 140 842 

4.1 Results Analysis 

Table 3 displays the linear programming (LP) 
relaxation lower bound values (vL) and the gap 
between the integer optimal values of the objective 
function (v*) and the LP values for all of the models. 
They also show the computing times in seconds 
(secs). Remember that vL is obtained by solving the 
LP relaxation of the respective model. The 
computing time was limited to 5,200 seconds. 
Columns 2 to 5 give the results that correspond to 
the classical weak RSCLP model; columns 6 to 9 
display the results that correspond to the classical 
strong RSCLP-T model, and columns 10 to 13 show 
the results that correspond to the RSCLP-P model 
(the proposed formulation). To illustrate, for 
problem instance 4, the LP relaxation lower bounds 
(vL) are 168,200.0, 282,916.0, and 858,200.0 for the 
RSCLP, RSCLP-T, and RSCLP-P models, 
respectively; while for instance 6, these values are 
280,800.0 and 3,160,800.0 for the RSCLP and 
RSCLP-P models, respectively. For this instance, the 
RSCLP-T model was unable to provide the LP value 
because it exceeded the computing time limit. The 
results indicate that, for all of the test instances, the 
proposed RSCLP-P model outperforms the classical 
weak (RSCLP) and strong formulation (RSCLP-T) in 
terms of the quality of the lower bound and the 
computing times. In summary, we observed the 
following: 

4.1.1 Lower Bounds (LP) 

 For instances with 800 and 1000 sourcing nodes, 
the weak classical formulation is unable to provide 
the LP relaxation solution because it runs out of 
memory.  

 For the strong classical formulation, this scenario 

occurs with instances that have more than 300 
sourcing sites 

 The lower bound provided by the proposed 
RSCLP-P model is significantly better than that 
provided by the weak (RSCLP) and strong (RSCLP-
T) classical models 

4.1.2 Optimal Integer Solutions 

 For test instances with more than 300 origination 
sites (marked by *), the weak (RSCLP) classical 
formulation is unable to provide the optimal integer 
solution because it runs out of memory or the 
defined time limit for execution is reached; 

 For the case of RSCLP-T model, this scenario 
occurs for networks with more than 100 origination 
sites; 

4.1.3 Computing Time 

 The same performance can be observed in terms 
of the computing times. To illustrate, for instance 4, 
the computing times for obtaining the lower bounds 
are 5.16 and 647.0 for the weak and strong classical 
models, respectively, while the corresponding time 
is 0.67 for the proposed model. For instance 5, those 
times are 15.45, 4013.0 and 0.84 seconds for the 
weak and strong classical models and for the 
proposed formulation, respectively. 

4.1.4 Gaps (%) 

Table 3: Lower bound (vL) and computing times (seconds). 

# 

RSCLP (weak  
classical) 

RSCLP-T (strong 
classical) 

RSCLP-P 
(proposed) 

vL Secs vL secs vL secs 

1 37200 0.70 50938 3.97 109200 0.59 

2 75300 1.63 119025 45.55 255300 0.41 

3 74650 2.88 122070 317.61 419650 0.50 

4 168200 5.16 282916 647.19 858200 0.67 

5 254000 15.45 426674 4013.3 1694000 0.84 

6 280800 49.41 * - 3160800 1.19 

7 290400 125.55 * - 3670400 7.5 

8 305700 90.00 * - 2319033 1.52 

9 341200 137.28 * - 2887867 6.38 

10 594900 290.05 * - 3444900 5.27 

 It was observed that gaps (%) obtained from the 
weak (RSCLP) and the strong (RSCLP-T) classical 
models are significantly worse than the gaps 
obtained by the proposed RSCLP-P model. 

 To illustrate this point, for problem instance 1, 
the gaps (%) are 213.84, 129.20 and 6.91 for the 
RSCLP, RSCLP-T and RSCLP-P model, 
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respectively, while for problem instance 5, the gaps 
(%) are 572.32, 300.24 and 0.81 for the RSCLP, 
RSCLP-T and RSCLP-P model, respectively; 

 The average gap for the proposed model is 
3.69%, while this number is 210.25% and 625.19% 
for the strong and weak classical formulations, 
respectively. 

4.2 Model Sensitivity 

We investigated the sensitivity of the models 
generating several scenarios to provide further 
information regarding the goodness of both 
formulations. For example, we increased the 
capacity of the reprocessing facilities by 200% and 
the capacity of the remanufacturing facilities by 
100%. The results are summarized in Table 4. 

Table 4: Lower bound (vL), integer optimal solution (v*), 
and Gap [100(v*- vL)/vL]. 

 RSCLP (weak classical) RSCLP-P(proposed) 

vL Gap% vL Gap% 

1 36300 101.24 55800 30.91 
2 73800 138.08 131300 33.82 
3 67950 219.28 194200 11.71 
4 153600 196.35 406100 12.09 
5 216300 287.61b 781300 7.19 
6 262400 467.00b 1392400 6.06 
7 276400 511.72c,d 1614733 4.71d 
8 305000 304.10 c,d 1073889 14.77d 
9 341200 328.02c,d 1332311 9.61d 
10 595200 226.75c,d 1695200 14.72d 
Min  101.24  4.71 
Max  511.72  33.82 
Ave  277.77  14.41 

a 
Algorithm terminated at 5,200 CPU seconds without reaching 

an optimal solution 
b 

Gap is calculated using the integer optimal solution provided by 
the RSCLP-P model 
c 

Algorithm ran out of memory 
d 

Gap is calculated using the best integer solution provided by the 
RSCLP-P model 

In Table 4, for the classical model and for 
problem instances 1-10, the maximum and minimum 
gaps are 511.72% and 101.24%, respectively, with 
an average gap of 277.77%. The maximum and 
minimum gaps for the proposed model are 33.82% 
and 4.71%, respectively, with an average gap of 
14.41%. The average gap of the classical model is 
more than 20 times larger than the proposed model 
average gap. Observe that, for problem instances 7-
10, the classical models ran out of memory and for 
problem instances 5-6 the same model hit the 

computational limit. For those instances, the gap was 
obtained using the integer optimal solution provided 
by the proposed model. 

5 CONCLUSIONS 

In this paper, we proposed a new formulation for the 
problem of planning a reverse supply chain network, 
and it is provided theoretical and empirical proofs 
that this model is stronger than the classical (weak 
and strong) formulations of the problem. We 
analysed the performance of the proposed MILP 
formulation in terms of the computing times and the 
quality of the lower bounds provided by the linear 
relaxation. We showed, for the large-scale instances 
with up to 600 sourcing sites, 100 candidate sites for 
locating reprocessing facilities and 40 candidate 
sites for locating remanufacturing facilities, that the 
proposed RSCLP-P model outperforms the classical 
weak and strong formulation with a gap that is 
several times lower than the gap provided by the 
weak formulation and with significantly less 
computing time. Furthermore, the weak formulation 
cannot provide integer optimal solutions for some 
instance cases, and it is also unable to obtain the 
linear optimal solution in a reasonable amount of 
computing time. 
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